Drag law of three dimensional granular fluids

Satoshi Takada (ERI, Tokyo)
Hisao Hayakawa (YITP, Kyoto)

2018/6/18-2018/6/20 Rheology of disordered particles (YITP, Kyoto University)
Introduction

Drag law in fluid

Drag of a tracer in a flow is characterized by Reynolds number

- **Slow-speed region**
 \[F = 6\pi \mu a U \] (3D sphere) (Stokes’ law)

- **High-speed region** \(F \propto U^2 \) (Newton’s law)
 impulsive force due to collisions
Previous studies (1)

Drag law in a granular media

The Cell is pulled by V.

Experimental setup

The Disk is fixed by a wire.

The drag force f is measured.

Time average

Drag force F

Previous studies (2)

Drag law in a granular media

\[F = F_0(\phi) + \alpha(\phi)V^2 \] is a good fitting function.

Yield force
Previous studies (3)

The origin of the term proportional to V^2

Dimensional analysis

- Force $\propto [\text{time}]^{-2}$
- Stiffness k and pulling speed V have the dimension of time.

\Rightarrow drag force $\propto V^2$

The origin of the yield force

Another quantity having the dimension of time...
- Gravity acceleration g?
- Dry friction between the grains and the bottom plate?
Previous studies on 3D drag

- **3D drag simulation under gravity with friction**

 J. E. Hilton & A. Tordesillas, PRE, 88, 062203 (2013)

 \[F = F_0 + \alpha V \]

- **Drag experiment of rod**

 K.A. Reddy, Y. Forterre, and O. Pouliquen, PRL, 106, 10

 \[V = \exp \left(\frac{F - F_c}{F_0} \right) \]

 \[\iff F = a + b \log(V) \]
Perfect fluidity in granular jet (1)
Chicago group suggested the perfect fluidity in granular jet problem.

\[\nabla \cdot \mathbf{u} = 0, \]
\[\rho (\partial_t + \mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot \mathbf{\sigma} \]
\[\mathbf{\sigma} = -p \mathbf{I} + \mu p \dot{\gamma} / |\dot{\gamma}| \]

Coulombic friction

Ellowitz et al. PRL 111, 168001 (2013)
Our previous study: Drag law in 2D granular media

- Active microrheology
- Frictionless system

When the system is moderately dense, the drag law is explained by:
- the perfect fluid +
- vacancy.

\[F_{\text{drag}} = \left(\frac{3}{2} + \frac{2}{3} \sin^2 \theta_0 \right) \sin \theta_0 D \rho V^2 \]

Recently, Dr. Tanabe found our mistake!
Our previous study: Drag law in 2D granular media

Introduction of the **dry friction** of the bottom plate
⇒ Existence of the yield force
⇒ Friction is the **origin of the constant force.**
Our previous study & Motivation

Motivation

What determines the velocity dependence?

⇒ We clarify the relationship between F_{drag} and V based on the 3D DEM simulation.

Various V dependence
- Linear regime (creep)
- Plateau regime (activation)

log-log plot

$F^*_{\text{drag}} = F_0 + \alpha V^2$

$F^*_{\text{drag}} = \frac{F_{\text{drag}}}{(\phi_c - \phi)^{-\beta}}$

V^*, ϕ

$F_{\text{drag}} = F_0 + \alpha V^2$

ϕ_{c}
Setup

3D DEM simulation for frictionless systems

- **Particles**
 - mass m, diameter d: monodispersity
 - Number of grains $\sim 10^4$
 - Restitution coefficient: $e = 0.8$

- **Intruder**
 - Diameter D
 - Pulling with $F = F_{ex}$ in x-direction

- **System**
 - Cylinder $L_x = 60d, R = 7.5d$
 - Boundary condition:
 - x-direction \Rightarrow periodic boundary
 - y, z-direction \Rightarrow flat physical boundary (curvature R)
Movie
Drag law \((D = d)\)

\[F_{\text{drag}} = (\text{Yield force}) + (\text{term } \propto V) \]

Various \(V\) dependence

- \(V\) regimes
- \(V^2\) regime (perfect fluidity)
- Plateau regime

Similar to PRE, \(88, 062203\) (2013)
Drag law

V^*

F_{drag}^*

Logarithmic dependence

ϕ

0.635

\Rightarrow Why?
Log regime

Activated processes occur?

Contact force F_c

Activation

Average contact force $\langle F \rangle_c$

~ External force F_{ex}?

$$t^* = t \sqrt{\kappa / m}$$

Time evolution of the position and velocity of the tracer

$$x^* = x / d$$

$$p / (x / w) \sqrt{x_a} = x_a$$
Activated process

Time-averaged contact force \bar{F}_c from the simulation

$$\bar{F}_c = \sum_{\text{contact}} \kappa \delta \cos \theta$$

κ: spring constant

Good agreement \Rightarrow Activated processes

Logarithmic dependence!

Drag law \((D > d)\)

When the intruder is much larger than the surrounding particles, the plateau regime vanishes.⇒ This fact seems to validate our conjecture (activation process).
We have performed the three-dimensional drag simulation. This system is force-controlled (active microrheology). Many characteristic regimes

- Quadratic regime \Rightarrow **Newtonian**
 (Similar to 2D system)

- Log regime \Rightarrow **Activated process**
 This regime vanishes for larger D.

Next question:
What is the proper drag law?

Especially, the drag law for frictional grains under gravity.
\Rightarrow We numerically study this problem.
Setup

- 3D DEM simulation by LAMMPS
- With gravity and friction
- Polydisperse particles (0.9d~1.1d: uniformly distributed)
- We control V, and measure F_{drag}.
- We introduce the Froude number (dimensionless speed)

$$Fr = \frac{V}{\sqrt{gD}}$$

$Fr = \frac{V}{\sqrt{gD}}$ = ratio of two characteristic time scales:

$t_1 = D/V$: forward motion in x-direction
$t_2 = \sqrt{D/g}$: falling in z-direction

Interaction model

- Hertzian model + dashpot (proportional to the relative velocity)

$$F_n = \sqrt{R_{\text{eff}}\delta}(K_n\delta - m_{\text{eff}}\gamma_n v_n)$$

$$F_t = -\min \left(\mu F_n, \sqrt{R_{\text{eff}}\delta}(K_t\Delta s_t + m_{\text{eff}}\gamma_t v_t) \right)$$

$K_n = 2 \times 10^8 \rho d g, K_t = 2.45 \times 10^8 \rho d g$

※All quantities are nondimensionalized in terms of ρ, d, g.

In collaboration with S. Kumar and K. A. Reddy (IITC, India)

System I
40$d \times 40$d $\times 38$d
70,001 particles

System II
80$d \times 40$d $\times 80$d
300,001 particles
Result

- movie
Typical time evolution of the drag force

Typical velocity field
Drag force vs. Froude number (constant depth)

- F_{drag} increases as the diameter D increases. $F_{\text{drag}} = F_{\text{drag}}(\text{Fr})$.
- Especially, for $0 \leq \text{Fr} \leq 0.5$, $F_{\text{drag}} \approx F_Y \equiv \text{const}$.

Question: How can we scale these drag laws depending on the intruder diameter D or the depth h?

\Rightarrow We focus on the static (constant) regime ($0 < \text{Fr} \leq 0.5$).
Diameter D dependence in the static regime

- F_Y increases as μ increases.
- F_Y depends the power of $(D^* + 1)$.
 ⇒ We define the exponent ϕ_μ.

Yield force is scaled by $D^* + 1$ with

$$\frac{F_Y^*}{f(\mu)(D^* + 1)^{\phi_\mu}} = \text{const.}$$

※$f(\mu)$ depends only on μ.

Next, how is the depth dependence?
Depth h dependence (constant diameter D)

- As well as $(D^* + 1)$, F_Y also depends on the power of h.
 \Rightarrow We define the exponent α_μ.
 α_μ is the increasing function of μ.

- Yield force is also scaled by h with
 \[
 \frac{F_Y^*}{g(\mu) h^* \alpha_\mu} = \text{const.}
 \]
Scaling law

From the above discussions, the yield force can be scaled as

\[F_Y \propto \rho (D^* + 1)^{\phi_{\mu}} h^{\alpha_{\mu}} g \]

And this scaling can be applied for the whole range of \(Fr \) except for the shallow region.

\[\frac{F_{\text{drag}}}{F_Y} = F_{\text{dynamic}}^*(Fr) \]

Sum rule

Two exponents \(\phi_{\mu} \) and \(\alpha_{\mu} \) satisfy an approximate sum rule

Sum rule

\[\phi_{\mu} + \alpha_{\mu} \approx 3 \]
Discussion

• Why is the sum rule $\phi_{\mu} + \alpha_{\mu} \approx 3$ satisfied?
 From the dimensional analysis, $F_{\text{drag}} = [\text{length}]^3$
 Which do other quantities have the dimension of length?
 $\Rightarrow D, h \Rightarrow (D + d)^{\phi_{\mu} h^{\alpha_{\mu}}}, \phi_{\mu} + \alpha_{\mu} = 3$

• Why $\phi_{\mu=0} \approx 2$?
 Collision cross section is given by $\pi (D + d)^2/4. \Rightarrow \phi_{\mu=0} \approx 2$

• Why does $\phi_{\mu} (\alpha_{\mu})$ decrease (increase)?
 Or really power dependence?
 We do not still have any answer.
 \Rightarrow Larger (in height) simulation should be done.
Short summary of Part II

• We have performed DEM simulation to study the drag law in 3D granular media.
• There exist two regimes depending on the Froude number (static and dynamic parts).
• The drag law for the whole Fr regime can be scaled in terms of $D + d$ and h.
• There exists an approximately sum rule $(\phi_\mu + \alpha_\mu \approx 3)$ between two exponents.

Future work
• Larger simulations are needed.
• Force chain network
Question

• Can we use periodic boundary condition in the pulling direction?
 ⇒ It may affect the results
 (especially for high velocity regime).

• When we watch the movie (in Part I), the surrounding particles seem to have a finite temperature?
 ⇒ What happens when the particles have the finite temperature?

We study passive microrheology.
Setup

Velocity control simulation
Soft core simulation (e=1)
N=20,000, monodisperse
Initial packing fraction: $\phi = 0.4$

- Intruder
 - Intruder is fixed.
 - Diameter $D = 5d$
 - Mass $M = \infty$

- Surrounding particles
 - Monodisperse
 - At $t = 0$, the velocity V is added.
 - No overlaps at first.
3D simulation \((T = 0)\)

\[
\phi = 0.4 \\
e = 1 \\
V^* = 10^{-0.5}
\]
Force chains only exist near the intruder.
Density profile

White lines… stream lines

Large vacant region behind the intruder.
Drag law \((T = 0)\)

\[
F_{\text{drag}} = \left(\frac{3 + 2e}{8} - \frac{9}{64} \sin^2 \theta_0 \right) \sin^2 \theta_0 \rho D^2 V^2
\]

- The drag law is insensitive to the restitution coefficient.
- The drag force is proportional to \(V^2\).
- The drag force is two times smaller than that obtained by the perfect fluid + vacancy model.
Comparison with active microrheology

Difference between active (force control) and passive (velocity control) microrheology?

Setup:
2D system
Particle number: 10000
Restitution coefficient: e=0.9
Bidisperse: 1:1.4

Tendency is opposite!
Why? We still have no idea.
We consider the case that the particles have a finite temperature $T(>0)$.

Introduction of dimensionless parameters

- Dimensionless drag force
 \[C_D = \frac{F}{\frac{1}{2}\rho V^2 S} \]
 (We measure F at $V^* = 0.1$.)
- We also define the dimensionless velocity as
 \[R = \frac{V}{v_T} = V\sqrt{\frac{m}{2T}}. \]
Movie \((R = 1)\)

\[N = 20,000 \]
\[\phi = 0.4 \]
\[e = 1 \]
\[V^* = 0.1 \]
Movie \((R = 0.1)\)

\[N = 20,000 \]
\[\phi = 0.4 \]
\[e = 1 \]
\[V^* = 0.1 \]
Density field \((R = 0.1)\)

Vacant regime becomes smaller. (Particles can go around the intruder.)
Drag law between C_D vs. R

- Hard-core limit is realized for soft-core simulations.
- R dependence

 R: large $\Rightarrow C_D = \text{const.} \Rightarrow F \propto V^2$ (Newtonian)

 R: small $\Rightarrow C_D \propto 1/V \Rightarrow F \propto V$ (Stokes’ law)

 Consistent with Stokesian drag $F = 4\pi\eta \frac{D}{2} V$ (slip surface)

 (η: viscosity for the surrounding particles \leftarrow Garzo & Dufty, PRE (1999))
Discussion

Fluid

Our system

Reynold’s number

• Transient regime between $C_D \propto \frac{1}{R}$ and $C_D \propto \text{const}$.

Fluid: ○ ⇔ Our system: ✗

• High R limit

Fluid: turbulence (Karman vortex and separation vortex)

⇔ Our system: converge to constant

What causes these?

→ roughness of the surface, thermal wall?

Summary of Part III

- We have performed simulations.
- Velocity control system.
- \(T = 0 \)

 Drag force \(\propto V^2 \) (Newtonian)

- \(T > 0 \)

 \(R \gg 1 \): Newtonian

 \(R \ll 1 \): Stokesian

 \(\rightarrow \) consistent with Stokes drag \(F = 4\pi\eta\frac{D}{2}V \)

Future work

- Transient behavior
- Introduction of surface roughness or thermal wall