Multi species asymmetric simple exclusion process with impurity activated flips

Amit Kumar Chatterjee, Hisao Hayakawa

[References: SciPost Physics 14, 016 (2023); arXiv:2208.03297 (2022)]

Non-equilibrium systems

Transport phenomena [net non-zero current]

Phase transitions (e.g. traffic jam)

One general aim

understanding
complex non-equilibrium phenomena

using

simple exactly solvable toy models
\rightarrow non-equilibrium steady state probability distribution

A random walker

periodic

 latticeSteady state: all equally likely configurations

Generalization: Many interacting random walkers

Model: Asymmetric Simple Exclusion Process (ASEP)

Asymmetric Simple Exclusion Process

1-d lattice

Exactly solvable model
Boundary induced phase transitions

Applications: protein transport, traffic flow

Multi Iane ASEP

more realistic traffic flow

no exact solution

Question: approximate mapping of multi lane ASEP to
1-d model that allows exact solution ?

Motivation: Two lane (multi lane) ASEP to
1-d ASEP with two (multiple) species

Question: equivalent 1-d model ?

Lane 1 particle $\bigcirc \equiv 1$ species 1 Lane 2 particle $\bigcirc \equiv$ (2) species 2 Bridge $\mid \equiv \oplus$ impurity

Lane change:

Multi species ASEP with impurity activated flips

(i) disordered
(ii) non-conserved
(iii) non-ergodic

Steady state: Matrix Product Ansatz

components represented by matrices
species " K " $\rightarrow D_{K} \quad$ impurity $\longrightarrow A \quad$ vacancy $\longrightarrow E$

$$
\ldots 012+\ldots \equiv \ldots E D_{1} D_{2} A \ldots
$$

Probability of any configuration:

$$
\begin{aligned}
& P\left(\left\{s_{i}\right\}\right) \propto \operatorname{Tr}\left[\prod_{i=1}^{L} X_{i}\right] \\
& X_{i}=E \delta_{s_{i}, 0}+A \delta_{s_{i},+}+\sum_{K=1}^{\mu} D_{K} \delta_{s_{i}, K} .
\end{aligned}
$$

Tasks: (i) matrix algebra
(ii) matrix representations

RESULTS:

totally asymmetric motion $\left(q_{1}=0=q_{2}\right)$
partially asymmetric motion $\left(q_{1} \neq 0, q_{2} \neq 0\right)$
finite dimensional matrices

Negative differential mobility

general notion:

current increases with increasing bias

Drift current of species " K ": $J_{K 0}$
Bias: $\ln \left(p_{1} / q_{1}\right)=b \quad p_{1}=1, q_{1}=e^{-b} \quad p_{2}=\frac{1}{1+b^{2}}=q_{2}$

decreasing current with increasing bias

Clustering

14
clustering $\quad \int$ pedestrians moving in opposite from counter-flow directions in a narrow lane traffic jam at high density

Two different phases

current: $J_{10}=p_{1}\langle 10\rangle-q_{1}\langle 01\rangle$

multi lane traffic flow

$\sqrt{\sqrt{n}}$ 1-d approximation
multi species ASEP with impurity activated flips

exact matrix product steady state

negative differential mobility
connection to run-and-tumble particles
two possible "run" directions in one dimension:
(2) : right running RTP
(1): left running RTP
[arXiv:2208.03297
(2022)]

: tumbling of RTP
[impurity causes tumbling or chemotaxis]

THANK YOU

Extra slide:1

$$
\left.\begin{array}{cl}
0+2011+2 & \longrightarrow 0+2012+2
\end{array} \quad \text { (accessible) }\right)
$$

only a subspace of the whole configuration space is accessible, for a given initial configuration

NON-ERGODIC

Extra slide:2

- non-interacting particles

[Baerts et.al., Phys. Rev. E 88, 052109 (2013)]
Mechanism: some kind of trapping that decreases dynamical activity

Extra slide:3

Matrix algebra:

$$
p_{K} D_{K} E-q_{K} E D_{K}=D_{K}
$$

Representation:
(3 species, $q_{k}=0$)

$$
\begin{aligned}
\epsilon A E & =A \\
\sum_{\substack{I=1 \\
I \neq K}}^{\mu} w_{I K} D_{I} A & =D_{K} A \sum_{\substack{I=1 \\
I \neq K}}^{\mu} w_{K I}
\end{aligned}
$$

$$
D_{1}=d_{1}\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad D_{2}=d_{2}\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad D_{3}=d_{3}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
E=\left(\begin{array}{cccc}
\frac{1}{\epsilon} & 0 & 0 & 0 \\
\frac{1}{p_{1}}-\frac{1}{\epsilon} & \frac{1}{p_{1}} & 0 & 0 \\
\frac{1}{p_{2}}-\frac{1}{\epsilon} & 0 & \frac{1}{p_{2}} & 0 \\
\frac{1}{p_{3}}-\frac{1}{\epsilon} & 0 & 0 & \frac{1}{p_{3}}
\end{array}\right) \quad A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Extra slide:4

Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients

Douglas R. Brumley ${ }^{\text {a, } 1,2}$, Francesco Carrara ${ }^{\text {b, }, 1,2}$, Andrew M. Hein ${ }^{c}$, Yutaka Yawata ${ }^{\text {d,e }}$, Simon A. Levin ${ }^{f}$, and Roman Stocker ${ }^{\text {b,2 }}$

Motile bacteria often survive by consuming ephemeral sources of dissolved organic matter (DOM) produced, for example, in the ocean by phytoplankton lysis and exudation or sloppy feeding and excretion by larger organisms (1-4). The microscale interactions between nutrient sources and bacteria underpin ocean biogeochemistry and are strongly influenced by the ability of bacteria to actively navigate toward favorable conditions. Past experiments on chemotaxis using Escherichia coli and other model bacteria have generally focused on stable gradients of intermediate to high nutrient concentrations, where bacte-

Vibrio ordalii ria can readily detect chemical gradients (5-7). However, the environments that wild bacteria navigate are often characterized by short-lived, microscale chemical gradients where background conditions are highly dilute $(8,9)$. In such ephemeral chemical fields, bacteria experience a gradient in DOM concentration as a noisy, dynamic signal, rather than as a steady concentration ramp (10).

