Current status of absorbing-state transitions & connections to reversible-irreversible transitions

Kazumasa A. Takeuchi (Univ. Tokyo)

@YITP focus meeting on Rheology of disordered particles - suspensions, glassy and granular materials

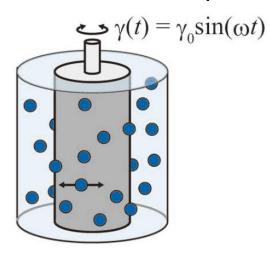
A review talk including:

- KaT, M. Kuroda, H. Chaté & M. Sano,
 Phys. Rev. Lett. <u>99</u>, 234503 (2007); Phys. Rev. E <u>80</u>, 051116 (2009).
- M. Takahashi, M. Kobayashi & KaT, arXiv:1609.01561

Reversible-Irreversible Transitions (RIT) & Absorbing-State Transitions (AST)

RIT in suspensions

discovered by Pine et al. (Nature 2005) in a Couette cell experiment



small γ_0 : particles motion reversible large γ_0 : particles motion irreversible

concerns rheological properties

AST in stat phys

- Non-equilibrium phase transitions into "absorbing states"
- A few universality classes established.

 "test bed of physics of
 noneq critical phenomena"

 [Hinrichsen Adv Phys 49 815 (2000):
 - [Hinrichsen, Adv. Phys. <u>49</u>, 815 (2000); Henkel et al., Noneq Phase Transitions (2009)]
- Established based on toy models, but relevance in real systems has been recognized recently.
- •RIT is a type of AST.

Absorbing-State Transitions [Hinrichsen, Adv. Phys. 49, 815 (2000)]

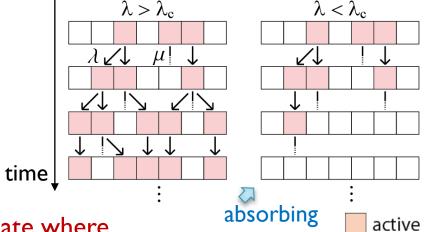
Prototypical model: contact process

Active sites can stochastically

- (1) activate a neighbor (at rate λ)
- (2) become inactive (at rate μ)

 $\lambda > \lambda_{\rm c}$: active sites persist

 $\lambda < \lambda_c$: active sites die out



absorbing state = a global state where no further state change is allowed.

inactive

Order parameter: density of active sites

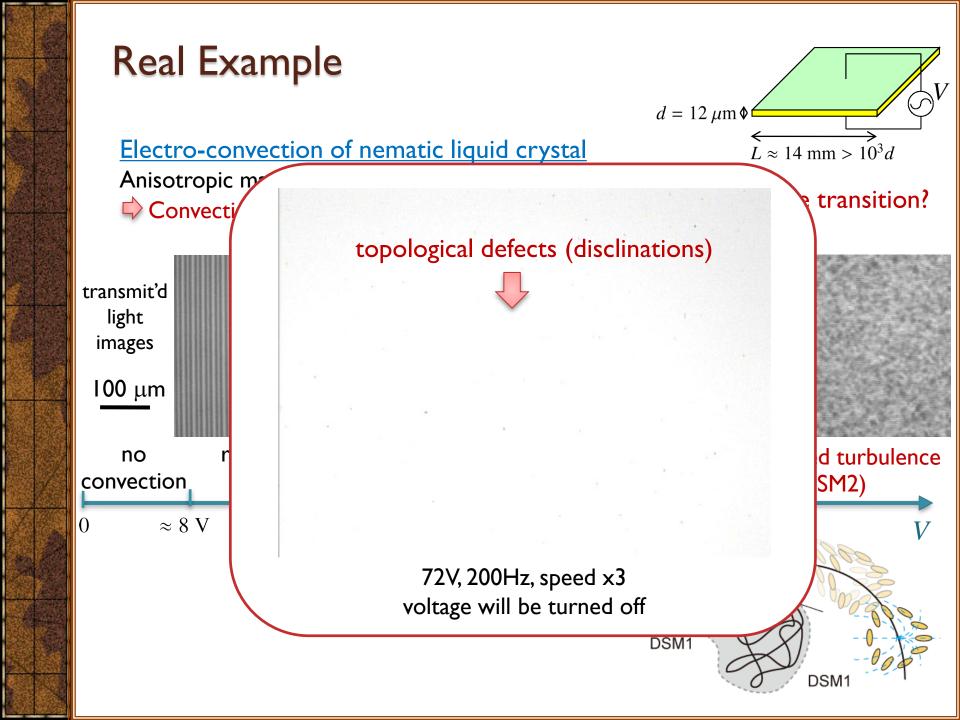
$$\rho \sim \begin{cases} (\lambda - \lambda_{\rm c})^{\beta} & (\lambda \ge \lambda_{\rm c}) \\ 0 & (\lambda \le \lambda_{\rm c}) \end{cases}$$
 Critical exponents are universal. \Leftrightarrow universality class

universality class

Directed percolation (DP) universality class: most fundamental case

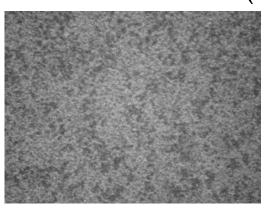
"DP conjecture": [Janssen 1981, Grassberger 1982]

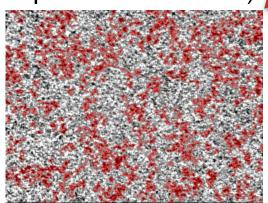
AST are usually DP, in the absence of symmetry, conservation law, long-range interactions, quenched disorder.



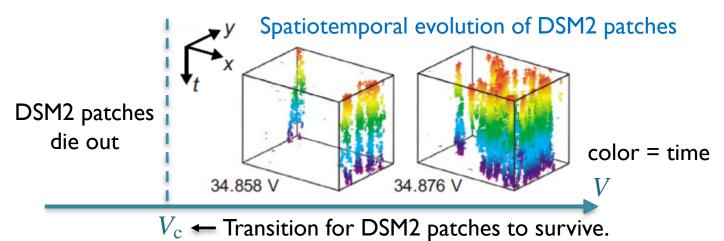
Near the Transition

DSMI & DSM2 coexist (DSM2 patches amid DSMI) /





Absorbing-state transition (DSM2 nucleation is very rare)



Order parameter ρ = DSM2 area fraction

Critical Phenomena

• Steady state

$$ho_{
m steady} \sim (V^2 - V_{
m c}^2)^{eta}$$
 $ho = 0.59(4)$ $ho^{
m DP} \approx 0.583$ agreement with (2+1)d DP class

Relaxation from fully active state

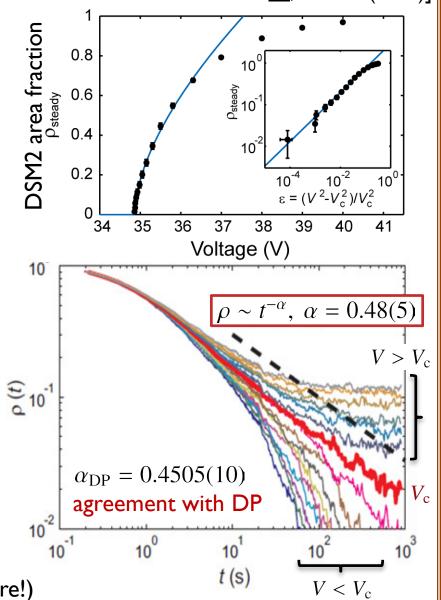
Agreement in 12 exponents.

"first successful realization of directed percolation in nature"
[Hinrichsen, Viewpoint in Physics, 2009]

Why DF!

- short-range interaction: Re $\approx 10^{-4} \ll 1$
- (almost perfectly) abs.-state transition.
 (∵generation of topological defects is rare!)

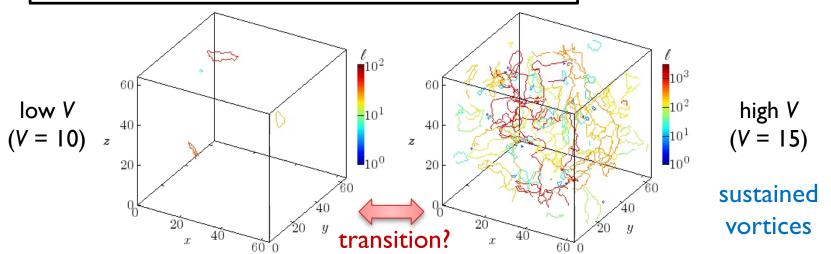
[KaT et al. PRL <u>99</u>, 234503 (2007); PRE <u>80</u>, 051116 (2009)]



Quantum Turbulence: Another Topological-Defect Turbulence

- In quantum fluids (e.g., superfluid He, cold atom BEC) vortices are quantized (= topological defects).
- Quantum turbulence
 turbulence made of quantum vortices
- $\mathbf{v}_{\mathrm{S}} = \frac{\hbar}{m} \mathbf{\nabla} \theta$ $\psi(\mathbf{r}, t) = |\psi(\mathbf{r}, t)| e^{\mathrm{i}\theta(\mathbf{r}, t)}$
- In silico example: Gross-Pitaevskii eq. with dissipation + random potential

$$(i\hbar - \gamma)\frac{\partial}{\partial t}\psi(\mathbf{r},t) = -\frac{\nabla^2}{2m}\psi + [\mathbf{V}(\mathbf{r},t) - \mu]\psi + g|\psi|^2\psi$$
 (potential amplitude = V)

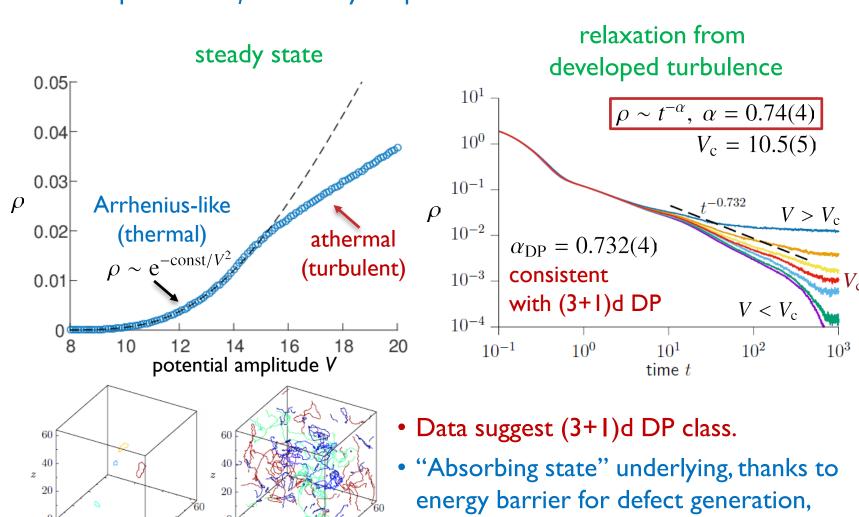


[Takahashi, Kobayashi & KaT, arXiv:1609.01561]

Transition to Quantum Turbulence

[Takahashi, Kobayashi & KaT, arXiv:1609.01561]

Order parameter ρ = density of quantum vortices

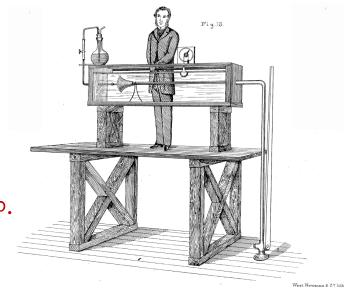


but smeared by thermal excitation.

Newtonian Fluids

Transition to turbulence in pipe flow

- Experimentally, transition near $Re \approx 2000$.
- Laminar flow is linearly stable up to $Re = \infty$. (nonlinear effect is crucial)



[Reynolds 1883]

Question:

Turbulence generated by a nonlinear perturbation can persist or decay? (at a given Reynolds number)

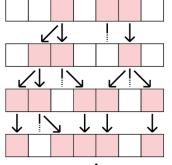
Near the Transition to Turbulence in Pipe

Turbulence localized: "turbulent puff" [see; Hof group, Science 2011 & refs therein]

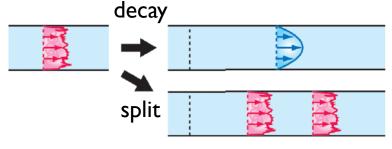
space (comoving)
numerics

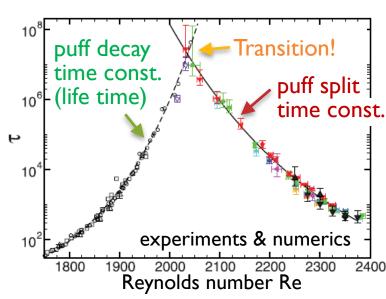
Puffs decay / split stochastically.

DP class?



For pipe, direct test of DP is unrealistic...





However,

similar transition in channel flow/Taylor-Couette DP-class exponents! [Sano & Tamai, Nat. Phys. 12, 249 (2016); Lemoult et al., Nat. Phys. 12, 254 (2016)]

Current Status of DP-class Transitions

• 4 real / realistic examples, where all independent exponents were checked

Systems	why absorbing?	& agreed.
liquid-crystal turbulence (exp)	topological defect	(at least barely)
quantum turbulence (num)	topological defect	[V
Newtonian turbulence (exp & num)	laminar stability	[Yeomans group, Nat. Comm. 8,
active matter turbulence (num)	? (numerically checked)	15326 (2017)]

but further studies needed to answer why DP in those systems.

So what?

DP continuum equation

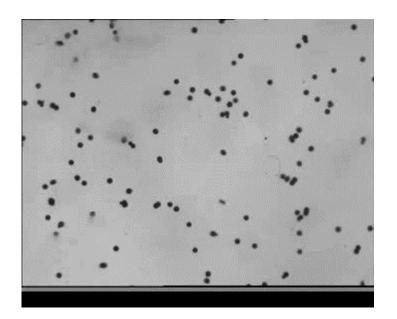
- ► Unified description near the transition $\frac{\partial \rho}{\partial t} = a\rho b\rho^2 + D\nabla^2\rho + \sqrt{\rho}$ (noise)
- > Not only the dependence on the control parameter, but how it ages, how it reacts against perturbations, etc., are known.
- > Theory & analysis & techniques developed for AST may be employed.
- Other classes:

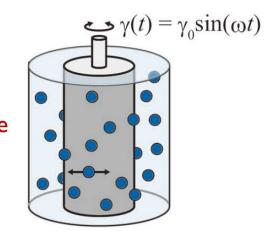
voter (with Z_2 symmetry), C-DP (with conservation law), etc.

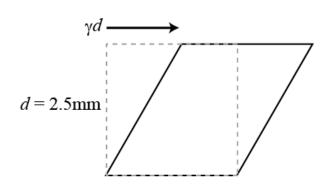
So... Reversible-Irreversible Transition (RIT)

Couette cell experiment by Pine et al. [Nature 438, 997 (2005)]

- > diameter 230μm Brownian motion negligible
- \rightarrow oscillatory shear $\gamma(t) = \gamma_0 \sin \omega t$
- > volume fraction $\phi = 0.1-0.4$ \Rightarrow no jamming
- > density & index matching, some particles are dyed.







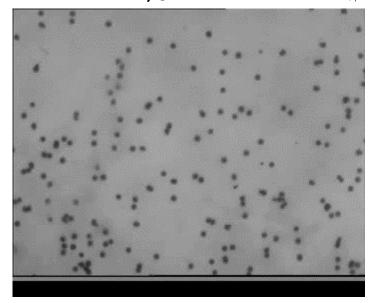
Stroboscopic Imaging

[Pine et al., Nature 438, 997 (2005)]

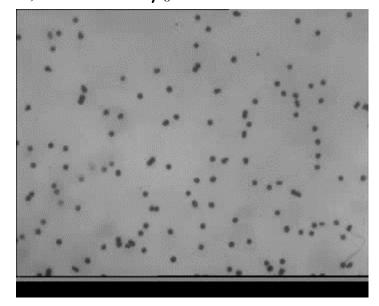
$$\gamma_0 = 1.0$$

$$(\phi = 0.3)$$

$$\gamma_0 = 2.5$$



reversible motion

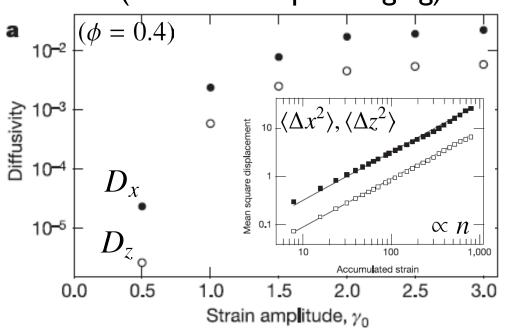


irreversible motion

"reversible-irreversible transition"

diffusion coefficient

(in stroboscopic imaging)



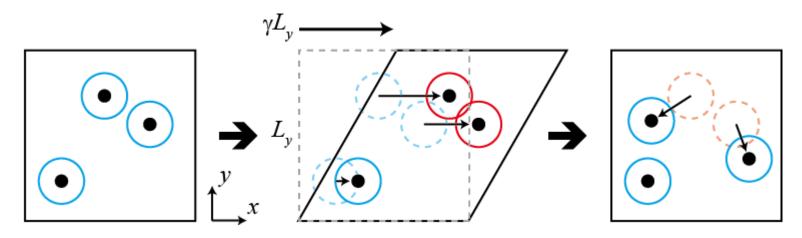
$$\langle \Delta x^2 \rangle = 2D_x n$$
$$\langle \Delta z^2 \rangle = 2D_z n$$

x: flow directionz: axial directionn = cycle number

Suggested the existence of a well-defined transition point.

Possible Mechanism

Model by Corté et al. [Nat. Phys. 4, 420 (2008)]

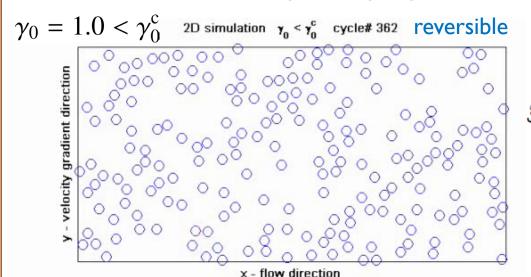


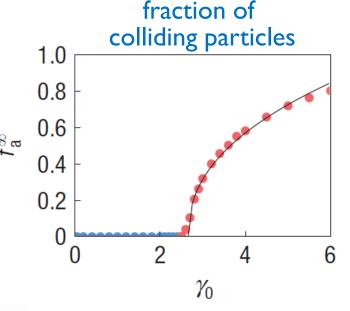
- Finite range of interaction.
- Oscillatory shear: $\gamma(t) = \gamma_0 \sin \omega t$
- When particles collide random displacements
- Model for the dilute case.

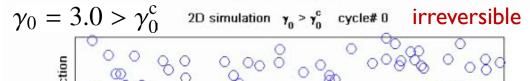
RIT in Corté et al.'s Model

[Corté et al., Nat. Phys. 4, 420 (2008)]

Stroboscopic sampling







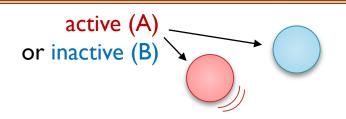
"Random organization"

RIT is an AST!

Total particle number is conserved.

C-DP class?

C-DP Class



A (diffusive)

B (non-diffusive)

$$\begin{pmatrix}
A & \rightarrow B \\
A + B & \rightarrow 2A
\end{pmatrix}$$

$$\rho(x,t) = [A]$$

$$\phi(x,t) = [A] + [B]$$

C-DP continuum equation

$$\begin{cases} \frac{\partial \rho}{\partial t} = a\rho - b\rho^2 + D\nabla^2 \rho + \sqrt{\rho} \text{(noise)} + c\rho \phi \\ \frac{\partial \phi}{\partial t} = D_{\phi} \nabla^2 \rho \end{cases}$$

- Infinitely many absorbing states (any $\phi(x,t)$ with $\rho(x,t)=0$ is absorbing)
- Critical exponents are different from DP, but unfortunately close...

	(2+1)d DP	(2+1)d C-DP	(3+1)d DP	(3+1)d C-DP
β	0.584(3)	0.624(29)	0.813(11)	0.840(12)
$ u_{\perp}$	0.733(3)	0.799(14)	0.584(6)	0.593(13)
$ u_{\parallel}$	1.295(6)	1.225(29)	1.11(1)	1.081(27)

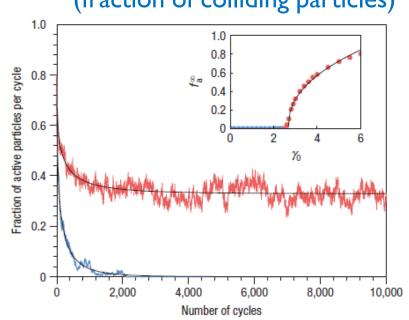
surface critical behavior is useful to distinguish them [Bonachela & Munoz 2007]

Critical Behavior in Corté et al.'s Model

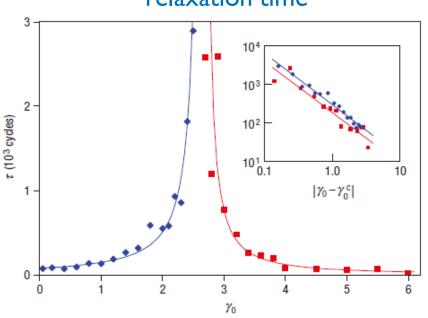
[Corté et al., Nat. Phys. 4, 420 (2008)]

order parameter

(fraction of colliding particles)



relaxation time



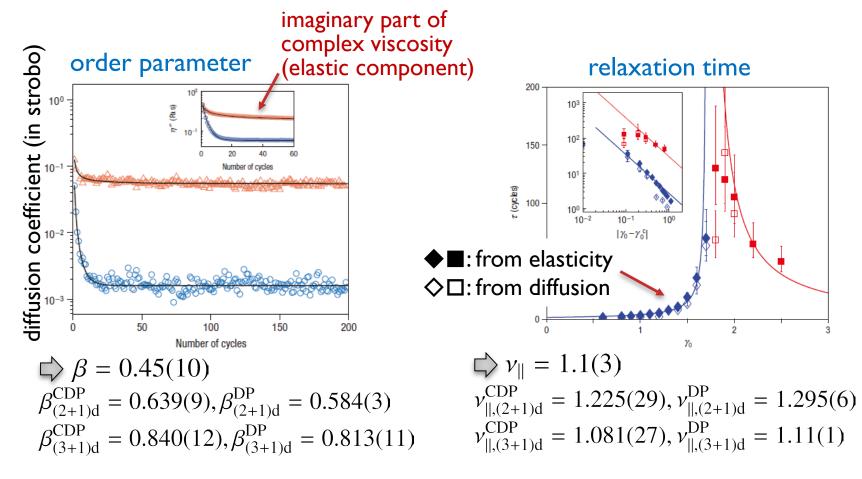
$$\beta = 0.45(2)$$

$$\beta^{\text{CDP}} = 0.639(9), \beta^{\text{DP}} = 0.584(3)$$

not in quantitative agreement with C-DP or DP...

Critical Behavior in Experiment

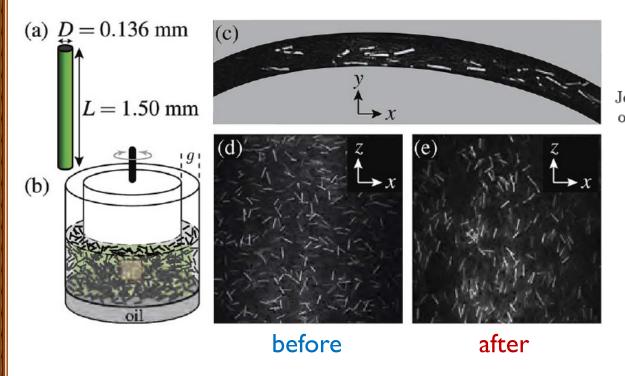
[Corté et al., Nat. Phys. 4, 420 (2008)]



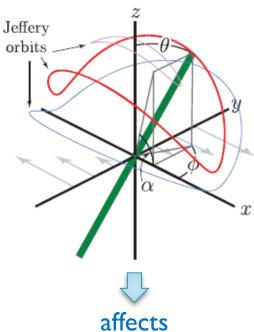
- Not in agreement with C-DP/DP. Hydrodynamic long-range interactions?
- Elastic component behaves like order parameter. Rheological consequence!
 purely viscous (reversible) \(\square\) viscoelastic (irreversible)

With Rods...

[Franceschini et al., PRL <u>107</u>, 250603 (2011); Soft Matter <u>10</u>, 6722 (2014)]



motion of a rod Jeffery orbit



effective volume fraction

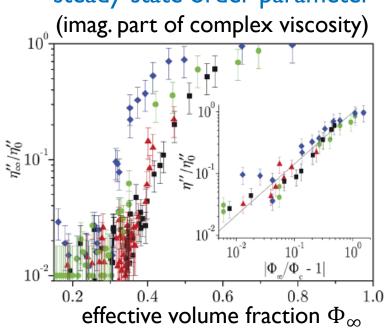
Rods get aligned through interactions.

Tilting of Jeffery orbit changes in time, so does the effective volume fraction.

With Rods...

[Franceschini et al., PRL <u>107</u>, 250603 (2011); Soft Matter <u>10</u>, 6722 (2014)]

steady-state order parameter

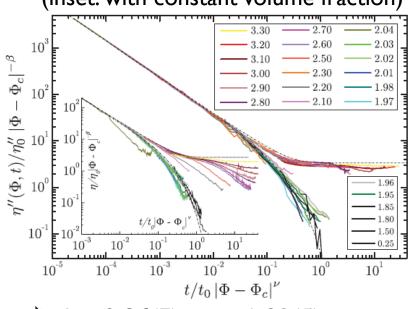


$$\beta = 0.84(4)$$

$$\beta_{(3+1)d}^{CDP} = 0.840(12), \beta_{(3+1)d}^{DP} = 0.81(1)$$

relaxation process

(inset: with constant volume fraction)



$$\beta = 0.86(7), \nu_{\parallel} = 1.09(5)$$

$$\beta_{(3+1)d}^{CDP} = 0.840(12), \beta_{(3+1)d}^{DP} = 0.81(1)$$

$$\nu_{\parallel,(3+1)d}^{CDP} = 1.081(27), \nu_{\parallel,(3+1)d}^{DP} = 1.105(5)$$

Agreement with C-DP class! (also with DP class)

Why different from spheres? Hydrodynamic long-range effect?

Dense Case

high volume fraction, particles jammed all particles interact & cage effect

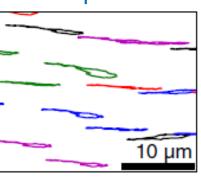
- Less well understood, different observations from different systems, but reversible-irreversible transition seems to exist as well.
- Three regimes [Keim & Arratia, PRL 112, 028302 (2014); see also Regev et al., PRE 2013]
- $> \gamma_0 \ll \gamma_c$: reversible (back & forth), nearly affine deformation, elastic
- $> \gamma_0 \lesssim \gamma_c$: reversible (loop), non-affine with TI events, viscosity emerges
- $> \gamma_0 \gtrsim \gamma_c$: irreversible, plastic deformation, related to yielding?

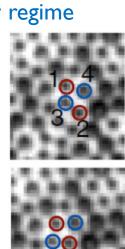
(Keim & Arratia, PRL 2014)

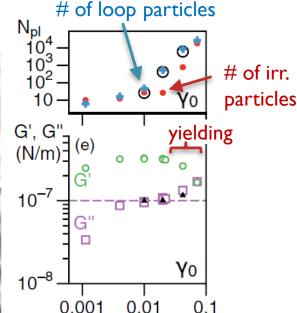
Glass-oil-water contact line

bidisperse PS particles, electrostatically jammed

loop-reversibility regime



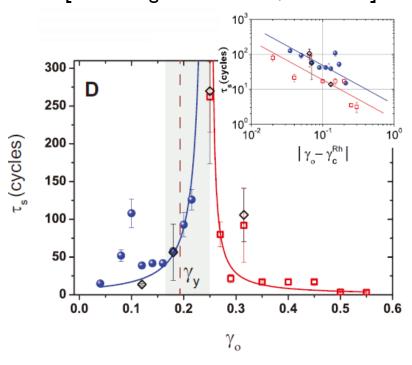




Question I: Continuous vs Discontinuous

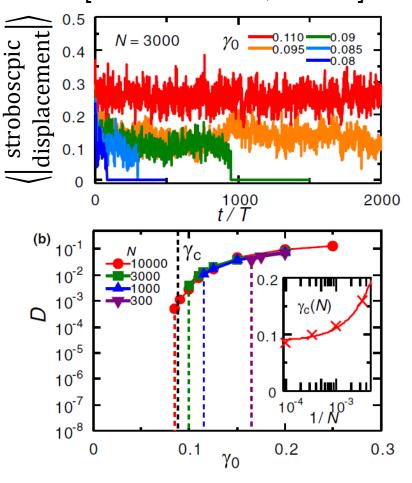
confocal rheometer experiment

bidisperse PNIPAM particles, $\phi \approx 0.67$ [Hima Nagamanasa et al., PRE 2014]



simulations

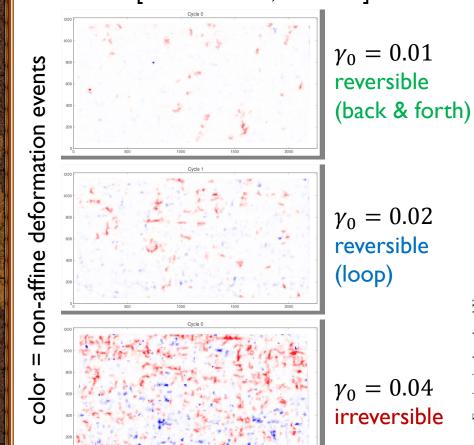
soft repulsive particles, $\phi \approx 0.80$ [Kawasaki & Berthier, PRE 2016]



Question 2: Homogenous vs Inhomogeneous

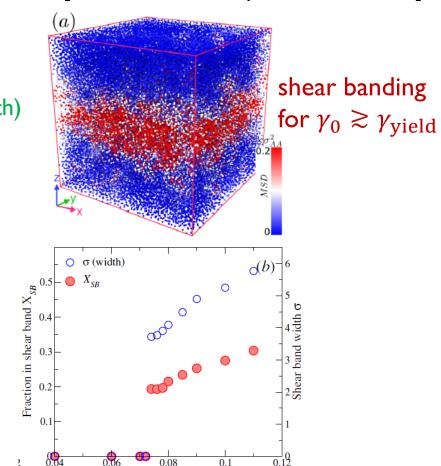
interfacial rheometer experiment

bidisperse PS particles, electrostatically jammed [Keim & Arratia, PRL 2014]



simulations

bidisperse Lennard-Jones w/ cut-off [Parmar, Kumar, Sastry, arXiv:1806.02464]



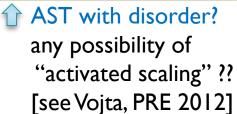
Question 3: Connection to the Dilute Limit

Tendencies (there may be counter-examples!)

		dilute ($\phi \ll \phi_J$)	dense ($\phi \gtrsim \phi_J$)
Particl	e motion (as $\gamma_0 \nearrow$)	reversible → irreversible	reversible (back & forth) [→ reversible (loop)] → irreversible
Rheolo	ogy	purely viscous → elasticity emerges	purely elastic→ viscosity emerges→ yielding
RIT	continuity	continuous	discontinuous? continuous?
	homogeneity	homogeneous	shear banding? homogeneously disordered?
	as an absorbing- state transition	?? (spheres) C-DP class (rods)	?? (even if continuous & homogeneous)

How can those be connected?

[cf. phase diagram in Schreck et al., PRE 2013]



Current status of absorbing-state transitions

- Transitions into an absorbing state (no further state change allowed)
- Most fundamental = directed percolation (DP) class.
 - > Established based on toy models (mostly decades ago)
 - Now relevant in real experiments & realistic models: turbulence in liquid crystal, quantum fluid, Newtonian flow, active matter
 - > Practical criteria for being in the DP class?

Connections to reversible-irreversible transitions

- Transition between reversible & irreversible particle motion in suspensions under oscillatory shear.
- A kind of AST (almost by definition), rheological consequences.
- Dilute case: relation to C-DP class (DP with conserved field),
 but confirmed with rods only.
- Dense case: largely unsettled, intriguing features (loop reversibility, relation to yielding, ...) and many open problems!