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Introduction: What is granular material?

Consisting of large enough particles (0.1mm)
so that thermal fluctuations are negligible

3
_mea

Show powders




Introduction: What is the jJamming transition?

Contact number Pressure

T
PJ

The jamming transition is a phase transition
from fluid to solid at zero temperature
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Jamming in 2d and 3d

Frictionless spherical particles

Harmonic Spheres

E = Zv(hij) = % Zh?j‘g(_hij)

1< 1<

Gap function i j

hij = |xi — x| — 045 i =P




Jamming in 2d and 3d

Stability argument by Maxwell

J. C. Maxwell (1864)

# of constraints > # of degrees of freedom

# of constraints = # of contacts = Nz/2

# of degrees of freedom = Nd

2d

z; = 2d (isostatic)

vV

<



Jamming in 2d and 3d

0 | O'Hem et al. (2002)

The critical exponent does not depend on the spatial dimensions!



Jamming in 2d and 3d

Shear modulus
100

102 1/2
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The critical exponent does not depend on the spatial dimensions!



Jamming in 2d and 3d

Radial distribution function




Jamming in 2d and 3d

Radial distribution function

P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi et al. (2014),
P. Charbonneau, E. Corwin, R. Dennis, R. Rojas, H.l, G. Parisi, and F. Ricci-Tersenghi (2021)
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The critical exponent does not depend on the spatial dimensions!
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Jamming in 2d and 3d

Excess contact number

Radial distribution function

The critical exponent does not depend on the spatial dimensions.

Furthermore, the exponents agree with the mean-field prediction.
P. Charbonneau et al. (2014)

The upper critical dimension <= 2.



Table of contents

e |ntroduction

e Dimensional dependence of the jamming transition
- Review for known results in d=2 and d=3
e Results in quasi 1d.

e Sample to sample fluctuation



Table of contents

e |ntroduction

e Dimensional dependence of the jamming transition
e Review for known results in d=2 and d=3
~ Results in quasi 1d.

e Sample to sample fluctuation



Jamming of quasi 1d system
Motivation

The upper critical dimension <=2

What will happen below the upper critical dimension?

Let we consider the quasi-one-dimensional system



Jamming of quasi 1d system
Setting

Repulsive wall

—
Periodic

boundary

Interaction potential
Interaction between

particles A
— Al Interaction bet
_ - b ! nteraction between
N = ; vf(h/,,]) i z; v(hi) + z; v(hy) = walls and particles
1<) 1= 1=




Jamming of quasi 1d system

Algorithm

We want to determine the jamming transition point, where
particles begin to interact and has a finite interaction potential.

1. Start from a random configuration.
2. Increase the packing fraction ¢ — @+0¢.
3. Remove contact by the energy minimization.

4. Repeat 2 and 3. dp—-0¢@/2 each time the
transition point is crossed.

Animation

Ly is fixed during the compression.




Jamming of quasi 1d system
Results at the jamming transition point
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Does Maxwell’s isostatic condition hold in quasi 1d?
Unlike the bulk two dimensional system,
the contact number is not 4(=2d)!



Jamming of quasi 1d system
Mxwell’s isostatic condition revisited

# of constraints = # of degrees of freedom

# of degrees of freedom = Nd = 2N

Inter particle OO

/
. S Wall
| Nz—N, :
# of constraints = NC = F N

2 "

Isostatic number: ¢;,, = N./N =2




Jamming of quasi 1d system
Maxwells condition revisited

# of constraints per particle
at the jamming transition point

2.00[--8-8---885-0-- 666866 &> &-o-B (i

The system is always isostatic!



Jamming of quasi 1d system

Scaling of the excess constraints

Excess constraints
C — C:

oc = = (x 87)
N
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For small Ly, we observe oc ~ 0¢.



CDF

107"

Jamming of quasi 1d system
Scaling of the radial distribution

Cumulative distribution function

h
CDF(h) = [ dh'g(h') ~ hg(h)
0

o Ly=1.50ax
W Ly=20max
(¢ Ly=40max
A Ly=80max

(L,/Tmax)°CDF
2 3

—
<
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10 10" 10" 103
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For small Ly, we observe g(h) ~ h"0



Summary

2d and higher dimensions Quasi 1d
|sostatic at jamming |sostatic at jamming
(# of constraints = # of degrees of freedom) (# of constraints = # of degrees of freedom)
# of the excess constraints # of the excess constraints
57 ~ 8¢ ~ S¢p'? oc ~ O
Radial distribution function Radial distribution function
gh) ~ h™" g(h) ~ h"

These results confirmed 1 < d;;p < 2

Unsolved Questions
e What is the precise value of dj;p?
e What physical mechanism determines d;p?
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Fluctuation near Jamming
JCP 158, 056101 (2023)

Harukuni |lkeda (Gakushuin Univ.)
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Motivation

Classical Ising model

P om - par . A
LR Ry

uation!

Critical fluct

e Does the critical fluctuation appear at the jamming transition point?
e Can we construct the “Ginzburg criteria” for jamming?



Ising model Jamming

Transition occurs at T=0
No thermal fluctuations

Transition occurs at T>0
There are thermal fluctuations.

!

Sample to sample fluctuation
for 1073 samples with different IC



Model

Numerical simulations for frictionless spherical particles in d=2

Harmonic potential

E = Zv(hij) = % Zh?j‘g(_hij)

1< 1<

Gap function i j

hz’j — ‘CE‘Z —.’L‘J" — Rz —Rj




1. Generate a random initial configuration. c¢. oHemn et al. (2003)
2. Increase density ¢ -> @+00.

3. Minimize energy.

4. Repeat 2-3.

Contact number




Control parameter

Contact number

Pressure

Density control

Density

Pressure control

Contact number

Jamming

O Pressure

Compress/decompress the system until
: the system’s pressure reaches the target pressure.



Mean values

Contact number Energy
109+
e 107
Q |
Large N Pressure Density
control control
5 J N=1OO —_— N=1OO
107 - N=200 — N=200
+ N=400 — N=400
10° 10% 10° 102 10

10° 10% 102 102 10"
0 P
*Results of density control are plotted as a function of the average pressure at each
density.

Mean values do not depend on the control parameters!



Sample to sample fluctuation

— 2 2 . 9) )
X, = N(627)/(z) Xe = N(OE®)/(E)
104
11
1072} 10 Large N
10°}
Pressure Density
1073} control control 10-1!
- N=100 — N=100
=« N=200 — N=200
+ N=400 — N=400 | | | | | |
10° 10% 102 102 10~ 10° 10 1073 102 10°" 10°
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Differences are qualitative rather than quantitative

e Pressure control: do not diverge
e Density control: diverge



Finite size scali
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Scaling plot
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Finite size scaling

v N=1600

P—-Py
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Scaling plot
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Finite size scaling

Noz

Scaling plot
for mean-value

C. P. Goodrich et al. (2012)
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Phenomenological model

Pressure

Mean value Mean value + fluctuation

<p>=ASp "™ p=ASp+E (E2) = AIN

Energy
E x p?>=(Adp + &) = A%0¢? + 2A8¢¢&

(EY = A%6¢?, (SE?) = 4A%5¢*

\ 4

_ (OB
Ae = (E)2 < O 10 10% 10° 102 10”
=@y




Phenomenological model

Pressure

Mean value Mean value + fluctuation

<p>=ASp "™ p=ASp+E (E2) = AIN

Contact number
z—zjocp”z R Z=ZJ+(A5§0+5)1/2
1072}
(2) ® 25, (62°) = A~ 26917 S
= N=200
1073} . N=400
2 & A N=800
+ N=1600
Y, = (6z7) & 5~ 12 / T
< <Z>2 10° 10% 102 102 10
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Summary

e Fluctuations of the pressure control do not diverge.

e Fluctuations of the density control do diverge.

e Correlated volume of the fluctuation diverges as N, ~ 5§0_2,

different from that of the mean value N, ~ S~ 12
C. P. Goodrich et al. (2012)
All those results can not be explained by the current mean-
field theory.

Can we construct the mean-field theory for the sample to
sample fluctuation?

cf: Random Field Ising model <m2>sample > (m?), .,

-> Higher upper critical dimension d_u = 6 than the pure Ising d u=4



