Heterogeneous jamming of binary mixture of small and large particles

Yusuke Hara, Hideyuki Mizuno, Atsushi Ikeda The University of Tokyo

Jammed Particles

Dense, disordered, structurally arrested particles
A pile of interesting prop.: Elasticity, Vibrations, Rheology
Relation to the glass physics

Si

Ideal jamming

Friction-less, nearly monodisperse, repulsive spheres

$$v(r) = \begin{cases} \epsilon (1 - r/\sigma)^2 & (r \le \sigma) \\ 0 & (r > \sigma) \end{cases}$$

Put particles randomly in a box.

Minimize the potential to find a mechanical equilibrium state

 Jamming point is defined as the density at which the system has non-zero pressure/energy.

Particle interaction

Ideal jamming

- Maxwell criteria works at the jamming point.
 - Number of particles: N
 - Number of contacts per particle: Z
 - Spatial dimension: d

Degree of freedomConstraint due to contactThese balance when
$$N \times d$$
 $\frac{N \times Z}{2}$ $Z = 2d$ ME type argument which assumes no redundant contact.IO(Hore 2002 or

MF type argument which assumes no redundant contact. [O'Hern 2003 etc] But, this equality works precisely for packings at the jamming.

• Shear modulus becomes linear to the excess contact number.

 $G \propto \Delta Z = Z - 2d$ $\ \ \ \mbox{from MF theory}$

Too many low frequency vibrations.

[Wyart 2005 etc]

Ideal jamming: Vibrations

[Silbert 2005, Wyart 2005, DeGiuli 2014, Charbonneau 2016, Lerner 2016, Mizuno 2017 etc]

Question

Friction between grains matters in granular materials

- Shape of particles can alter the low frequency vibrations
 - Polydispersity of particles' sizes

 Many "natural" jammed particles are highly polydisperse (cements, emulsions, grains etc)

Binary mixture is the simplest case

• Size ratio ~ 1: Jamming of mixtures is similar to jamming of monodisperse particles

• Size ratio >>1: Jamming density changes dramatically. Jamming of small/large particles seems to decouple.

[Xu 2010, Koeze 2016, Prasad 2017, Slivastava 2021 etc]

MF understanding of ideal jamming can be transferred?

Outline

♦ Jamming phase diagram of binary mixtures

Near the critical point

Setting

Binary mixture of large and small harmonic spheres

$$v_{ij}(r_{ij}) = \frac{1}{2}(r_{ij} - \sigma_{ij})^2 \theta(\sigma_{ij} - r_{ij})$$
$$\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2} \qquad \sigma_i = \begin{cases} 6 & i \in \{\text{Large}\}\\ 1 & i \in \{\text{Small}\} \end{cases}$$

Size ratio is fixed to be 6.

Put N_L large and N_S small particles randomly in a box V
Fraction of small particles (in volume)

$$X_S = \frac{N_{\rm Small}}{N_{\rm Small} + 6^3 N_{\rm Large}}$$

Setting

Repeatedly minimize the potential energy (using FIRE) and decompress/compress the system, in order to obtain a mechanically stable packing at a fixed pressure

$$P = -\frac{1}{V} \sum_{\langle ij \rangle} r_{ij} v'_{ij}(r_{ij})$$

Our control parameters:

• Pressure P

igoplus Fraction of small particles X_S

 \blacklozenge System size N_S, N_L

• We generate many (>=200) packings at the same (P,X_s) and analyze the observables averaged over these packings

Outline

Jammed small particles

Jamming of small ones may decouple from jamming of large ones
Focus on the fraction of jammed small particles

$$R_S = \frac{N_{S,\text{jam}}}{N_S} = \frac{N_S - N_{S,\text{rattler}}}{N_S}$$

Rattler: Particles whose contact number is less than 4

1st order transition

<Rs> increases with Xs

 With increasing the small particles in the system, they tend to get jammed more.

Discontinuous change in <Rs> at low pressure

1st order transition

Probability distribution of Rs

Low P: 1st order transition

Analysis of the binder parameter supports this (not shown)

High P: Continuous

Critical point

Susceptibility
$$\chi = N_S (\langle R_S^2 \rangle - \langle R_S \rangle^2)$$

There is a critical point (P^*, X_S^*) at which the susceptibility diverges

Phase diagram

Shear modulus

 Shear modulus discontinuously jumps when the phase boundary crossed.

Away from the CP, the scaling known for monodisperse packing works:

L-phase: $G \sim A_L \Delta Z$ **LS-phase:** $G \sim A_{LS} \Delta Z$ $A_L \neq A_{LS}$

Outline

Setting

Jamming phase diagram of binary mixtures

Near the critical point

Conclusion 1

L-phase and LS-phase exist in the jamming phase diagram

- Two phases are separated by the 1st order transition
- There is a critical point. Above the critical pressure, the two phases are connected smoothly.

Hara Mizuno, Ikeda PRR 2020