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Jammed Particles

Colloids Emulsion

Grains

@ Dense, disordered, structurally arrested particles

@ A pile of interesting prop.: Elasticity, Vibrations, Rheology
@ Relation to the glass physics




ldeal jamming

@ Friction-less, nearly
monodisperse, repulsive spheres

B e(l—1/0)?
v(r) = {O

@ Put particles randomly in a box.

(r<o)
(r > o)

€ Minimize the potential to find a
mechanical equilibrium state

@ Jamming point is defined as the
density at which the system has
non-zero pressure/energy.

Particle interaction
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[van Hecke 2009 etc]



ldeal jamming

@ Particles get jammed simultaneously at the jamming point.

¥ Maxwell criteria works at the jamming point.
€ Number of particles: N

€ Number of contacts per particle: Z ‘g.

@ Spatial dimension: d

Degree of freedom Constraint due to contact
These balance when
N x Z
N x d 5 Z =2d

MF type argument which assumes no redundant contact. [0’Hern 2003 etc]
But, this equality works precisely for packings at the jamming.

€ Shear modulus becomes linear to the excess contact

number.
G x AN/ =7 —2d from MF theory

€ Too many low frequency vibrations. [Wyart 2005 etc]



ldeal jamming: Vibrations

. . @ Region | “Anomalous modes”
Vibrational DOS

P | D(w) ~ const.

. Wi @ Criticality of jamming
—~ o
1 DDDDDDDDCPD : Wy X AZ from MF theory
S DDL‘F’EPD@ " @ Region Il “Boson-peak”
0.1 fﬁ D(w) o w?
& € Marginal stability of
g’n 8 amorphous solids from MF theory
0.01 ‘5?

0.01 01 ., ® Region Il “01v”
Phonon + Quasi-Localized modes

[Silbert 2005, Wyart 2005, DeGiuli 2014, Charbonneau 2016, Lerner 2016, Mizuno 2017 etc]



Question

@ Friction between grains matters in granular materials

@ Shape of particles can alter the low frequency vibrations

@ Polydispersity of particles’ sizes

¥ Many “natural” jammed particles are highly polydisperse
(cements, emulsions, grains etc)

@ Binary mixture is the simplest case
@ Size ratio ~ 1: Jamming of mixtures is similar to

jamming of monodisperse particles
@ Size ratio >>1: Jamming density changes dramatically.
Jamming of small/large particles seems to decouple.

[Xu 2010, Koeze 2016, Prasad 2017, Slivastava 2021 etc]

€ MF understanding of ideal jamming can be
transferred?
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Setting

€ Binary mixture of large and small harmonic spheres
1

vij(rij) = 5 (rig — 035)°0(055 — ri5)
2

U@;j —

O'?;—|-O'j S §) iG{Large}
2 " |l1 i€ {Small}

@ Size ratio is fixed to be 6.

@ Put N large and Ns small particles randomly in abox V
@ Fraction of small particles (in volume)

Ngmall

Xg =
NSmall + 63NLarge




Setting

€ Repeatedly minimize the potential energy (using FIRE) and
decompress/compress the system, in order to obtain a
mechanically stable packing at a fixed pressure

P = —% > rigvi(ri)
(27)
€ Our control parameters:
@ Pressure P
@ Fraction of small particles Xg

@ Systemsize Ng, Np,

€ We generate many (>=200) packings at the same (P,X,) and
analyze the observables averaged over these packings
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4
€ Jamming phase diagram of binary mixtures
monodisperse binary mixture
4 A
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Jammed ?
Jamming of large & small
particles can decouple
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Jammed small particles

€ Jamming of small ones may decouple from jamming of large ones
€ Focus on the fraction of jammed small particles

@ Rattler: Particles whose contact number is less than 4



15t order transition

TP P10t -
P=10'g —O—
P=2x10"
08
P=5x10"2
P=102 —C—
0.6 F P=2x102 —&—

fraction of jammed

small particle

(Rs)

0 0.05 0.1 0.15 0.2 0.25 0.3

XS fraction of small particle in the system

@ <Rs> increases with Xs

@ With increasing the small particles in the system, they tend
to get jammed more.

@ Discontinuous change in <Rs> at low pressure
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Probability distribution of Rs
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@® Low P: 1t order transition

@ Analysis of the binder parameter supports this (not shown)

@ High P: Continuous
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Critical point

Susceptibility

X = Ns((R%) — (Rs)?)

Peak height of X
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There is a critical point (P*, X5) at which the susceptibility diverges

1071



Pressure

Phase diagram
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Shear modulus
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@ Shear modulus discontinuously jumps when the phase
boundary crossed.

€ Away from the CP, the scaling known for monodisperse
packing works:

L-phase: G ~ A;AZ LS-phase: G ~ A;gAZ  Arp # Ars
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@ Near the critical point
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Focus on packings on
the “Widom-line”

(Rg) ~ 0.5
- Almost half of

small particles are
jammed



Conclusion 1

@ L-phase and LS-phase exist in the jamming phase diagram
@ Two phases are separated by the 1%t order transition

@ There is a critical point. Above the critical pressure, the two
phases are connected smoothly.
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