
Control parameter dependence 
of fluctuation near jamming

Harukuni Ikeda, Gakushuin University

H. Ikeda, PRL 125 (3), 038001 (2020)

H. Ikeda, JCP 158, 056101 (2023)




• Introduction


• Dimensional dependence of the jamming transition


• Sample to sample fluctuation

Table of contents



• Introduction


• Dimensional dependence of the jamming transition


• Sample to sample fluctuation

Table of contents



Consisting of large enough particles (0.1mm)

so that thermal fluctuations are negligible

M&M Candies Sand & rock

Snow powders
Grains

Forms

Introduction: What is granular material?
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FIG. 5: States of soft frictionless spheres as function of pack-
ing density φ, below, at, and above the critical density φc.
Left: Unjammed system at a density below the critical den-
sity — pressure is zero and there are no contacts. Middle:
Marginally rigid system consisting of undeformed frictionless
spheres just touching. The system is at the jamming tran-
sition (point J), has vanishing pressure, critical density and
2d contacts per particle, where d is the dimension. Right:
Jammed system for finite pressure and density above φc.

tact forces. In this model, temperature, gravity and shear
are set to zero. The beauty of such systems is that they
allow for a precise study of a jamming transition. As we
will see in sections IV and V, caution should be applied
when applying the results for soft frictionless spheres to
frictional and/or non-spherical particles.

From a theoretical point of view, packings of soft fric-
tionless spheres are ideal for three reasons. First, they
exhibit a well defined jamming point: For positive P the
system is jammed, as it exhibits a finite shear modulus
and a finite yield stress [2], while at zero pressure the sys-
tems loses rigidity. Hence, the (un)jamming transition
occurs when the pressure P approaches zero, or, geomet-
rically, when the deformations of the particles vanish.
The zero pressure, zero shear, zero temperature point in
the jamming phase diagram is referred to as “point J”
(Fig. 1e and 5). In this review, point J will only refer
to soft frictionless spheres and not to jamming transi-
tions of other types of particles. Second, at point J the
contact number approaches the so-called isostatic value,
and the system is marginally stable. The system’s me-
chanical and geometrical properties are rich and peculiar
here. For large systems the critical packing density, φc,
approaches values usually associated with random close
packing. Third, the mechanical and geometrical proper-
ties of jammed systems at finite pressure, or equivalently,
φ − φc > 0, exhibit non-trivial power law scalings as a
function ∆φ := φ − φc or, similarly, as function of the
pressure, P .

In this section we address the special nature of point J
and discuss the scaling of the mechanical and geometrical
properties for jammed systems near point J. We start in
section III A by a brief discussion of a few common con-
tact laws and various numerical protocols used to gener-
ate jammed packings. We then present evidence that the
jamming transition of frictionless spheres is sharp and
discuss the relevant control parameters in section III B.

In section III C we discuss the special geometrical fea-
tures of systems at point J, as probed by the contact
number and pair correlation function. Away from point
J the contact number exhibits non-trivial scaling, which
appears to be closely related to the pair correlation func-
tion at point J, as discussed in section III D. Many fea-
tures of systems near point J can be probed in linear re-
sponse, and these are discussed at length in section III E
— these include the density of states (III E 1), diverging
length and time scales (III E 2), elastic moduli (III E 3)
and non-affine displacements (III E 4). We close this sec-
tion by a comparison of effective medium theory, rigidity
percolation and jamming, highlighting the unique nature
of jamming near point J (III E 5).

A. Definition of the Model

At the (un)jamming transition soft particles are un-
deformed, and the distance to jamming depends on the
amount of deformation. Rigid particles are therefore al-
ways at the jamming transition, and soft particles are
necessary to vary the distance to point J. Deformable fric-
tionless spheres interact through purely repulsive body
centered forces, which can be written as a function of
the amount of virtual overlap between two particles in
contact. Denoting the radii of particles in contact as Ri

and Rj and the center-to-center distance as rij , it is con-
venient to define a dimensionless overlap parameter δij

as

δij := 1 −
rij

Ri + Rj
, (1)

so that particles are in contact only if δij ≥ 0. We limit
ourselves here to interaction potentials of the form:

Vij = εij δα
ij δij ≥ 0 , (2)

Vij = 0 δij ≤ 0 . (3)

By varying the exponent, α, one can probe the nature and
robustness of the various scaling laws discussed below.
For harmonic interactions, α = 2 and εij sets the spring
constant of the contacts. Hertzian interactions between
three-dimensional spheres, where contacts are stiffer as
they are more compressed, correspond to α = 5/2 [91].
O’Hern et al have also studied the “Hernian” interaction
(α = 3/2), which corresponds to contacts that become
progressively weaker when compressed [2].

Once the contact laws are given, one can generate pack-
ings by various different protocols, of which MD (Molec-
ular Dynamics) [20, 21, 22, 24] and conjugate gradient [2]
are the most commonly used [92]. In MD simulations one
typically starts simulations with a loose gas of particles,
which are incrementally compressed, either by shrinking
their container or by inflating their radii. Supplement-
ing the contact laws with dissipation (inelastic collisions,
viscous drag with a virtual background fluid, etc) the
systems “cools” and eventually one obtains a stationary
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Jamming in 2d and 3d
Frictionless spherical particles

Wet foams

2. Jamming, disorder and non-affinity

The gas fraction f clearly plays a crucial role in determining
foam's structure and rigidity, and some of the earliest studies
that consider the loss of rigidity in disordered media—what we
now call unjamming—concern foams and emulsions with
increasing wetness.8–10 The (un)jamming scenario for foams is
illustrated in Fig. 1. When the gas fraction approaches unity, the
foam is called dry. Macroscopic deformations of such foams
cause stretching of the liquid lms that provide restoring
forces—dry foams are jammed. When the gas fraction is low-
ered and the foam becomes wetter, the gas bubbles become
increasingly spherical, and the foam loses rigidity for some
critical gas fraction fc where the bubbles lose contact (Fig. 1).
The unjamming transition is thus governed by the gas fraction,
which typically is seen as a material parameter. For emulsions
essentially the same scenario arises.11

As the interactions between bubbles are dominantly repul-
sive and viscous, static foams are similar to packings of fric-
tionless so spheres—precisely the models studied extensively
in jamming.7 In real foams, gravity (which causes drainage) and
gas diffusion (which causes coarsening) play a role, although
these effects can be minimized by studying quasi-2D foams and
using inert gases.12

Disordered geometry

How crucial is disorder? In ordered, “crystalline” foams such as
two-dimensional hexagonal packings of monodisperse bubbles
(“liquid honeycombs”8,10), global deformations translate into a
homogeneous local deformation eld, as all the cells deform
equally. In this case the bubbles lose contact at the critical

density fc equal to
p

2
ffiffiffi
3

p z 0:9069, and the average number of

contacting neighbors per bubble, z, remains constant at 6 in the
jammed regime. Similar results can be obtained for three-
dimensional ordered foams, where fc is given by the packing

density of the HCP lattice
p

3
ffiffiffi
2

p z 0:7405.

Disordered foams are, however, very different. Experiments
and simulations clearly nd that the critical packing fraction is
substantially lower, around 84% in 2D and 64% in 3D.11,13–15

Moreover, simulations have revealed that the contact number
varies smoothly with the packing fraction:6,7,13,14 in 2D, the
contact number in foams ranges from 6 in the dry limit and
reaches themarginal, or isostatic value, zc ¼ 4 at the unjamming
point—in addition, the excess coordination z " zc grows as a
square root with f " fc.

These numerical predictions have recently been conrmed
in experiments on disordered monolayers of bubbles oating
on the surface of a soapy solution and bound on the top by a
well-leveled glass plate.16–21 The average contact number z and
the packing fraction can then be determined by image analysis.
As shown in Fig. 2, the contact number tends to z ¼ 6 for high
packing fractions,12 whereas the average contact number
decreases as a square root, ultimately reaching zc ¼ 4 when
the (2D) packing fraction is reduced to a critical value around
f ¼ 0.84.

Moreover, the variation of z with f is similar to a square
root and can be tted well by a power law t of the form

Fig. 2 Average contact number versus f for experimental bidisperse foams: grey
dots indicate data for each individual realization and black circles indicate aver-
ages for each globally set packing fraction. The solid red line is a squareroot fit to
the data (see the text). The inset shows the data plotted versus the experimentally
determined packing fraction fexp. The fit has a power law exponent of 0.70. Data
from the work of Katgert et al.19

Fig. 1 Topview of 2D foams, consisting of a mix of 2 and 3 mm bubbles trapped
below a top plate. At low packing fractions (left), the bubbles do not form
contacts and the materials are in a mechanical vacuum state. At high packing
fractions (right), the bubbles are squeezed together and form a jammed, rigid
state. At intermediate packing fractions, the bubbles just touch and form a
marginal state.
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# of constraints > # of degrees of freedom

# of constraints = # of contacts = Nz/2

 # of degrees of freedom = Nd

(isostatic)zJ = 2d

J. C. Maxwell (1864)

z ≥ 2d

Jamming in 2d and 3d
Stability argument by Maxwell
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FIG. 6: The pair correlation function g(r > 1) of a three-
dimensional system of monodisperse spheres of radius 1, il-
lustrates the abundance of near contacts close to jamming
(∆φ = 10−8 here). From [42] — Copyright by the American
Physical Society.

isostatic value ziso: for frictionless spheres, ziso = 2d.
Second, at point J, since the particles are undeformed:

the distance between contacting particles has to be pre-
cisely equal to the sum of their radii. This yields Nz/2
constraints for the dN positional degrees of freedom:
therefore, one only expects generic solutions at jamming
when z ≤ 2d.

Combining these two inequalities then yields that the
contact number zc at the jamming point for soft fric-
tionless disks generically will attain the isostatic value:
zc = ziso = 2d [2, 44, 45]. As we will see below, such
counting arguments should be regarded with caution,
since they do not provide a correct estimate for the con-
tact number at jamming of frictionless ellipsoidal parti-
cles [48, 49, 50].

Numerically, it is far from trivial to obtain convincing
evidence for the approach of the contact number to the
isostatic value. Apart from corrections due to finite sys-
tem sizes and finite pressures, a subtle issue is how to
deal with rattlers, particles that do not have any con-
tacts with substantial forces, but still arise in a typical
simulation. These particles have low coordination num-
ber and their overlap with other particles is set by the
numerical precision — these particles do not contribute
to rigidity. For low pressures, they can easily make up
5% of the particles. An accurate estimate of the contact
number than requires one to ignore these particles and
the corresponding “numerical” contacts [2, 70].

Pair Correlation Function — In simulations of
monodisperse spheres in three dimensions, it was found
that near jamming g(r) diverges when r ↓ 1 (for particles
of radius 1):

g(r) ∼
1√

r − 1
. (4)

This expresses that at jamming a singularly large number

FIG. 7: (a) Excess contact number z − zc as function of ex-
cess density φ − φc. Upper curves: represent monodisperse
and bidisperse packings of 512 soft spheres in three dimen-
sions with various interaction potentials, while lower curves
correspond to bidisperse packings of 1024 soft discs in two
dimensions. The straight lines have slope 0.5. From [2] —
Copyright by the American Physical Society. (b) Schematic
contact number as function of density, illustrating the mixed
nature of the jamming transition for frictionless soft spheres.

of particles are on the verge of making contact (Fig. 6)
[42, 46]. This divergence has also been seen in pure hard
sphere packings [47]. In addition to this divergence, g(r)
exhibits a delta peak at r = 1 corresponding to the dN/2
contacting pairs of particles.

In simulations of two-dimensional bidisperse systems, a
similar divergence can be observed, provided one studies
g(ξ), where the rescaled interparticle distance ξ is defined
as r/(Ri +Rj), and where Ri and Rj are the radii of the
undeformed particles in contact [51].

D. Relating Contact Numbers and Packing
Densities away from J

Below jamming, there are no load bearing contacts and
the contact number is zero, while at point J, the contact
number attains the value 2d. How does the contact num-
ber grow for systems at finite pressure? Assuming that
(i) compression of packings near point J leads to essen-
tially affine deformations, and that (ii) g(r) is regular
for r > 1, z would be expected to grow linearly with φ:
compression by 1% would then bring particles that are
separated by less than 1% of their diameter in contact,
etc. But we have seen above that g(r) is not regular, and
we will show below that deformations are very far from
affine near jamming — so how does z grow with φ?

Many authors have found that the contact number
grows with the square root of the excess density ∆φ :=
φ−φc [2, 15, 20, 25] (see Fig. 7). O’Hern et al. have stud-
ied this scaling in detail, and find that the excess contact
number ∆z := z−zc scales as ∆z ∼ (∆φ)0.50±0.03, where
zc, the critical contact number, is within error bars equal
to the isostatic value 2d [2]. Note that this result is in-
dependent of dimension, interaction potential or polydis-

log('� 'J)
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O’Hern et al. (2002)
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Jamming in 2d and 3d

The critical exponent does not depend on the spatial dimensions!
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M. Mailman et al (2009)

Scaling relation G ∼ (φ − φJ)1/2

1/2

Jamming in 2d and 3d

The critical exponent does not depend on the spatial dimensions!
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<latexit sha1_base64="dz9bStQD/vVBQHZygsVlHkyAHa0="></latexit><latexit sha1_base64="dz9bStQD/vVBQHZygsVlHkyAHa0="></latexit><latexit sha1_base64="dz9bStQD/vVBQHZygsVlHkyAHa0="></latexit><latexit sha1_base64="dz9bStQD/vVBQHZygsVlHkyAHa0="></latexit>

Radial distribution function

Jamming in 2d and 3d



Scaling relation

The critical exponent does not depend on the spatial dimensions!

g(h) ∼ h−γ, γ = 0.41...

C
D

F
=

∫h 0
dh

′￼g
(h

′￼)
P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi et al. (2014), 


P. Charbonneau,  E. Corwin, R. Dennis, R. Rojas, H.I, G. Parisi, and F. Ricci-Tersenghi (2021)
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Radial distribution function

Jamming in 2d and 3d



Jamming in 2d and 3d

z � 2d / ('� 'J)
0.5
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Excess contact number

g(h) ∼ h−γ, γ = 0.41
Radial distribution function

The critical exponent does not depend on the spatial dimensions.

Furthermore, the exponents agree with the mean-field prediction.

The upper critical dimension <= 2.

P. Charbonneau et al. (2014)
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Jamming of quasi 1d system

What will happen below the upper critical dimension?

Motivation

Let we consider the quasi-one-dimensional system

The upper critical dimension <=2 



Jamming of quasi 1d system
Setting

Ly

Lx

Periodic 

boundary

Repulsive wall
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FIG. 1. A configuration at 'J for N = 32 and Ly = 2�max.
Gray circles represent particles, and the solid lines denote the
contacts.

the y-direction, particles are confined between the walls
at y = 0 and y = Ly. For the x-direction, we impose the
periodic boundary condition. The interaction potential
of the model is given by

VN =
1,NX

i<j

v(hij) +
NX

i=1

v(hb
i ) +

NX
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2
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where ri = {xi, yi} and �i respectively denote the po-
sition and diameter of particle i, hij denotes the gap
function between particles i and j, and hb

i and ht
i respec-

tively denote the gap functions between particle i and
bottom and top walls. To avoid the crystallization, we
consider polydisperse particles with uniform distribution
�i 2 [�min,�max]. Here after we set, k = 1, �min = 1, and
�max = 1.4.

Numerics. – We perform numerical simulations for
N = 1024 disks. We find 'J by combining slow compres-
sion and decompression as follows [2]. We first generate
a random initial configuration at a small packing fraction
' = 0.1 between the walls at y = 0 and y = Ly. Then, we
slowly compress the system by performing an a�ne trans-
formation along the x-direction. For each compression
step, we increase the packing fraction with a small incre-
ment �' = 10�3, and successively minimize the energy
with the FIRE algorithm [18] until the squared force act-
ing on each particle becomes smaller than 10�25. After
arriving at a jammed configuration with VN/N > 10�16,
we change the sign and amplitude of the increment as
�' ! ��'/2. Then, we decompress the system until we
obtain an unjammed configuration with VN/N < 10�16.
We repeat this process by changing the sign and ampli-
tude of the increment as �' ! ��'/2 every time the
system crosses the jamming transition point. We termi-
nate the simulation when VN/N 2 (10�16, 2⇥10�16). We
define 'J as a packing fraction at the end of the above
algorithm.
After obtained a configuration at 'J , we re-compress

FIG. 2. Ly dependence of (a) the jamming transition point
'J and (b) the contact number per particle at the jamming
transition point zJ . Markers denote numerical results, and
solid lines denote the guide to the eye. The dashed lines
denote the linear fits 'J = 0.84 � 0.28�max/Ly and zJ =
4� 1.4�max/Ly.

the system to obtain configurations above 'J . As re-
ported in Ref. [19], some fraction of samples become un-
stable during the compression (compression unjamming).
We neglect these samples. We remove the rattlers that
have less than three contacts before calculating physical
quantities. Hereafter, we refer the number of the non-
rattler particles as Nnr. To improve the statistics, we
average over 50 independent samples.
'J and zJ . – First, we discuss the Ly dependence of

the jamming transition point 'J and the contact num-
ber par particle at that point zJ . In Fig. 2 (a), we show
'J as a function of �max/Ly. For intermediate values of
�max/Ly, 'J shows a non-monotonic behavior. A simi-
lar non-monotonic behavior has been reported in a pre-
vious numerical simulation for a binary mixture [14]. In
the limit �max/Ly ! 0, 'J converges to its bulk value
'bulk
J = 0.84 as 'bulk

J � 'J / 1/Ly, see the dashed line
in Fig. 2 (a). The same scaling has been observed in
the previous simulation for the binary mixture [14]. The
scaling implies the growing length scale

⇠ ⇠ ('bulk
J � ')�⌫ (2)

with ⌫ = 1. It is worth mentioning that this is the same
exponent observed by a correction to scaling analysis [20]
and also our replica calculation for a confined system [21].

In Fig. 2 (b), we show zJ as a function of �max/Ly. It is
well known that zJ = zbulkJ = 4 for bulk two dimensional
disks [2]. In the Ly ! 1 limit, zJ converges to the bulk
value as zbulkJ � zJ ⇠ 1/Ly, see the dashed line in Fig. 2
(b).

Isostaticity. – Next we discuss the isostaticity of the
system. A system is referred to as isostatic when the
number of constraints is the same as the number of de-
grees of freedom. For our system, the number of degrees
of freedom of the non-rattler particles is Nf = 2Nnr � 1
where Nnr denotes the number of non-rattler particles,

2
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Gray circles represent particles, and the solid lines denote the
contacts.
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�max/Ly, 'J shows a non-monotonic behavior. A simi-
lar non-monotonic behavior has been reported in a pre-
vious numerical simulation for a binary mixture [14]. In
the limit �max/Ly ! 0, 'J converges to its bulk value
'bulk
J = 0.84 as 'bulk

J � 'J / 1/Ly, see the dashed line
in Fig. 2 (a). The same scaling has been observed in
the previous simulation for the binary mixture [14]. The
scaling implies the growing length scale

⇠ ⇠ ('bulk
J � ')�⌫ (2)

with ⌫ = 1. It is worth mentioning that this is the same
exponent observed by a correction to scaling analysis [20]
and also our replica calculation for a confined system [21].

In Fig. 2 (b), we show zJ as a function of �max/Ly. It is
well known that zJ = zbulkJ = 4 for bulk two dimensional
disks [2]. In the Ly ! 1 limit, zJ converges to the bulk
value as zbulkJ � zJ ⇠ 1/Ly, see the dashed line in Fig. 2
(b).

Isostaticity. – Next we discuss the isostaticity of the
system. A system is referred to as isostatic when the
number of constraints is the same as the number of de-
grees of freedom. For our system, the number of degrees
of freedom of the non-rattler particles is Nf = 2Nnr � 1
where Nnr denotes the number of non-rattler particles,

Interaction between 
walls and particles

Interaction potential
Interaction between 
particles



Jamming of quasi 1d system
Algorithm

1. Start from a random configuration.

2. Increase the packing fraction φ → φ+δφ.

3. Remove contact by the energy minimization.

4. Repeat 2 and 3. δφ→-δφ/2 each time the 

transition point is crossed.

We want to determine the jamming transition point, where 
particles begin to interact and has a finite interaction potential.

Ly is fixed during the compression. 

Animation



Jamming of quasi 1d system
Results at the jamming transition point

2

FIG. 1. A configuration at 'J for N = 32 and Ly = 2�max.
Gray circles represent particles, and the solid lines denote the
contacts.

Model. – Here we describe the details of our model.
We consider two dimensional disks in a Lx⇥Ly box. For
the y-direction, particles are confined between the walls
at y = 0 and y = Ly. For the x-direction, we impose the
periodic boundary condition. The interaction potential
of the model is given by

VN =
1,NX

i<j

v(hij) +
NX

i=1

v(hb
i ) +

NX

i=1

v(ht
i),

hij = |ri � rj |�
�i + �j

2
,

hb
i = yi �

�i

2
,

ht
i = Ly � yi �

�i

2
,

v(h) = k
h2

2
✓(�h). (1)

where ri = {xi, yi} and �i respectively denote the po-
sition and diameter of particle i, hij denotes the gap
function between particles i and j, and hb

i and ht
i respec-

tively denote the gap functions between particle i and
bottom and top walls. To avoid the crystallization, we
consider polydisperse particles with uniform distribution
�i 2 [�min,�max]. Here after we set, k = 1, �min = 1, and
�max = 1.4.

Numerics. – We perform numerical simulations for
N = 1024 disks. We find 'J by combining slow compres-
sion and decompression as follows [2]. We first generate
a random initial configuration at a small packing fraction
' = 0.1 between the walls at y = 0 and y = Ly. Then, we
slowly compress the system by performing an a�ne trans-
formation along the x-direction. For each compression
step, we increase the packing fraction with a small incre-
ment �' = 10�3, and successively minimize the energy
with the FIRE algorithm [17] until the squared force act-
ing on each particle becomes smaller than 10�25. After
arriving at a jammed configuration with VN/N > 10�16,
we change the sign and amplitude of the increment as
�' ! ��'/2. Then, we decompress the system until we
obtain an unjammed configuration with VN/N < 10�16.
We repeat this process by changing the sign and ampli-
tude of the increment as �' ! ��'/2 every time the
system crosses the jamming transition point. We termi-
nate the simulation when VN/N 2 (10�16, 2 ⇥ 10�16).
We define 'J as a packing fraction of this point.
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FIG. 2. Ly dependence of (a) the jamming transition point
'J and (b) the contact number per particle at the jamming
transition point zJ . Markers denote numerical results, and
solid lines denote the guide to the eye. The dashed lines
denote the linear fits 'J = 0.84 � 0.28�max/Ly and zJ =
4� 1.4�max/Ly.

After obtained a configuration at 'J , we re-compress
the system to obtain configurations above 'J . As re-
ported in Ref. [18], some fraction of samples become un-
stable during the compression (compression unjamming).
We neglect these samples. We remove the rattlers that
have less than three contacts before calculating physical
quantities. Hereafter, we refer the number of the non-
rattler particles as Nnr. To improve the statistics, we
average over 50 independent samples.
'J and zJ . – First, we discuss the Ly dependence of

the jamming transition point 'J and the contact num-
ber par particle at that point zJ . In Fig. 2 (a), we show
'J as a function of �max/Ly. For intermediate values of
�max/Ly, 'J shows a non-monotonic behavior. A simi-
lar non-monotonic behavior has been reported in a pre-
vious numerical simulation for a binary mixture [13]. In
the limit �max/Ly ! 0, 'J converges to its bulk value
'bulk
J = 0.84 as 'bulk

J � 'J / 1/Ly, see the dashed line
in Fig. 2 (a). The same scaling has been observed in
the previous simulation for the binary mixture [13]. The
scaling implies the growing length scale

⇠ ⇠ ('bulk
J � ')�⌫ (2)

with ⌫ = 1. It is worth mentioning that this is the same
exponent observed by a correction to scaling analysis [19]
and also our replica calculation for a confined system [20].

In Fig. 2 (b), we show zJ as a function of �max/Ly. It is
well known that zJ = zbulkJ = 4 for bulk two dimensional
disks [2]. In the Ly ! 1 limit, zJ converges to the bulk
value as zbulkJ � zJ ⇠ 1/Ly, see the dashed line in Fig. 2
(b).

Isostaticity. – Next we discuss the isostaticity of the
system. A system is referred to as isostatic when the
number of constraints is the same as the number of de-
grees of freedom. For our system, the number of degrees
of freedom of the non-rattler particles is Nf = 2Nnr � 1

Does Maxwell’s isostatic condition hold in quasi 1d?

Unlike the bulk two dimensional system, 


the contact number is not 4(=2d)!


Ly



Jamming of quasi 1d system
Mxwell’s isostatic condition revisited

Nc =
Nz − Nw

2
+ Nw

# of constraints = # of degrees of freedom

# of degrees of freedom = Nd = 2N

Wall
Inter particle

# of constraints =

ciso ≡ Nc/N = 2Isostatic number:
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FIG. 3. Ly dependence of the number of constraints per par-
ticle at the jamming transition point cJ . Markers denote the
numerical results, and the dashed line denotes the isostatic
number ciso = 2.

where we neglect the global translation along the x-axis.
The number of constrains is

Nc =
Nnrz �Nw

2
+Nw =

Nnrz

2
+

Nw

2
, (3)

where Nnr denotes the number of non-rattler particles, z
denotes the number of contacts per particle, Nw denotes
the number of contacts between particles and walls, and
(Nnrz � Nw)/2 accounts for the number of contacts be-
tween particles. When Ly � �max, the number of con-
tacts between particles and walls can be negligible, and
thus the isostatic condition Nc = Nf leads to z = 4 in
the thermodynamic limit. This condition is indeed sat-
isfied in the case of the bulk d = 2 system at 'J [2].
On the contrary for Ly ⇠ �max, all particles may contact
with walls Nw = Nnr, leading to z = 3 for an isostatic
system in thermodynamic limit. Fig. 2 (b) show that
our model satisfies this condition at 'J for �max/Ly ⇠ 1.
To discuss the isostaticity for intermediate Ly, we intro-
duce the number of constraints per particle c = Nc/Nnr.
When the system is isostatic, we get c = ciso = 2 in the
thermodynamic limit. In Fig. 3, we show our numerical
result of c at 'J as a function of �max/Ly. This plot
proves that the system is always isostatic, irrespective of
the value of Ly.

Now we shall discuss the behavior above 'J . As men-
tioned in the introduction, we will investigate the model
mainly for Ly > 2�min so that some fraction of disks can
path through, and thus the contact network undergoes a
non-trivial rearrangement on the change of '.

Energy and pressure. – For ' > 'J , the particles
overlap each other. As a consequence, the energy VN

and pressure p have finite values. Since we only consider
the compression along the x-axis, we define the pressure
as

p = � 1

V

@VN ({x0
i})

@"

����
"=0

= � 1

V

X

i<j

v0(hij)
(xi � xj)2

|ri � rj |
,

(4)

FIG. 4. (a) �' dependence of the energy per particle VN/N .
Maker denote numerical results, and the solid line denotes
�'2. (b) �' dependence of the pressure p. Maker denote
numerical results, and the solid line denotes �'.

where V = LxLy, and x0
i = xi(1 + ") denotes the a�ne

transformation along the x-axis. In Fig. 4, we show the
�' dependence of VN/N and p. We find the scalings
VN/N ⇠ �'2 and p ⇠ �'. The same scalings were ob-
served for the bulk systems in d = 2 and d = 3 [2].
Number of constraints and contacts. – Next we ob-

serve the density dependence of the number of con-
straints. For this purpose, we introduce the excess con-
straints as

�c =
Nc �Nf � 1

Nnr
. (5)

where Nf +1 denotes the minimal number of constraints
to stabilize a system [21]. For the bulk limit Ly ⇠
�max

p
N , �c can be identified with the excess contact

number �z. In this case, the extensive finite size scaling
analysis proved the following scaling form [21]:

�c = N�1C
�
N2�'

�
, (6)

where the scaling function C(x) behaves as

C(x) ⇠
(
x1/2 x � 1

x x ⌧ 1.
(7)

This implies that the square root behavior �c ⇠ �'1/2

is truncated at �' ⇠ N�2 for a finite N system.
For �' ⌧ N�2, one observes a linear scaling behavior
�c ⇠ N�' [19].
To investigate how the behavior changes for Ly ⌧

�max

p
N , in Fig. 5 (a), we show the �' dependence of

�c for several Ly. For large Ly and intermediate �', we
observe the square root scaling �c ⇠ �'1/2. On the con-
trary, for small Ly and �', �c shows the linear behavior
�c ⇠ �'. To discuss the scaling behavior more closely,
we assume the following scaling form:

�c = l↵y C0 �l�y �'
�
, (8)

# of constraints per particle

at the jamming transition point

The system is always isostatic!

c
=

N c
/N

← ciso
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FIG. 5. (a) �c as a function of �'. Markers denote numerical
results. The solid and dashed lines denote �c ⇠ �'1/2 and
�c ⇠ �', respectively. (b) Scaling plot for the same data.

FIG. 6. (a) z as a function of �'. Markers denote numerical
results. (b) �z = z � zJ as a function of �'. The solid and
dashed lines denote �z ⇠ �'1/2 and �z ⇠ �', respectively. (c)
Scaling plot for the same data.

where ly = Ly/�max, and C0(x) shows the same scaling
behavior as C(x), Eq. (7). When ly ⇠

p
N , the scaling

should converge to that of the bulk d = 2 system, Eq. (6).
This requires ↵ = �2 and � = 4. In Fig. 5, we test this
prediction. A good scaling collapse verifies the scaling
function Eq. (8).

Note that for a bulk system in d � 2, the system ex-
hibits the linear scaling only for �' ⌧ N�2: the lin-
ear regime vanishes in the thermodynamic limit. Con-
trary, Eq. (8) implies that the linear scaling regime per-
sists even in the thermodynamic limit for the quasi-one-
dimensional system as long as Ly is finite. Therefore,
the quasi-one-dimensional system indeed has a distinct
critical exponent from that of the bulk systems in d � 2.

In Figs.(a)–(c), we also show the behaviors of the con-
tact number per particle z, excess contacts �z = z � zJ ,
and its scaling plot. The data for �z is more noisy than
�c, presumably due to the fluctuation of zJ , but still we
find a reasonable scaling collapse by using the same scal-
ing form as �c.

Gap distribution. – Another important quantity to
characterize the critical property of the jamming transi-
tion is the gap distribution g(h). For the bulk systems in
d � 2, g(h) exhibits the power-law divergence at 'J :

g(h) ⇠ h�� (9)

FIG. 7. (a) CDF of the gap function h. Markers denote
numerical results. The solid and dashed lines denote h1��

and h1, respectively. (b) Scaling plot for the same data.

with � = 0.41 [5]. In order to improve the statistics,
we observe the cumulative distribution function (CDF)
of the gap functions (hij and ht,b

i ), instead of g(h) itself.
In this case, the power-law divergence Eq. (9) appears as
CDF ⇠ h1�� . In Fig. 7 (a), we show our numerical results
of CDF for several Ly. We find that for small Ly and h,
CDF ⇠ h meaning that g(h) remains finite g(h) ⇠ h0

even at 'J . On the contrary, for large Ly, there appears
the intermediate regime where CDF ⇠ h1�� , as in d � 2.
To discuss the crossover from CDF ⇠ h to CDF ⇠ h1�� ,
we assume the following scaling form:

CDF = l⇣yF 0 �l⌘yh
�
, (10)

where the scaling function F 0(x) behaves as

F 0(x) ⇠
(
x1�� x � 1

x x ⌧ 1.
(11)

When ly ⇠
p
N , this should converge to the scal-

ing form for finite N , CDF(h) = N�1F(Nµh), where
µ = 1/(1� �), and F(x) shows the same scaling as
Eq. (11) [22]. This requires ⇣ = �2 and ⌘ = 2µ. In
Fig. 7 (b), we check this prediction. The excellent col-
lapse proves the validity of our scaling Ansatz Eq. (10).
Conclusions. – In this work, we showed that the

jamming transition in a quasi-one-dimensional system is
qualitatively di↵erent from that in d � 2 systems: the
excess constraints and contacts exhibit the linear scal-
ing �c ⇠ �z ⇠ �', instead of the square root scaling
�z ⇠ �'1/2, and the gap distribution g(h) remains fi-
nite even at 'J , instead of the power-law divergence
g(h) ⇠ h�� .
Important future work is to test the robustness of our

results for other shapes of the quasi-one-dimensional ge-
ometries such as a d-dimensional box with a fixed length
in the d� 1 directions and an infinite length in only one
direction, and circular cylinder with a fixed radius.
Interestingly, the same scaling behavior of that of our

model has been reported for a model of random linear

δc =
c − ciso

N
( ∝ δz)

Excess constraints

-1/2

-1

For small Ly, we observe δc ~ δφ.

Ly



Jamming of quasi 1d system
Scaling of the radial distribution

CDF(h) = ∫
h

0
dh′￼g(h′￼) ∼ hg(h)

Cumulative distribution function

For small Ly, we observe g(h) ~ h^0
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FIG. 5. (a) �c as a function of �'. Markers denote numerical
results. The solid and dashed lines denote �c ⇠ �'1/2 and
�c ⇠ �', respectively. (b) Scaling plot for the same data.

FIG. 6. (a) z as a function of �'. Markers denote numerical
results. (b) �z = z � zJ as a function of �'. The solid and
dashed lines denote �z ⇠ �'1/2 and �z ⇠ �', respectively. (c)
Scaling plot for the same data.

where ly = Ly/�max, and C0(x) shows the same scaling
behavior as C(x), Eq. (7). When ly ⇠

p
N , the scaling

should converge to that of the bulk d = 2 system, Eq. (6).
This requires ↵ = �2 and � = 4. In Fig. 5, we test this
prediction. A good scaling collapse verifies the scaling
function Eq. (8).

Note that for a bulk system in d � 2, the system ex-
hibits the linear scaling only for �' ⌧ N�2: the lin-
ear regime vanishes in the thermodynamic limit. Con-
trary, Eq. (8) implies that the linear scaling regime per-
sists even in the thermodynamic limit for the quasi-one-
dimensional system as long as Ly is finite. Therefore,
the quasi-one-dimensional system indeed has a distinct
critical exponent from that of the bulk systems in d � 2.

In Figs.(a)–(c), we also show the behaviors of the con-
tact number per particle z, excess contacts �z = z � zJ ,
and its scaling plot. The data for �z is more noisy than
�c, presumably due to the fluctuation of zJ , but still we
find a reasonable scaling collapse by using the same scal-
ing form as �c.

Gap distribution. – Another important quantity to
characterize the critical property of the jamming transi-
tion is the gap distribution g(h). For the bulk systems in
d � 2, g(h) exhibits the power-law divergence at 'J :

g(h) ⇠ h�� (9)
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FIG. 7. (a) CDF of the gap function h. Markers denote
numerical results. The solid and dashed lines denote h1��

and h1, respectively. (b) Scaling plot for the same data.

with � = 0.41 [5]. In order to improve the statistics,
we observe the cumulative distribution function (CDF)
of the gap functions (hij and ht,b

i ), instead of g(h) itself.
In this case, the power-law divergence Eq. (9) appears as
CDF ⇠ h1�� . In Fig. 7 (a), we show our numerical results
of CDF for several Ly. We find that for small Ly and h,
CDF ⇠ h meaning that g(h) remains finite g(h) ⇠ h0

even at 'J . On the contrary, for large Ly, there appears
the intermediate regime where CDF ⇠ h1�� , as in d � 2.
To discuss the crossover from CDF ⇠ h to CDF ⇠ h1�� ,
we assume the following scaling form:

CDF = l⇣yF 0 �l⌘yh
�
, (10)

where the scaling function F 0(x) behaves as

F 0(x) ⇠
(
x1�� x � 1

x x ⌧ 1.
(11)

When ly ⇠
p
N , this should converge to the scal-

ing form for finite N , CDF(h) = N�1F(Nµh), where
µ = 1/(1� �), and F(x) shows the same scaling as
Eq. (11) [22]. This requires ⇣ = �2 and ⌘ = 2µ. In
Fig. 7 (b), we check this prediction. The excellent col-
lapse proves the validity of our scaling Ansatz Eq. (10).
Conclusions. – In this work, we showed that the

jamming transition in a quasi-one-dimensional system is
qualitatively di↵erent from that in d � 2 systems: the
excess constraints and contacts exhibit the linear scal-
ing �c ⇠ �z ⇠ �', instead of the square root scaling
�z ⇠ �'1/2, and the gap distribution g(h) remains fi-
nite even at 'J , instead of the power-law divergence
g(h) ⇠ h�� .
Important future work is to test the robustness of our

results for other shapes of the quasi-one-dimensional ge-
ometries such as a d-dimensional box with a fixed length
in the d� 1 directions and an infinite length in only one
direction, and circular cylinder with a fixed radius.
Interestingly, the same scaling behavior of that of our

model has been reported for a model of random linear
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δz ∼ δc ∼ δφ1/2 δc ∼ δφ

g(h) ∼ h−γ g(h) ∼ h0

2d and higher dimensions Quasi 1d

# of the excess constraints # of the excess constraints

Radial distribution function Radial distribution function

Summary

These results confirmed 1 < dUP < 2

• What is the precise value of ?


• What physical mechanism determines ?
dUP

dUP

Unsolved Questions

Isostatic at jamming

(# of constraints = # of degrees of freedom)

Isostatic at jamming

(# of constraints = # of degrees of freedom)
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Motivation

Phase transitions

Figure 5.1: Spin configuration of Ising model in 2 dimensions at high tem-
perature.

Figure 5.2: Spin configuration of the Ising model in 2 dimensions close to the
critical temperature.
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Figure 5.3: Spin configuration of the Ising model in 2 dimensions below the
the critical temperature.
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Critical fluctuation!

Ginzburg Criterion

d < dupper ⟨ϕ⟩⟨ϕ⟩ ≪ ⟨ϕϕ⟩ MFT fail

d > dupper ⟨ϕ⟩⟨ϕ⟩ ≫ ⟨ϕϕ⟩ MFT exact
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Figure 5.3: Spin configuration of the Ising model in 2 dimensions below the
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T > Tc T < TcT = Tc

Critical fluctuation!

• Does the critical fluctuation appear at the jamming transition point?

• Can we construct the “Ginzburg criteria”  for jamming?
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JammingIsing model
Sample to sample fluctuation

Phase transitions

Figure 5.1: Spin configuration of Ising model in 2 dimensions at high tem-
perature.

Figure 5.2: Spin configuration of the Ising model in 2 dimensions close to the
critical temperature.
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Transition occurs at T>0

There are thermal fluctuations.

Transition occurs at T=0

No thermal fluctuations


↓

Sample to sample fluctuation


for 10^3 samples with different IC
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Method

Wet foams

2. Jamming, disorder and non-affinity

The gas fraction f clearly plays a crucial role in determining
foam's structure and rigidity, and some of the earliest studies
that consider the loss of rigidity in disordered media—what we
now call unjamming—concern foams and emulsions with
increasing wetness.8–10 The (un)jamming scenario for foams is
illustrated in Fig. 1. When the gas fraction approaches unity, the
foam is called dry. Macroscopic deformations of such foams
cause stretching of the liquid lms that provide restoring
forces—dry foams are jammed. When the gas fraction is low-
ered and the foam becomes wetter, the gas bubbles become
increasingly spherical, and the foam loses rigidity for some
critical gas fraction fc where the bubbles lose contact (Fig. 1).
The unjamming transition is thus governed by the gas fraction,
which typically is seen as a material parameter. For emulsions
essentially the same scenario arises.11

As the interactions between bubbles are dominantly repul-
sive and viscous, static foams are similar to packings of fric-
tionless so spheres—precisely the models studied extensively
in jamming.7 In real foams, gravity (which causes drainage) and
gas diffusion (which causes coarsening) play a role, although
these effects can be minimized by studying quasi-2D foams and
using inert gases.12

Disordered geometry

How crucial is disorder? In ordered, “crystalline” foams such as
two-dimensional hexagonal packings of monodisperse bubbles
(“liquid honeycombs”8,10), global deformations translate into a
homogeneous local deformation eld, as all the cells deform
equally. In this case the bubbles lose contact at the critical

density fc equal to
p

2
ffiffiffi
3

p z 0:9069, and the average number of

contacting neighbors per bubble, z, remains constant at 6 in the
jammed regime. Similar results can be obtained for three-
dimensional ordered foams, where fc is given by the packing

density of the HCP lattice
p

3
ffiffiffi
2

p z 0:7405.

Disordered foams are, however, very different. Experiments
and simulations clearly nd that the critical packing fraction is
substantially lower, around 84% in 2D and 64% in 3D.11,13–15

Moreover, simulations have revealed that the contact number
varies smoothly with the packing fraction:6,7,13,14 in 2D, the
contact number in foams ranges from 6 in the dry limit and
reaches themarginal, or isostatic value, zc ¼ 4 at the unjamming
point—in addition, the excess coordination z " zc grows as a
square root with f " fc.

These numerical predictions have recently been conrmed
in experiments on disordered monolayers of bubbles oating
on the surface of a soapy solution and bound on the top by a
well-leveled glass plate.16–21 The average contact number z and
the packing fraction can then be determined by image analysis.
As shown in Fig. 2, the contact number tends to z ¼ 6 for high
packing fractions,12 whereas the average contact number
decreases as a square root, ultimately reaching zc ¼ 4 when
the (2D) packing fraction is reduced to a critical value around
f ¼ 0.84.

Moreover, the variation of z with f is similar to a square
root and can be tted well by a power law t of the form

Fig. 2 Average contact number versus f for experimental bidisperse foams: grey
dots indicate data for each individual realization and black circles indicate aver-
ages for each globally set packing fraction. The solid red line is a squareroot fit to
the data (see the text). The inset shows the data plotted versus the experimentally
determined packing fraction fexp. The fit has a power law exponent of 0.70. Data
from the work of Katgert et al.19

Fig. 1 Topview of 2D foams, consisting of a mix of 2 and 3 mm bubbles trapped
below a top plate. At low packing fractions (left), the bubbles do not form
contacts and the materials are in a mechanical vacuum state. At high packing
fractions (right), the bubbles are squeezed together and form a jammed, rigid
state. At intermediate packing fractions, the bubbles just touch and form a
marginal state.

Martin van Hecke is Professor of
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in the organization of disordered
media and design of mechanical
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hij = |xi � xj |�Ri �Rj

Numerical simulations for frictionless spherical particles in d=2
Model



Method

1. Generate a random initial configuration.

2. Increase density φ -> φ+δφ.

3. Minimize energy.

4. Repeat 2-3.

C. O’Hern et al. (2003)
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Compress/decompress the system until 

the system’s pressure reaches the target pressure.
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Mean values

Mean values do not depend on the control parameters!
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The fluctuations of the physical quantities play a cen-
tral role to characterize the critical phenomena. Here, we
report that the nature of the fluctuation highly depends
on the control parameter near the jamming transition
point 'J . We show that the fluctuations do not diverge
when the pressure is used as the control parameter. On
the contrary, if the distance to the transition point 'J is
used as the control parameter, the fluctuations show the
power-law divergence.

We consider harmonic spheres in two dimensions at
zero temperature1:

VN =
1,NX

i<j

h2
ij

2
✓(�hij), hij = |ri � rj |�Ri �Rj , (1)

whereN denotes the number of particles, ri = (xi, yi) de-
notes the position, and Ri denotes the radius. To avoid
crystallization, we consider 50 : 50 binary mixtures of
large RL = 0.7 and small Rs = 0.5 particles.The value of
VN separates the jammed and unjammed phases: when
the packing fraction ' is smaller than 'J , one observes
VN = 0 after the energy minimization, contrary, when
' > 'J , VN has a finite value. In our numerical sim-
ulation, we define 'J at which the energy barely has a
finite value VN/N 2 (10�16, 2⇥ 10�16). We generate the
configurations above 'J in two ways, as described below.

a. Density control The distance to the transition
point " = ' � 'J is used as the control parameter. Fol-
lowing O’ Hern et al., we first generate the configuration
at 'J by combining compression and decompression: we
compress the system when VN < 10�16 and decompress
when VN > 10�16, see Ref1 for details. After every com-
pression/decompression, we minimize the energy by us-
ing the FIRE algorithm2. We terminate the process when
VN/N 2 (10�16, 2⇥ 10�16). After obtaining a configura-
tion at 'J , we re-compress as the amount of " = '� 'J

to obtain a configuration above jamming . As reported in
Ref.3, some samples unjam after the compression (com-
pression unjamming). We throw out such samples.

b. Pressure control The pressure p is used as the
control parameter. For this purpose, we repeat the com-
pression and decompression until the system’s pressure
reaches the target pressure. In this case, the jamming
transition point corresponds to p = 0.

For each " and p, we prepare M = 1000 independent
samples and calculate the mean and variance of physical
quantities.

a)Electronic mail: harukuni.ikeda@gakushuin.ac.jp
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FIG. 1. Mean values of physical quantities. Markers denote
results obtained by the pressure control, while the solid lines
denote results obtained by the density control. In the case
of the density control, we determined the average pressure p
at each density and plotted the data as a function of p. (a)
Contract number. (b) Energy per particle e = VN/N .

FIG. 2. Fluctuations of physical quantities. Markers de-
note results obtained by the pressure control, while solid lines
denotes results obtained by the density control. In the case
of the density control, we determined the average pressure p
at each density and plotted the data as a function of p. (a)
Fluctuation of the contact number. (b) Fluctuation of energy.

We first show the behaviors of the average quantities.
A commonly observed quantity to characterize the jam-
ming transition is the number of contacts per particle z.
At 'J , z jumps from zero to zJ = 2d � 2d/N + 2/N ,
if one removes the rattles that have less than three con-
tacts4. Hereafter we remove the rattles when calculating
z. Another commonly used quantity is the energy per
particle e = VN/N . In Fig. 1, we plot the average values
of excess contact number �z = z � zJ and e. It can be
seen that the average values do not depend on the control
parameters.
Next, we discuss the fluctuation. To see how large is

the fluctuation compared to the mean value, we observe
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We first show the behaviors of the average quantities.
A commonly observed quantity to characterize the jam-
ming transition is the number of contacts per particle z.
At 'J , z jumps from zero to zJ = 2d � 2d/N + 2/N ,
if one removes the rattles that have less than three con-
tacts4. Hereafter we remove the rattles when calculating
z. Another commonly used quantity is the energy per
particle e = VN/N . In Fig. 1, we plot the average values
of excess contact number �z = z � zJ and e. It can be
seen that the average values do not depend on the control
parameters.
Next, we discuss the fluctuation. To see how large is

the fluctuation compared to the mean value, we observe
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*Results of density control are plotted as a function of the average pressure at each 
density.

Eδz

Large N



• Pressure control: do not diverge 

• Density control: diverge  

Results
Sample to sample fluctuation

Note: Control parameter dependence of fluctuation near jamming

Note: Control parameter dependence of fluctuation near jamming
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The fluctuations of the physical quantities play a cen-
tral role to characterize the critical phenomena. Here, we
report that the nature of the fluctuation highly depends
on the control parameter near the jamming transition
point 'J . We show that the fluctuations do not diverge
when the pressure is used as the control parameter. On
the contrary, if the distance to the transition point 'J is
used as the control parameter, the fluctuations show the
power-law divergence.

We consider harmonic spheres in two dimensions at
zero temperature1:

VN =
1,NX

i<j

h2
ij

2
✓(�hij), hij = |ri � rj |�Ri �Rj , (1)

whereN denotes the number of particles, ri = (xi, yi) de-
notes the position, and Ri denotes the radius. To avoid
crystallization, we consider 50 : 50 binary mixtures of
large RL = 0.7 and small Rs = 0.5 particles.The value of
VN separates the jammed and unjammed phases: when
the packing fraction ' is smaller than 'J , one observes
VN = 0 after the energy minimization, contrary, when
' > 'J , VN has a finite value. In our numerical sim-
ulation, we define 'J at which the energy barely has a
finite value VN/N 2 (10�16, 2⇥ 10�16). We generate the
configurations above 'J in two ways, as described below.

a. Density control The distance to the transition
point " = ' � 'J is used as the control parameter. Fol-
lowing O’ Hern et al., we first generate the configuration
at 'J by combining compression and decompression: we
compress the system when VN < 10�16 and decompress
when VN > 10�16, see Ref1 for details. After every com-
pression/decompression, we minimize the energy by us-
ing the FIRE algorithm2. We terminate the process when
VN/N 2 (10�16, 2⇥ 10�16). After obtaining a configura-
tion at 'J , we re-compress as the amount of " = '� 'J

to obtain a configuration above jamming . As reported in
Ref.3, some samples unjam after the compression (com-
pression unjamming). We throw out such samples.

b. Pressure control The pressure p is used as the
control parameter. For this purpose, we repeat the com-
pression and decompression until the system’s pressure
reaches the target pressure. In this case, the jamming
transition point corresponds to p = 0.

For each " and p, we prepare M = 1000 independent
samples and calculate the mean and variance of physical
quantities.
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FIG. 1. Mean values of physical quantities. Markers denote
results obtained by the pressure control, while the solid lines
denote results obtained by the density control. In the case
of the density control, we determined the average pressure p
at each density and plotted the data as a function of p. (a)
Contract number. (b) Energy per particle e = VN/N .
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FIG. 2. Fluctuations of physical quantities. Markers de-
note results obtained by the pressure control, while solid lines
denotes results obtained by the density control. In the case
of the density control, we determined the average pressure p
at each density and plotted the data as a function of p. (a)
Fluctuation of the contact number. (b) Fluctuation of energy.

We first show the behaviors of the average quantities.
A commonly observed quantity to characterize the jam-
ming transition is the number of contacts per particle z.
At 'J , z jumps from zero to zJ = 2d � 2d/N + 2/N ,
if one removes the rattles that have less than three con-
tacts4. Hereafter we remove the rattles when calculating
z. Another commonly used quantity is the energy per
particle e = VN/N . In Fig. 1, we plot the average values
of excess contact number �z = z � zJ and e. It can be
seen that the average values do not depend on the control
parameters.
Next, we discuss the fluctuation. To see how large is

the fluctuation compared to the mean value, we observe
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Differences are qualitative rather than quantitative

χz = N⟨δz2⟩/⟨z⟩2

Note: Control parameter dependence of fluctuation near jamming

Note: Control parameter dependence of fluctuation near jamming
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The fluctuations of the physical quantities play a cen-
tral role to characterize the critical phenomena. Here, we
report that the nature of the fluctuation highly depends
on the control parameter near the jamming transition
point 'J . We show that the fluctuations do not diverge
when the pressure is used as the control parameter. On
the contrary, if the distance to the transition point 'J is
used as the control parameter, the fluctuations show the
power-law divergence.

We consider harmonic spheres in two dimensions at
zero temperature1:

VN =
1,NX

i<j

h2
ij

2
✓(�hij), hij = |ri � rj |�Ri �Rj , (1)

whereN denotes the number of particles, ri = (xi, yi) de-
notes the position, and Ri denotes the radius. To avoid
crystallization, we consider 50 : 50 binary mixtures of
large RL = 0.7 and small Rs = 0.5 particles.The value of
VN separates the jammed and unjammed phases: when
the packing fraction ' is smaller than 'J , one observes
VN = 0 after the energy minimization, contrary, when
' > 'J , VN has a finite value. In our numerical sim-
ulation, we define 'J at which the energy barely has a
finite value VN/N 2 (10�16, 2⇥ 10�16). We generate the
configurations above 'J in two ways, as described below.

a. Density control The distance to the transition
point " = ' � 'J is used as the control parameter. Fol-
lowing O’ Hern et al., we first generate the configuration
at 'J by combining compression and decompression: we
compress the system when VN < 10�16 and decompress
when VN > 10�16, see Ref1 for details. After every com-
pression/decompression, we minimize the energy by us-
ing the FIRE algorithm2. We terminate the process when
VN/N 2 (10�16, 2⇥ 10�16). After obtaining a configura-
tion at 'J , we re-compress as the amount of " = '� 'J

to obtain a configuration above jamming . As reported in
Ref.3, some samples unjam after the compression (com-
pression unjamming). We throw out such samples.

b. Pressure control The pressure p is used as the
control parameter. For this purpose, we repeat the com-
pression and decompression until the system’s pressure
reaches the target pressure. In this case, the jamming
transition point corresponds to p = 0.

For each " and p, we prepare M = 1000 independent
samples and calculate the mean and variance of physical
quantities.

a)Electronic mail: harukuni.ikeda@gakushuin.ac.jp

FIG. 1. Mean values of physical quantities. Markers denote
results obtained by the pressure control, while the solid lines
denote results obtained by the density control. In the case
of the density control, we determined the average pressure p
at each density and plotted the data as a function of p. (a)
Contract number. (b) Energy per particle e = VN/N .
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FIG. 2. Fluctuations of physical quantities. Markers de-
note results obtained by the pressure control, while solid lines
denotes results obtained by the density control. In the case
of the density control, we determined the average pressure p
at each density and plotted the data as a function of p. (a)
Fluctuation of the contact number. (b) Fluctuation of energy.

We first show the behaviors of the average quantities.
A commonly observed quantity to characterize the jam-
ming transition is the number of contacts per particle z.
At 'J , z jumps from zero to zJ = 2d � 2d/N + 2/N ,
if one removes the rattles that have less than three con-
tacts4. Hereafter we remove the rattles when calculating
z. Another commonly used quantity is the energy per
particle e = VN/N . In Fig. 1, we plot the average values
of excess contact number �z = z � zJ and e. It can be
seen that the average values do not depend on the control
parameters.
Next, we discuss the fluctuation. To see how large is

the fluctuation compared to the mean value, we observe
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χE = N⟨δE2⟩/⟨E⟩2

Large N

Large N



Results
Finite size scaling

Ncor ∼ δφ−2

x−βe, βe = 2.03

Correlated particles

Scaling plot
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Results
Finite size scaling

Ncor ∼ δφ−2

x−βz, βz = 0.72
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Nfluc
cor ∼ δφ−2
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for mean-value

Nmean
cor ∼ δφ−1/2

Correlated particles

Results
Finite size scaling

C. P. Goodrich et al. (2012)



Theory
Phenomenological model

p = Aδφ + ξ, ⟨ξ2⟩ = Δ/N

E ∝ p2 = (Aδφ + ξ)2 ≈ A2δφ2 + 2Aδφξ

χe =
⟨δE2⟩
⟨E⟩2

∝ δφ−2

Mean value

< p > = Aδφ
Mean value + fluctuation  

Pressure

⟨E⟩ = A2δφ2, ⟨δE2⟩ = 4A2δφ2
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Theory
Phenomenological model

p = Aδφ + ξ, ⟨ξ2⟩ = Δ/N

χz =
⟨δz2⟩
⟨z⟩2

∝ δφ−1/2

Mean value

< p > = Aδφ
Mean value + fluctuation  

Pressure

⟨z⟩ ≈ zJ, ⟨δz2⟩ = A−1/2δφ−1/2

Contact number x−0.72

z − zJ ∝ p1/2 → z = zJ + (Aδφ + ξ)1/2
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• Fluctuations of the pressure control do not diverge.


• Fluctuations of the density control do diverge.


• Correlated volume of the fluctuation diverges as , 
different from that of the mean value 

Ncor ∼ δφ−2

Ncor ∼ δφ−1/2

Summary

All those results can not be explained by the current mean-
field theory. 

C. P. Goodrich et al. (2012)

Can we construct the mean-field theory for the sample to 
sample fluctuation? 

cf:  Random Field Ising model 

-> Higher upper critical dimension d_u = 6 than the pure Ising d_u=4

⟨m2⟩sample ≫ ⟨m2⟩thermal

Future Work


