Japan-France joint seminar "Physics of dense and active disordered materials"

March 13-16, 2023,
Yukawa Institute for Theoretical Physics, Kyoto University

5ns

Control parameter dependence of fluctuation near jamming

Harukuni Ikeda, Gakushuin University
H. Ikeda, PRL 125 (3), 038001 (2020)
H. Ikeda, JCP 158, 056101 (2023)

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Sample to sample fluctuation

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Sample to sample fluctuation

Introduction: What is granular material?

Consisting of large enough particles (0.1 mm) so that thermal fluctuations are negligible

M\&M Candies

Forms

Sand \& rock

Snow powders

Grains

Introduction: What is the jamming transition?

Contact number

Pressure

The jamming transition is a phase transition from fluid to solid at zero temperature

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Sample to sample fluctuation

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Sample to sample fluctuation

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Review for known results in $d=2$ and $d=3$
- Results in quasi 1d.
- Sample to sample fluctuation

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Review for known results in d=2 and d=3
- Results in quasi 1d.
- Sample to sample fluctuation

Jamming in 2d and 3d

Frictionless spherical particles

Harmonic Spheres

$$
E=\sum_{i<j} v\left(h_{i j}\right)=\frac{\varepsilon}{2} \sum_{i<j} h_{i j}^{2} \theta\left(-h_{i j}\right)
$$

Wet foams

$$
\begin{aligned}
& \text { Gap function } \\
& h_{i j}=\left|x_{i}-x_{j}\right|-\sigma_{i j}
\end{aligned} \quad x_{i} \xrightarrow{h_{i j}}
$$

Jamming in 2d and 3d

Stability argument by Maxwell

J. C. Maxwell (1864)
\# of constraints > \# of degrees of freedom
\# of constraints = \# of contacts = Nz/2
\# of degrees of freedom = Nd

$$
z \geq 2 d
$$

$$
z_{J}=2 d \text { (isostatic) }
$$

Jamming in 2d and 3d

Scaling relation $z-2 d \propto\left(\varphi-\varphi_{J}\right)^{0.5}$
The critical exponent does not depend on the spatial dimensions!

Jamming in 2d and 3d

Shear modulus

Scaling relation $G \sim\left(\varphi-\varphi_{J}\right)^{1 / 2}$
The critical exponent does not depend on the spatial dimensions!

Jamming in 2d and 3d

Radial distribution function

$$
g(r)=\frac{1}{N} \sum_{i \neq j} \delta\left(r-\left|\vec{x}_{i}-\vec{x}_{j}\right|\right)
$$

Jamming in 2d and 3d

Radial distribution function

Scaling relation $\quad g(h) \sim h^{-\gamma}, \gamma=0.41 \ldots$

The critical exponent does not depend on the spatial dimensions!

Jamming in 2d and 3d

Excess contact number

$$
z-2 d \propto\left(\varphi-\varphi_{J}\right)^{0.5}
$$

Radial distribution function

$$
g(h) \sim h^{-\gamma}, \gamma=0.41
$$

The critical exponent does not depend on the spatial dimensions. Furthermore, the exponents agree with the mean-field prediction.
P. Charbonneau et al. (2014)

The upper critical dimension <= 2.

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Review for known results in $\mathbf{d}=\mathbf{2}$ and $\mathrm{d}=3$
- Results in quasi 1d.
- Sample to sample fluctuation

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Review for known results in $d=2$ and $d=3$
- Results in quasi 1d.
- Sample to sample fluctuation

Jamming of quasi 1d system

Motivation

The upper critical dimension <=2

What will happen below the upper critical dimension?

Let we consider the quasi-one-dimensional system

Jamming of quasi 1d system

Setting

Interaction potential

Interaction between
particles

$$
\begin{gathered}
V_{N}=\sum_{i<j \uparrow}^{1, N} v\left(h_{i j}\right)+\sum_{i=1}^{N} v\left(h_{i}^{\mathrm{b}}\right)+\sum_{i=1}^{N} v\left(h_{i}^{\mathrm{t}}\right) \\
v(h)=k \frac{h^{2}}{2} \theta(-h)
\end{gathered}
$$

Jamming of quasi 1d system

Algorithm

We want to determine the jamming transition point, where particles begin to interact and has a finite interaction potential.

1. Start from a random configuration.
2. Increase the packing fraction $\varphi \rightarrow \varphi+\delta \varphi$.
3. Remove contact by the energy minimization.
4. Repeat 2 and 3. $\delta \varphi \rightarrow-\delta \varphi / 2$ each time the transition point is crossed.

Animation

Ly is fixed during the compression.

Jamming of quasi 1d system

Results at the jamming transition point

Does Maxwell's isostatic condition hold in quasi 1d?
Unlike the bulk two dimensional system,
the contact number is not $4(=2 d)$!

Mxwell's isostatic condition revisited

\# of constraints = \# of degrees of freedom
\# of degrees of freedom $=\mathrm{Nd}=2 \mathrm{~N}$

Isostatic number: $c_{\text {iso }} \equiv N_{c} / N=2$

Jamming of quasi 1d system

Maxwells condition revisited

The system is always isostatic!

Jamming of quasi 1d system

Scaling of the excess constraints

Excess constraints

$$
\delta c=\frac{c-c_{\text {iso }}}{N}(\propto \delta z)
$$

For small $L y$, we observe $\delta c \sim \delta \varphi$.

Jamming of quasi 1d system

Scaling of the radial distribution

Cumulative distribution function

$$
\operatorname{CDF}(h)=\int_{0}^{h} d h^{\prime} g\left(h^{\prime}\right) \sim h g(h)
$$

For small $L y$, we observe $g(h) \sim h^{\wedge} 0$

Summary

2d and higher dimensions

Isostatic at jamming
(\# of constraints = \# of degrees of freedom)
\# of the excess constraints

$$
\delta z \sim \delta c \sim \delta \varphi^{1 / 2}
$$

Radial distribution function

$$
g(h) \sim h^{-\gamma}
$$

Quasi 1d

Isostatic at jamming
(\# of constraints = \# of degrees of freedom)
\# of the excess constraints

$$
\delta c \sim \delta \varphi
$$

Radial distribution function

$$
g(h) \sim h^{0}
$$

These results confirmed $1<d_{U P}<2$

Unsolved Questions

- What is the precise value of $d_{U P}$?
- What physical mechanism determines $d_{U P}$?

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Fluctuation near jamming

Table of contents

- Introduction
- Dimensional dependence of the jamming transition
- Fluctuation near jamming

Fluctuation near Jamming JCP 158, 056101 (2023)

Harukuni Ikeda (Gakushuin Univ.)

Motivation

Classical Ising model

$$
T>T_{c}
$$

$$
T=T_{c}
$$

$$
T<T_{c}
$$

Critical fluctuation!

Ginzburg Criterion

$$
\begin{aligned}
& d<d_{\text {upper }}\langle\phi\rangle\langle\phi\rangle \ll\langle\phi \phi\rangle \quad \rightarrow \quad \text { MFT fail } \\
& d>d_{\text {upper }}\langle\phi\rangle\langle\phi\rangle \gg\langle\phi \phi\rangle \quad \rightarrow \quad \text { MFT exact }
\end{aligned}
$$

Motivation

Classical Ising model

$$
T>T_{c}
$$

$$
T=T_{c}
$$

Critical fluctuation!

- Does the critical fluctuation appear at the jamming transition point?
- Can we construct the "Ginzburg criteria" for jamming?

Method

Sample to sample fluctuation

Ising model

Transition occurs at $\mathbf{T}>0$
There are thermal fluctuations.

Jamming

Transition occurs at $\mathbf{T}=\mathbf{0}$
No thermal fluctuations \downarrow
Sample to sample fluctuation for $10^{\wedge} 3$ samples with different IC

Method
 Model

Numerical simulations for frictionless spherical particles in d=2

Harmonic potential

$$
E=\sum_{i<j} v\left(h_{i j}\right)=\frac{\varepsilon}{2} \sum_{i<j} h_{i j}^{2} \theta\left(-h_{i j}\right)
$$

Wet foams

$$
\begin{aligned}
& \text { Gap function } \\
& h_{i j}=\left|x_{i}-x_{j}\right|-R_{i}-R_{j}
\end{aligned} \stackrel{x_{i}}{ } \stackrel{h_{i j}}{ }
$$

Method

Algorithm

1. Generate a random initial configuration. c. O'Hern etal. (2003)
2. Increase density $\varphi->\varphi+\delta \varphi$.
3. Minimize energy.
4. Repeat 2-3.

Method

Control parameter

Mean values

Contact number

Energy

*Results of density control are plotted as a function of the average pressure at each density.

Mean values do not depend on the control parameters!

Results

Sample to sample fluctuation

p
Differences are qualitative rather than quantitative

- Pressure control: do not diverge
- Density control: diverge

Results

Finite size scaling

Scaling plot

Correlated particles

$$
N_{c o r} \sim \delta \varphi^{-2}
$$

Results

Finite size scaling

Scaling plot

Correlated particles

$$
N_{c o r} \sim \delta \varphi^{-2}
$$

Finite size scaling

Scaling plot for mean-value

Correlated particles $N_{\text {cor }}^{\text {mean }} \sim \delta \varphi^{-1 / 2}$

Scaling plot for fluctuation

Correlated particles

$$
N_{\mathrm{cor}}^{\mathrm{fluc}} \sim \delta \varphi^{-2}
$$

Theory

Phenomenological model

Pressure

Mean value

$$
<p>=A \delta \varphi
$$

Mean value + fluctuation

$$
p=A \delta \varphi+\xi,\left\langle\xi^{2}\right\rangle=\Delta / N
$$

Energy

$E \propto p^{2}=(A \delta \varphi+\xi)^{2} \approx A^{2} \delta \varphi^{2}+2 A \delta \varphi \xi$

$$
\begin{gathered}
\langle E\rangle=A^{2} \delta \varphi^{2},\left\langle\delta E^{2}\right\rangle=4 A^{2} \delta \varphi^{2} \\
\chi_{e}=\frac{\left\langle\delta E^{2}\right\rangle}{\langle E\rangle^{2}} \propto \delta \varphi^{-2}
\end{gathered}
$$

Theory

Phenomenological model

Pressure

Mean value
$<p>=A \delta \varphi$

Mean value + fluctuation

$$
p=A \delta \varphi+\xi,\left\langle\xi^{2}\right\rangle=\Delta / N
$$

Contact number

$z-z_{J} \propto p^{1 / 2} \rightarrow z=z_{J}+(A \delta \varphi+\xi)^{1 / 2}$
$\langle z\rangle \approx z_{J},\left\langle\delta z^{2}\right\rangle=A^{-1 / 2} \delta \varphi^{-1 / 2}$

$$
\chi_{z}=\frac{\left\langle\delta z^{2}\right\rangle}{\langle z\rangle^{2}} \propto \delta \varphi^{-1 / 2}
$$

Summary

- Fluctuations of the pressure control do not diverge.
- Fluctuations of the density control do diverge.
- Correlated volume of the fluctuation diverges as $N_{\text {cor }} \sim \delta \varphi^{-2}$, different from that of the mean value $N_{\text {cor }} \sim \delta \varphi^{-1 / 2}$
C. P. Goodrich et al. (2012)

All those results can not be explained by the current meanfield theory.

Future Work

Can we construct the mean-field theory for the sample to sample fluctuation?
cf: Random Field Ising model $\left\langle m^{2}\right\rangle_{\text {sample }} \gg\left\langle m^{2}\right\rangle_{\text {thermal }}$
-> Higher upper critical dimension d_u $=6$ than the pure Ising d_u=4

