université

Effusion of stochastic processes in one dimension

David Dean, LOMA, CNRS, University of Bordeaux with Satya Majumdar, LPTMS, Université **Paris Saclay**

Greg Schehr, LPTHE, Paris Sorbonne University

- 1. Back ground effusion problems in one dimension and link with elastically colliding stochastic processes
- 2. Two time statistics and physics meets football the bivariate Poisson distribution
 - **3. Role of initial configurational randomness**

Plan of talk

Coarse grained picture -step like initial density profile

B. Derrida and A. Gerschenfeld, J. Stat. Phys. 137, 978 (2009) - macroscopic fluctuation theory (BM) Banerjee, S. N. Majumdar, A. Rosso, and G. Schehr, Phys. Rev. E 101, 052101 (2020) - direct calculation $\rho_0(x)$ $\rho \quad \overline{\rho}(x.0) = \rho_0(x) = \sum_i \delta(x - x_{i0})$ \mathcal{X} **Two types of averaging** initial conditions x_{i0} stochastic trajectories Y_{it}

What are the statistics of $N_{\mathbb{R}^+}(t)$?

Toy model for FRAP- Fluorescence Recover After Photobleaching

Source Wikipedia

Fano-factor $\alpha_{ic} = \lim_{\ell \to \infty} \frac{\operatorname{Var} n(\ell)}{\overline{n(\ell)}} = \lim_{q \to 0} S(q)$ **Generalised compressibility**

Structure factor

Link with elastic collision process

T. E. Harris, J. Appl. Probab. 2, 323 (1965)

Particles do not interact but change labels when they cross

Can use macroscopic fluctuation theory write tracer in terms of density field

 $Y_1(t) = \max(X_1(t), X_2(t))$ $Y_2(t) = \min(X_1(t), X_2(t))$

No interaction seen if particle numbers are not observed (not a SEP)

ECP

Derrida, Sadhu, Krapivsky Mallick ...

ECP tracer problem

D. Durr, S. Goldstein, and J. L. Lebowitz, Commun. Pure Appl. Math., 573 (1985)

Tracer closest to the origin at t=0, Poisson distribution density ρ along all of \mathbb{R}

$$\int_{-\infty}^{Y(t)} \rho(x,t) \, dx = \int_{-\infty}^{0} \rho(x,0) \, dx \qquad \qquad \mathbf{Cer}$$

Y(0) = 0

ntral Limit **'heorem**

$$Y(t)\,\overline{\rho} \simeq N_+(t) - N_-(t)$$

$$Y(t) \simeq \frac{N_{+}(t) - N_{-}(t)}{\overline{\rho}}$$

Single particle problem

Let A be s subset of \mathbb{R}^n and $I_A(x)$ be its indicator function

Generating function $G_2(z_1, z_2, x_0, t_1, t_2) =$

Write generating function in seemingly perverse way

$$G_2(z_1, z_2, x_0, t_1, t_2) = \langle 1 + (z_1 - 1)I_A(X_{t_1})I_{A^c}(X_{t_2}) + (z_2 - 1)I_A(X_{t_2})I_{A^c}(X_{t_1}) + (z_1 z_2 - 1)I_A(X_{t_1})I_A(X_{t_2}) \rangle$$

$$\langle I_A(X_{t_2})I_{A^c}(X_{t_1})\rangle = \int_A dx_2 \int_{A^c} dx_1 p(x_2, t_2; x_1, t_1 \mid x_0) \qquad \langle I_{A^c}(X_{t_2})I_A(X_{t_1})\rangle = \int_{A^c} dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 \mid x_0)$$

$$\langle I_A(X_{t_2})I_A(X_{t_1})\rangle = \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0)$$

$$\left\langle z_{1}^{I_{A}(X_{t_{1}})}z_{2}^{I_{A}(X_{t_{2}})}\right\rangle$$

joint density of X_{t_1} and X_{t_2} given $p(x_2, t_2; x_1, t_1 | x_0)$ that $X_0 = x_0$

Annealed generating function

N particles on $A^c = [-L,0]$ independently and uniformly distributed

Annealed generating function $g_{a2}(z_1, z_2)$

Take limit $L \rightarrow \infty$ with $\rho = N/L$ fixed

$$g_{a2}(z_1, z_2, t_1, t_2) = \exp(\lambda_{10}(t_1, t_2)(z_2 - 1) + \lambda_{01}(t_1, t_2)(z_2 - 1) + \lambda_{11}(t_2, t_1)(z_2 z_1 - 1))$$

$$\lambda_{01}(t_1, t_2) = \rho \int_{-\infty}^{0} dx_0 \int_{A} dx_2 \int_{A^c} dx_1 p(x_2, t_2; x_1, t_1 | x_0) \qquad \lambda_{10}(t_1, t_2) = \rho \int_{-\infty}^{0} dx_0 \int_{A^c} dx_2 \int_{A} dx_2 p(x_2, t_2; x_1, t_1 | x_0)$$

$$\lambda_{01}(t_1, t_2) = \rho \int_{-\infty}^{0} dx_0 \int_A dx_2 \int_{A^c} dx_1 p(x_2, t_2; x_1, t_1 | x_0)$$

$$\lambda_{11}(t_1, t_2) = \rho \int_{-\infty}^0 dx_0 \int_A dx_2 \int_A dx_2 p(x_2, t_2; x_1, t_1 | x_0)$$

$$(t_2, t_1, t_2) = \left[\frac{1}{L}\int_{-L}^{0} dx_0 G(z_1, z_2, x_0, t_1, t_2)\right]^N$$

Bivariate Poisson Distribution

$g_2(z_1, z_2) = \langle z_1^{N_1} z_2^{N_2} \rangle = \exp(\lambda_1(z_1 - 1) + \lambda_2(z_2 - 1) + \lambda_{12}(z_2 z_1 - 1))$

$$P(n_2, n_1) = \exp(-\lambda_1 - \lambda_2 - \lambda_{12}) \frac{\lambda_1^{n_1} \lambda_2^{n_2}}{n_1! n_2!} \sum_{n=0}^{\min(n_1, n_2)} {\binom{n_2}{n}} {\binom{n_2}{n}} n! {\binom{\lambda_{12}}{\lambda_1 \lambda_2}}^n$$

 $N_1 \equiv M_1 + M_{12}, N_1 \equiv M_2 + M_{12}$

 M_1, M_2, M_{12}

independent Poisson random variables with parameters

Generating function

Joint pdf

$$\lambda_1, \lambda_2, \lambda_{12}$$

BV Poisson - mostly in statistics

Modelling sports scores

Groll A., Kneib T., Mayr Andreas and Schauberger G., "On the dependency of soccer score - a sparse bivariate Poisson model for the UEFA European football championship 2016, Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(2), 65 (2018)

		Round of 16	Quarter Finals	Semi Finals	Final	European Champion	
Spain	٤	95.4	72.9	52.3	35.1	21.8	
Germany	-	99.3	79.5	51.3	34.4	21.0	
France		97.5	71.9	48.2	25.8	13.8	
$\mathbf{England}$	+	95.2	69.4	43.4	23.9	12.9	
Belgium		93.9	58.7	32.8	18.7	9.5	
Portugal		92.5	52.3	27.4	12.6	5.5	Score in final
Italy		87.7	47.6	23.8	11.4	4.8	
Croatia		73.2	35.3	16.8	7.3	2.7	Portugal 1- France 0
Poland	-	86.0	42.2	15.6	5.5	1.6	
Austria	=	79.1	34.0	13.4	4.4	1.3	
Switzerland		77.9	35.8	13.3	4.3	1.2	
Turkey	C+	56.1	21.2	8.3	2.8	0.8	
Wales	Sec. 21	65.6	27.4	9.6	2.8	0.8	
Russia	-	62.3	25.1	8.6	2.5	0.6	
Ukraine	-	71.0	25.8	7.7	2.0	0.4	
Iceland	╬═	61.7	20.0	6.2	1.5	0.3	
Czech Rep.		42.5	13.6	4.6	1.3	0.3	
Slovakia		44.5	13.6	3.6	0.8	0.2	
Sweden	-	42.9	11.2	3.3	0.8	0.1	
Ireland		41.7	10.6	3.1	0.7	0.1	
Romania		45.6	12.3	2.8	0.5	0.1	
Albania		41.3	10.4	2.2	0.4	0.1	
Hungary	=	37.1	8.1	1.8	0.3	0.0	
Nor. Ireland	-8-	10.0	1.0	0.1	0.0	0.0	

Motivation for 2024?

G	ROUP
\bigcirc	DENMARK
\bigcirc	FINLAND
\bigcirc	SLOVENIA
	KAZAKHSTA
-	NORTHERN IRELAND
	SANMARINO

Average

$$\overline{\langle N_A(t_1) \rangle} = \mu(t_1)$$
Single time variance

$$\overline{\langle N_A^2(t_1) \rangle}_c = \overline{\langle N_A^2(t_1) \rangle} - \overline{\langle N_A(t_1) \rangle} \overline{\langle N_A(t_1) \rangle} = \mu(t_1)$$
Two time correlation function

$$\overline{\langle N_A(t_1)N_A(t_2) \rangle}_c = \overline{\langle N_A(t_1)N_A(t_2) \rangle} - \overline{\langle N_A(t_1) \rangle} \overline{\langle N_A(t_2) \rangle} = \lambda_{11}(t_1, t_2)$$
Conditional hole probabilities

$$P(N_A(t) = 0) = \exp(-\mu(t))$$

$$P(N_A(t_2) = n | N_A(t_1) = 0) = \exp(-\mu(t_2) + \lambda_{11}(t_1, t_2)) \frac{(\mu(t_2) - \lambda_{11}(t_2, t_2))^n}{(\mu(t_1) - \lambda_{11}(t_2, t_1))^n}$$

$$P(N_A(t_1) = n | N_A(t_2) = 0) = \exp(-\mu(t_1) + \lambda_{11}(t_1, t_2)) \frac{(\mu(t_1) - \lambda_{11}(t_2, t_1))^n}{n!}$$

Annealed cumulants

Quenched generating function

$$g_{2q}(z_1, z_2, t_1, t_2) = \exp(\ln[\langle z_1^{N_A(t_1)} z_2^{N_A(t_2)}]\rangle])$$
 due to i

$$g_{2q}(z_1, z_2, t_1, t_2) = \exp\left(\rho \int_{-\infty}^0 dx_0 \ln[1 + (z_1 - 1) \int_{A^c} dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 - 1) \int_A dx_2 \int_{A^c} dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z_1 - 1) \int_A dx_2 \int_A dx_1 p(x_2, t_2; x_1, t_1 | x_0) + (z_2 z$$

Average - same as annealed case

$$\langle N_A(t_1) \rangle = \mu(t_1)$$

Quenched two point function

$$\overline{\langle N_A(t_1)N_A(t_2)\rangle} - \overline{\langle N_A(t_1)\rangle\langle N_A(t_2)\rangle} = \lambda_{11}(t_1, t_2) - \lambda_{11}^*(t_1, t_2)$$

$$\lambda_{11}^*(t_1, t_2) = \rho \int_{-\infty}^0 dx_0 \int_A dx_1 p(x_1, t_1 | x_0) \int_A dx_2 p(x_2, t_2 | x_0)$$

its additive form $\ln[\langle z_1^{N_A(t_1)} z_2^{N_A(t_2)} \rangle]$ is self averaging

annealed result

 (t_1, t_2) Smaller fluctuations with respect to annealed case

Results for Gaussian processes

Double half line problem

 $A = \mathbb{R}^{+}$ $\langle Y(t) \rangle = 0$ $\langle Y(t)Y(t') \rangle$

Average

 $\left\langle \theta(X_{t_1}) \right\rangle = \left\langle \theta(Y_{t_1} + x_0) \right\rangle = \frac{1}{\sqrt{2\pi c(t, t)}} \int_{-x_0}^{\infty} dy$

$$\mu(t) = \frac{\rho}{2} \int_0^\infty dx_0 \operatorname{erfc}(\frac{x_0}{\sqrt{2c(t,t)}}) = \rho \frac{\sqrt{c(t,t)}}{\sqrt{2\pi}}$$

$$X(t) = x_0 + Y(t)$$

$$\langle Y(t)Y(t')\rangle = c(t,t')$$

$$y \exp(-\frac{y^2}{2c(t,t)}) = \frac{1}{2} \operatorname{erfc}(\frac{-x_0}{\sqrt{2c(t,t)}})$$

Two point functions - (Mathematica knows the integrals)

$$\left\langle \theta(X_{t_2})\theta(X_{t_1})\right\rangle = \left\langle \theta(Y_{t_2} + x_0)\theta(Y_{t_1} + x_0)\right\rangle$$

Case $x_0 = 0$ has been extensively studied, only results for 2 and 3 point functions are known D. Slepian, Bell Syst. Tech J. 41, 463 (1962)

$$\langle \theta(Y_{t_1})\theta(Y_{t_2})\rangle = \frac{1}{2\pi} \sin^{-1}(\frac{c(t_2, t_1)}{\sqrt{c(t_2, t_2)c(t_2, t_1)}}) + \frac{1}{2\pi} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\rangle = \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\rangle + \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\rangle + \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\rangle = \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\rangle + \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\rangle = \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\rangle + \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\rangle = \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\rangle + \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\rangle + \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_3})\theta(Y_{t_3})\theta(Y_{t_3})\rangle = \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\theta(Y_{t_3})\theta(Y_{t_3})\rangle = \frac{1}{2} \langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3})\theta(Y_{t_$$

Follows from neat symmetry argument

 $\left\langle \theta(Y_{t_1})\theta(Y_{t_2})\theta(Y_{t_3}) \right\rangle = \left\langle 1 - \theta(Y_{t_1}) - \theta(Y_{t_2}) - \theta(Y_{t_3}) + \theta(Y_{t_3})\theta(Y_{t_2}) + \theta(Y_{t_1})\theta(Y_{t_3}) + \theta(Y_{t_3})\theta(Y_{t_3}) - \theta(Y_{t_1})\theta(Y_{t_3}) \right\rangle$

 $\theta(Y_{t_3})\rangle + \frac{1}{2}\langle \theta(Y_{t_2})\theta(Y_{t_3})\rangle - \frac{1}{4}$

 $\theta(-Y) = 1 - \theta(Y)$

Two point functions continued

$$\theta(x) = -i \int_{-\infty}^{\infty} \frac{dk}{2\pi k} \exp(ikx)$$
 Fourier

$$J(x_0, t_1, t_2) = \left\langle \theta(Y_{t_2} + x_0)\theta(Y_{t_1} + x_0) \right\rangle = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dkdk'}{4\pi^2 kk'} \exp\left(-\frac{1}{2}[k^2 c(t_2, t_2) + 2kk'c(t_2, t_1) + k'^2 c(t_1, t_1)] + i(k + k')^2 c(t_1, t_2)\right) + i(k + k')^2 c(t_1, t_2) + i(k + k')^2 c(t_1, t_2) + i(k + k')^2 c(t_2, t_2) + i(k + k')^2 c(t_1, t_2) + i(k + k')^2 c(t_2, t_2) +$$

$$\frac{\partial J(x_0, t_1, t_2)}{\partial c(t_2, t_1)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dk_2 dk_1}{4\pi^2} \exp(-\frac{1}{2}[k_2^2 c(t_2, t_2) + 2k_2 k_1 c(t_2, t_1) + k_1^2 c(t_1, t_1)] + i(k_2 + k_1) x_0])$$

Do the Gaussian integral

$$=\frac{1}{2\pi\sqrt{c(t_2,t_2)c(t_1,t_1)-c^2(t_2,t_1)}}$$

r representation for Heaviside function

 $= \exp(-\frac{x_0^2}{2[c(t_2, t_2)c(t_1, t_1) - c^2(t_2, t_1)]}[c(t_2, t_2) + c(t_1, t_1) - 2c(t_2, t_1)])$

Two point functions continued - a good exam question !

$$\int_{-\infty}^{0} dx_0 \frac{\partial J(x_0, t_1, t_2)}{\partial c(t_2, t_1)} = \frac{1}{2\sqrt{2\pi}\sqrt{c(t_2, t_2) + c(t_1, t_1) - 2c(t_2, t_1)}}$$

Integrate wrt $c(t_2, t_1)$
 $\sqrt{c(t_2, t_2) + c(t_1, t_1) - 2c(t_2, t_1)}$

$$\int_{-\infty}^{0} dx_0 J(x_0, t_1, t_2) = -\frac{\sqrt{c(t_2, t_2) + c(t_1, t_1) - 2c(t_2, t_1)}}{2\sqrt{2\pi}} + C(t_2) + C'(t_1)$$

Use result for c(t, t) $\int_{-\infty}^{0} dx_0 J(x_0, t, t) = \frac{\sqrt{c(t, t)}}{\sqrt{2\pi}}$

$$\lambda_{11}(t_1, t_2) = \frac{\rho}{2\sqrt{2\pi}} \left[\sqrt{c(t_2, t_2)} + \sqrt{c(t_1, t_1)} - \sqrt{c(t_2, t_2) + c(t_1, t_1) - 2c(t_2, t_1)} \right].$$

$$\frac{\sqrt{c(t,t)}}{\sqrt{2\pi}}$$

$$\mu(t) = \rho \frac{\sqrt{c(t,t)}}{\sqrt{2\pi}}$$

Annealed two Point function

Average

$$\lambda_{11}(t_1, t_2) = \frac{\rho}{2\sqrt{2\pi}} \left[\sqrt{c(t_2, t_2)} + \sqrt{c(t_1, t_1)} - \sqrt{c(t_2, t_2)} + c(t_1, t_1) - 2c(t_2, t_1) \right]$$

Quenched two Point function

$$\lambda_{q11}(t_1, t_2) = \frac{\rho}{2\sqrt{2\pi}} \left[\sqrt{c(t_1, t_1) + c(t_2, t_2)} - \sqrt{c(t_2, t_2) + c(t_1, t_1) - 2c(t_2, t_1)} \right]$$

$$\lambda_{11}(t,t) = \frac{\rho}{\sqrt{2\pi}} \sqrt{c(t,t)}$$

T. Banerjee, R. L. Jack, and M. E. Cates
Phys. Rev. E 106, (2022),
N. Leibovich and E. Barkai,
Phys. Rev. E 88, 032107 (2013)

nmary

agrees with previous results for BM

 $\lambda_{q11}(t,t) = \frac{\rho}{2\sqrt{\pi}} \sqrt{c(t,t)}$ agrees with previous results for BM

correlations in initial conditions never forgotten

Brownian motion Average **Annealed two Point function**

 $c(t_2, t_1) = 2D \min(t_2, t_1)$ $\mu(t) = \rho \frac{\sqrt{Dt}}{\sqrt{\pi}}$

Quenched two Point function

 $\lambda_{q11}(t_1, t_2) = \frac{\rho \sqrt{D}}{2\sqrt{\pi}} (\sqrt{t_2 + t_1} - \sqrt{t_2 - t_1})$

Correlation function for fractal Brownian motion

$$c(t_2, t_1) = D_H(t_2^{2H} + t_1^{2H})$$

Examples

Under damped thermalised Brownian motion

Langevin equation $m = \frac{av}{m}$

$$m\frac{dV_t}{dt} = -\gamma V_t + \sqrt{2\gamma T}$$

Correlation function $c(t_2, t_1) = c(t_1, t_1) + \frac{k_B T t_2}{2}$

$$c(t,t) = \frac{2k_B T \tau^2}{m} \left(\frac{t}{\tau} - 1 + \exp(-\frac{t}{\tau})\right) \qquad \tau = m/\gamma$$

For t_1 , t_2 , $(t_2 - t_1) \gg \tau$ recover Brownian behavior Short times $c(t_2, t_1) = \frac{k_B T}{m} t_1 t_2$ ballistic regime - Jepsen gas

$$\mu(t) = \rho \sqrt{\frac{k_B T}{2\pi m}} t \qquad \qquad \lambda_{11}(t_1, t_2) = \mu(t_1) \qquad \qquad \lambda_{q11}(t_1, t_2) = \frac{1}{2} \rho \sqrt{\frac{k_B T}{2\pi m}} \left[\sqrt{t_2^2 + t_1^2} - t_2 + \frac{1}{2} \rho \sqrt{\frac{k_B T}{2\pi m}} \right]$$

 $\eta(t)$

$$\frac{\tau^2}{\tau}(1 + \exp(-\frac{t_2}{\tau}) - \exp(-\frac{t_1}{\tau}) - \exp(-\frac{t_2 - t_1}{\tau}))$$

, relaxation time separating the ballistic short time regime from the diffusive long time regime

The current at the origin

 $j(0,t) = \frac{dN_{\mathbb{R}^+}}{dt}$

By definition - even when no Fokker-Planck equation to identify a current

Fractional Brownian motion

Average current $\langle j(0,t) \rangle = \rho H$

Annealed current fluctuations

 $\overline{\langle j(0,t_1)j(0,t_2)\rangle}$

Quenched current fluctuations

 $\overline{\langle j(0,t_1)\rangle}\overline{\langle j(0,t_2)\rangle} - \overline{\langle j(0,t_2)\rangle}$

$$H \frac{\sqrt{D_{H}} t^{H-1}}{\sqrt{\pi}} - \overline{\langle j(0,t_{1}) \rangle} \overline{\langle j(0,t_{2}) \rangle} = -\frac{\rho \sqrt{D_{H}} H(1-H)}{2\sqrt{\pi} (t_{2}-t_{1})^{2-H}} - \frac{\rho \sqrt{D_{H}} H(1-H)}{2\sqrt{\pi} (t_{2}-t_{1})^{2-H}}$$

$$\frac{\overline{j(0,t_1)}}{\overline{j(0,t_2)}} = -\frac{\rho \sqrt{\nu} H^{H}(t-H)}{2\sqrt{\pi}(t_2-t_1)^{2-H}} - \frac{\rho \sqrt{\nu} H^{H}}{2\sqrt{\pi}} \frac{t_1}{(t_1^{2H}+t_2^{2H})^{\frac{3}{2}}}$$

Anti-correlated

Translationally invariant with non-trivial correlation function of structure factor

Kill (photo-bleach) all particles to right of origin and evolve

Annealed correlation $C(t_1, t_2) = \overline{\langle N_{\mathbb{R}^+}(t_2)N_{\mathbb{R}^+}(t_1)\rangle} - \overline{\langle N_{\mathbb{R}^+}(t_2)\rangle} \ \overline{\langle N_{\mathbb{R}^+}(t_1)\rangle} = C_{\text{noise}}(t_1, t_2) + C_{\text{ic}}(t_1, t_2)$ function

 $C_{\text{noise}}(t_1, t_2) = \overline{\langle N_{\mathbb{R}^+}(t_2) N_{\mathbb{R}^+}(t_1) \rangle} - \overline{\langle N_{\mathbb{R}^+}(t_2) \rangle \langle N_{\mathbb{R}^+}(t_1) \rangle}$

 $C_{\rm ic}(t_1, t_2) = \overline{\langle N_{\mathbb{R}^+}(t_2) \rangle \langle N_{\mathbb{R}^+}(t_1) \rangle} - \overline{\langle N_{\mathbb{R}^+}(t_2) \rangle} \overline{\langle N_{\mathbb{R}^+}(t_1) \rangle}$

$$\overline{\rho_0(x)\rho_0(y)} - \rho^2 = \rho \int_{-\infty}^{\infty} \frac{dq}{2\pi} S(q) e^{-iq(x-y)}$$

$$C_{\text{noise}}(t_2, t_1) = \lambda_{q11}(t_1, t_2) = \frac{\rho}{2\sqrt{2\pi}} \left[\sqrt{c(t_1, t_1) + c(t_2, t_2)} - \sqrt{c(t_2, t_2) + c(t_1, t_1) - 2c(t_2, t_1)} \right]$$

Independent of disorder correlations - equivalent to quenched result

$$C_{\rm ic}(t_1, t_2) = \frac{\rho}{8\pi} \int_0^\infty dx dy \int dq \ S(q) \ \exp(iq(x-y)) \exp(c(\frac{x}{\sqrt{2c(t_2, t_2)}})) \exp(c(\frac{y}{\sqrt{2c(t_1, t_1)}}))$$

At late times
$$C_{ic}(t_1, t_2) = \frac{\alpha_{ic}\rho(c(t_1, t_1)c(t_2, t_2))^{\frac{1}{4}}}{2\sqrt{2\pi}} \frac{1 + a(t_1, t_2)^2 - \sqrt{1 + a(t_1, t_2)^4}}{a(t_1, t_2)}$$
$$a(t_1, t_2) = (\frac{c(t_2, t_2)}{c(t_1, t_1)})^{\frac{1}{4}}$$
$$\alpha_{ic}\rho(c(t, t))^{\frac{1}{2}} = -\frac{1}{2}$$

Equal late times $C_{ic}(t,t) = \frac{\alpha_{ic}\rho(c(t,t))}{2\sqrt{\pi}}$

$$\frac{(t,t)^{\frac{1}{2}}}{\pi}(\sqrt{2}-1)$$

Perspectives

Very rich phenomenology for non-interacting but non-trivial Gaussian processes

Consequences for elastically colliding processes merit further investigation

- Potentially provides insight to help solve equations arising in macroscopic fluctuation approach

Need to compute
$$\langle \prod_{i=1}^{n} \theta(x_0 + Y_{t_i}) \rangle$$

Can we do n= 3 for Brownian motion ? Use Markov property $\left\langle \prod_{i=1}^{n} \right\rangle$

 T_0 first passage time of Y_t started at $Y_0 = 0$ to 0 $F(t, x_0)$ first passage time density to 0 from x_0

For Brownian motion
$$F(\tau, x_0) = \frac{|x_0| \exp(-\frac{x_0}{4D})}{\sqrt{4\pi D\tau^3}}$$

$$\int_{-\infty}^{0} dx_0 \langle \prod_{i=1}^{n} \theta(x_0 + Y_{t_i}) \rangle = \sqrt{\frac{D}{\pi}} \int_{0}^{t_1} dx_0 \langle \frac{D}{\pi} \int_{0}^{t_1} dx_0 \rangle \langle \frac{D}{\pi} \int_{0}^{t_1}$$

functions

Slepian tells us we can do this for n=1, 2, 3, when $x_0 = 0$

$$\begin{bmatrix} \theta(x_0 + Y_{t_i}) \rangle = \langle \theta(t_1 - T_0) \prod_{i=1}^n \theta(Y_{t_i - T_0}) \rangle \\ 0 \quad \langle \prod_{i=1}^n \theta(x_0 + Y_{t_i}) \rangle = \int_0^{t_1} d\tau F(\tau, x_0) \langle \prod_{i=1}^n \theta(Y_{t_i - \tau}) \rangle$$

$$x_0^2$$

 $\overline{D\tau}$

 $l \tau \frac{1}{\sqrt{\tau}} \langle \prod_{i=1}^{n} \theta(Y_{t_i-\tau}) \rangle$

Recovering 1+2 point for BM

$$\int_{-\infty}^{0} dx_0 \langle \theta(x_0 + Y_t) \theta(x_0 + Y_{t'}) \rangle = \frac{\sqrt{D}}{\sqrt{\pi}} \int_{0}^{t'} \frac{1}{\sqrt{\tau}} \left[\frac{1}{2\pi} \sin \theta \right]_{0}^{t'} \frac{1}{2\pi} \left[\frac{1}{2\pi} \sin \theta \right]_{0}^{t'} \frac{1}{2\pi} \left[\frac{1}{2\pi}$$

Agrees with general Gaussian result

 $n^{-1}\left(\frac{\sqrt{t'-\tau}}{\sqrt{t-\tau}}\right) + \frac{1}{4} = \frac{\sqrt{D}}{2\sqrt{\pi}} \left[\sqrt{t} + \sqrt{t'} - \sqrt{t-t'}\right]$

$$\int_{-\infty}^{0} dx_0 \langle \theta(x_0 + Y_{t_1}) \theta(x_0 + Y_{t_2}) \theta(x_0 + Y_{t_3}) = \int_{-\infty}^{0} dx_0 \langle \theta(t_1 + Y_{t_3}) \theta(x_0 + Y_{t_3}) \theta(x_0 + Y_{t_3}) \rangle$$

$$=\frac{1}{2}\int_{-\infty}^{0} dx_0 \langle \theta(t_1 - T_0) \langle \theta(Y_{t_1 - T_0}) \theta(Y_{t_2 - T_0}) \rangle + \langle \theta(Y_{t_1 - T_0}) \theta(Y_{t_2 - T_0}) \rangle \langle \theta(Y_{t_1 - T_0}) \theta(Y_{t_1 - T_0}) \rangle + \langle \theta(Y_{t_1 - T_0}) \theta(Y_{t_2 - T_0}) \rangle + \langle \theta(Y_{t_1 - T_0}) \theta(Y_{t_1 - T_0}) \theta(Y_{t_1 - T_0}) \rangle + \langle \theta(Y_{t_1 - T_0}) \theta(Y_{t_1 - T_0}) \theta(Y_{t_1 - T_0}) \rangle$$

Have already computed these terms

Final result

$$\int_{-\infty}^{0} dx_0 \langle \theta(x_0 + Y_{t_3}) \theta(x_0 + Y_{t_2}) \theta(x_0 + Y_{t_1}) \rangle = \frac{\sqrt{D}}{4\sqrt{\pi}} [\sqrt{t_1} + \sqrt{t_2} + \sqrt{t_3} - \sqrt{t_2 - t_1} - \sqrt{t_3 - t_1} + 2\frac{\sqrt{t_1}}{\pi} \sin^{-1}(\frac{\sqrt{t_2 - t_1}}{\sqrt{t_3 - t_1}}) - \frac{2\sqrt{t_3 - t_2} \sin^{-1}(\sqrt{\frac{t_1}{t_2}}) - 2\sqrt{t_3} \tan^{-1}(\sqrt{\frac{t_1(t_3 - t_2)}{t_3(t_2 - t_1)}})}{\pi}]$$

Not pretty or neat ! -anyone see a pattern ?

 $-T_0 \rangle \langle \theta(Y_{t_1-T_0}) \theta(Y_{t_2-T_0}) \theta(Y_{t_3-T_0}) \rangle$

Use neat symmetry argument

 $|\theta(Y_{t_3-T_0})\rangle + \langle \theta(Y_{t_2-T_0})\theta(Y_{t_3-T_0})\rangle - \frac{1}{2}\rangle$

New term fully 3 time Quantity

Joint distribution is trivariate Poisson