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±J 2d Ising Model
Definition

H =− ∑
〈i j〉

Ji j sis j

si =±1
Ji j =±J quenched randomness

P(Ji j) = p δJi j,−J︸ ︷︷ ︸
AF

+(1− p) δJi j,J︸︷︷︸
FM

[Ji j] = (1−2p)J

[J2
i j] = J2

p controls the level of frustration

p = 0 Ferromagnetic Ising Model

p = 1/2 (unbiased) Ising Spin-Glass

p = 1 Anti-Ferromagnetic Ising Model

symmetry p↔ 1− p
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Effects of disorder
Generic questions from the 70s-80s

– Does disorder kill the ordered phase?

– If not, does it round the phase transitions?

e.g., 1st order phase transitions transformed into 2nd order ones

– In continuous phase transitions,

does it change the critical properties?

– Are there new kinds of ordered phases?

e.g., spin-glass phases
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Effects of disorder
Results for weak disorder

– Does disorder kill the ordered phase? no but Tc(p)↘ for p↗ expected

– Effect on the phase transition

Harris Criterium : the randomness is relevant (irrelevant) if the specific heat

exponent α of the pure (p = 0) model is positive (negative)

A. B. Harris, J. Phys. C7, 1671 (1974) but for the 2d Ising Model α = 0

– Conformal field theory in 2d ?

The n = 0 Gross-Neveu model (for not too large p, see below)

Vik. S. Dotsenko & Vl. S. Dotsenko, Sov. Phys. JETP Lett. 33, 37 (1981)

– Do critical exponents change?

No, close to TIs Vl. S. Dotsenko, M. Picco & P. Pujol, Nucl. Phys. 455, 701 (1995)

6



Random networks
Localization phenomena

Express the partition function as Z ∝ Tr∏
k

T̂k a product of transfer matrices

All T̂k are different since disorder-dependent, expressed in terms of σ̂x
i , σ̂

z
i

Use Jordan-Wigner transformation to introduce fermions, then transform them

to Dirac fermions (by doubling the model)

Network tight-binding Hamiltonian for free fermions with random hopping

paramagnet≡ insulator

ferromagnet≡ quantum Hall conductor
Localization problem

S. Cho and M. P. A. Fisher, PRB 55, 1025 (1997)

I. Gruzberg, N. Read, and A. Ludwig, PRB 63, 024404 (2001)

F. Merz and J. T. Chalker, PRB 65, 054425 (2002)
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±J 2d Ising Model
The equilibrium phase diagram (J = 1)

Second order phase transition between FM & PM phases

(TIs = 2.27, p = 0) L. Onsager, Phys. Rev. 65, 117 (1944)
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±J 2d Ising Model
The equilibrium phase diagram

Second order phase transition between FM & PM phases

(TIs = 2.27, p = 0)
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e−2βJ = p
1−p

dotted Nishimori line∗

enhanced symmetry properties

(T0 = 0, p0 = 0.103) (TN = 0.95, pN = 0.109)

∗H. Nishimori, Prog. Theor. Phys. 66, 1169 (1981)
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The Nishimori line
Special features

Local gauge invariance : simultaneous spin and couplings transformation which

leave the functional form of H invariant but change P(Ji j)

On the Nishimori line e−2βJ = p
1−p : exact expression for [〈H 〉](p), etc.

The Nishimori line meets the FM-PM transition line at a tri-critical point (pN ,TN)

Phase transition in the Kitaev’s quantum toric code

A. Yu. Kitaev, Russian Math. Surveys 52, 1191 (1997)

Below pN encoded information can be protected arbitrarily well

Above pN it cannot

p is the qu-bit (independent) error probability, in the limit of a large code block

E. Dennis, A. Kitaev, A. Landahl & J. Preskill, J. Math. Phys. 43, 4452 (2002)

11



±J 2d Ising Model
The equilibrium phase diagram

TIs ≥ T > TN Disorder is marginally relevant⇒ (TIs, p = 0) PM-FM Ising criticality

Vik. Dotsenko and Vl. Dotsenko, Adv. Phys. 32, 129 (1983)
M. Picco, A. Honecker, and P. Pujol, J. Stat. Mech. P09006 (2006)
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(T0 = 0, p0 = 0.103) (TN = 0.95, pN = 0.109)

0≤ T < TN Strong disorder⇒ (T0 = 0, p0) criticality

F. Parisen Toldin, A Pelisetto, and E. Vicari, J Stat Phys 135, 1039 (2009)
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±J 2d Ising Model
The equilibrium phase diagram

TIs ≥ T > TN Disorder is marginally relevant⇒ (TIs, p = 0) PM-FM Ising criticality

A. B. Harris, J. Phys. C : Sol. St. Phys. 7, 1671 (1974)
M. Picco, A. Honecker, and P. Pujol, J. Stat. Mech. P09006 (2006)
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(T = 0, p0 < p < 1− p0) spin-glass

T. Jörg, J. Lukic, E. Marinari, and O. C. Martin, Phys. Rev. Lett. 96, 237205 (2006)

F. Parisen Toldin, A Pelisetto, and E. Vicari, Phys. Rev. E 82, 021106 (2010)
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Critical points
Exponents & equilibrium universality classes

pc Tc ν η κ∗

0 TIs = 2.29 1 0.25 3 FM-PM Ising1

pN = 0.109 TN = 0.95 4/1.5 0.18 2.22 Bi-critical2

p0 = 0.103 T0 = 0 1.5 0.128 1.93 FM-SG3

p0 < p < 1− p0 TSG = 0 ∞ 0.14 2.1 SG-PM4

1L. Onsager, Phys. Rev. 65, 117 (1944)
∗O. Schramm, Isr. J. Math. 118, 221 (2000) J. Cardy, Ann. Phys. 318, 81 (2005)
2W. L. Mc Millan, PRB 29, 4026 (1984) M. Hasenbusch et al., PRE 77, 051115 (2008)
3F. Parisen Toldin, A. Pelissetto, and E. Vicari, J. Stat. Phys 135, 1039 (2009)
4H. Katzgraber, L. W. Lee, and I. A. Campbell, PRB 75, 014412 (2007)

J. Poulter and J. A. Blackman, Phys. Rev. B 72, 104422 (2005).

2−1/ν = (6−κ)/κ works at T > TN and also on the SG if κ = 2
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Critical dynamics of the±J 2d Ising Model?

What is the Conformal Field Theory for the N point (what is κ)?

What happens in 3d ?

(more interesting from the quantum codes viewpoint)
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2d FM Ising Model
p = 0 critical dynamics

Instantaneous quench to the Ising FM-PM critical point from Ti→ ∞

Progressive growth of critical structures

Typical length scale of critical patches growing algebraically

ξ(t)∼ t1/zc

Similar phenomenology expected on the full critical FM-PM line

How to measure zc ?
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Space-time correlations
of simultaneous fluctuations

C(r, t) = [〈si(t)s j(t)〉]− [〈si(t)〉][〈s j(t)〉] for ~ri−~r j = r

Scaling for the infinite size L→ ∞ system

C(r, t) = r−η f
(

r
ξ(t)

)
Effective dynamic exponent tends to Dynamic critical exponent

1
zeff(t)

=
d lnξ(t)

d ln t
⇒ zc = lim

t→∞
zeff(t)

zc = 2.17 at the p = 0 FM 2d case

from Monte Carlo numerical simulations, but also RG, high temperature

series expansions, damage spreading, etc
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Short-time dynamics
at a critical point

m2(t) =

[〈(
1
N

N
∑

i=1
si(t)

)2
〉]

for Rmin� ξ(t)� ξeq,L

Increase right after the quench from Ti→∞ with (similar to initial slip exponent)

m2(t)∼ tζ with ζ =
1
zc

(
d− 2β

ν

)
H. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B Cond. Matt. 73, 539 (1989)

E. V. Albano et al., Rep. Prog. Phys. 74, 026501 (2011)
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Winding angle
Definition - critical curves

[〈θ2(r, t)〉]
si = 1

si =−1

In equilibrium at a critical point [〈θ2(r)〉] = c+
4κ

8+κ
ln
( r

a

)
d f = 1+κ/8 κ = 3 Critical Ising κ = 6 Critical percolation

Out of equilibrium [〈θ2(r, t)〉]∼ 4κ

8+κ
ln
(

r
ξd f(t)

)
Blanchard, LFC, Picco & Tartaglia, 2012-2018

20



Winding angle
2d FM Ising Model quenched from Ti→ ∞ to Tc

Out of equilibrium [〈θ2(r, t)〉]∼ 4κ

8+κ
ln
(

r
ξd f(t)

)
α = d f /zc

κ = 6 & d f = 7/4 Critical percolation r > ξ(t) & t > tp

κ = 3 & d f = 11/8 Critical Ising r < ξ(t)

Blanchard, LFC & Picco, J. Stat. Mech. P05026 (2012)
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±J 2d Ising Model

Use these tools to characterize the critical dynamics
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±J 2d Ising Model
Simulation parameters

Second order phase transition between FM & PM phases

(TIs = 2.27, p = 0)
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Results
Quenches from Ti→ ∞ to T

∀T r > ξ(t) κ = 6 Critical percolation

. . . . . . . . . . . . lines
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T = TIs T = TN T < TN

r < ξ(t) −−−−−− lines

κ = 3 κ = 2.2 κ = 1.93
Critical Ising ???
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Results
Dynamic scaling of the space time correlation ξ(t)

T = TN η = 0.18
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Results
Pre-asymptotic dynamic critical exponent

T < TN

T = TN

T > TN

T = TIs
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No visible finite

size effects

FM-PM Ising critical point zc ∼ 2.17 OK

Then, disorder dependent dynamic critical exponent?

Should not be...
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Results
Decay from a magnetized initial condition M(t)∼ t−β/(νzc)

T > TN
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β/ν = 0.125 the Ising critical value and zc = 2.96 from the space-time correlation

Crossover at an L independent time tcross ∼ 104 presumably fixed by the disorder

strength p very weak drift zc↘ after tcross

It should converge to zc = 2.17, the critical Ising value
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Results
Decay from a magnetized initial condition M(t)∼ t−β/(νzc)

T > TN

zc = 2.56 for p = 0.05

zc = 2.96 for p = 0.07

β/ν = 0.125 the Ising critical value and zc from the space-time correlation

tcross ∼ 7×103 for p = 0.05 < tcross ∼ 2×104 for p = 0.07

L independent tcross (being checked) drift zc↘ after tcross

For p = 0.05, zc has already reached 2.2 at t = 105 (not far from zc = 2.17)
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Ultra slow dynamics at pN,TN
Quench from Ti = TIs to TN

A portion of the system

The overall structure changes very little over a long time span
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Conclusions
Hard to get strong quantitative results

– TN < T ≤ TIs static universality class of the Ising critical point

Most probably also the same dynamic universality class

– T = TN new static & dynamic universality classes κ∼ 2.2

– T0 ≤ T < TN strong disorder static universality class, but κ?

The low T dynamics is way

too slow to conclude

3d case next Ferro
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Appendices
Details
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Codes
Definition

During the transmission of information, errors may occur

The aim is to minimize their number/strength

Idea, code the message and uncode it at the end
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Quantum Toric Codes
Definition

A qu-bit is a two-state quantum variable, |ψi〉= ai| ↑ 〉+bi| ↓ 〉

Flip errors, σ̂x| ↑↓ 〉= | ↓↑ 〉 & phase errors, σ̂z| ↑ 〉=±| ↑ 〉 occur

independently with probability p

Place qu-bits on the links of a square lattice defined on a 2d surface with non

trivial topology, e.g. a torus ∏
i
⊗|ψi〉

Check local operators : plaquette or link operators, tensor product of four Pauli

operators acting on the four qu-bits on the links times identities on all other links

Check operators commute

Measurements of check operators yield

+1 no error, or−1 error.
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Quantum Toric Codes
Definition

Stabilizer group G a set of n check operators which applied to a basis state of

the quantum error correction code have eigenvalue one, Pk|ψ j〉= |ψ j〉 for any

kth element in the group and any jth element of the basis. Abelian group

Particular case : product of σ̂x or product of σ̂z operators.

∏ of neighbouring plaquette operators : loop on the lattice.

∏ of neighbouring vertex operators : loop on the dual lattice.

Error operators E|ψ〉= |ψ′〉

String of flip errors on the lattice : vertex operators on the ends yield−1

Correction operators E ′ such that E ′E ∈ G

Another string with the same end points so as to close the loop
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Error correction
Optimal toric code decoder threshold

Call p the (independent) probability of a qu-bit error

What is the maximal p such that code can be corrected?

Probability of a string E ′ on the lattice that corrects another string of errors E

P(E ′) = (1− p)N
∏

k

(
p

1− p

)n′Ek
= e

β ∑
〈i j〉

Ji jsis j

Ji j =±J with probability 1− p, p and p/(1− p)≡ e−2βJ (Nishimori)

Have to study the sum over all paths E ′

Z = ∑
E ′/EE ′∈G

e
β ∑
〈i j〉

Ji jsis j

Mapping to the classical±J 2d Ising model on the Nishimori line

pN is the optimal decoding threshold
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Local Gauge invariance
Ising disordered spin models

Transform the Ising spins si =±1 into new Ising spins σi = ηi si =±1

Transform the couplings Ji j =±J into new ones Ji j = ηiη j Ji j =±J

with ηi =±1 so that η2
i = 1 for all i

The Hamiltonian of the system remains unchanged

H Ji j
[{σi}] =− ∑

〈i j〉
Ji j σiσ j =− ∑

〈i j〉
Ji j sis j = H Ji j [{si}]

but the distribution of couplings may change depending on the ηis

P(Ji j) 7→ P(Ji j)

Valid ∀ Ising models with two-body couplings on any lattice/graph
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The Nishimori line
Special features

The bimodal distribution of couplings can be rewritten as

P(Ji j) = (1− p)δJi j,J + pδJi j,−J =
eKp Ji j/J

2coshKp

with e2Kp ≡ 1− p
p

It transforms according to P(Ji j) 7→ P(Ji j) = ηiη j
eKpJi jηiη j/J

2coshKp

The Nishimori line is defined by βJ = Kp =
1
2 ln
(

1− p
p

)
with the limits p = 0,T = 0 and p = 1/2,T → ∞

Several exact results can be derived on the Nishimori line

(pN ,TN) is a multi-critical point, different from critical percolation
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