Japan-France joint seminar "Physics of dense and active disordered materials"

March 13 - 16, 2023,

Yukawa Institute for Theoretical Physics, Kyoto University

Control parameter dependence of fluctuation near jamming

Harukuni Ikeda, Gakushuin University

H. Ikeda, PRL **125** (3), 038001 (2020) H. Ikeda, JCP **158**, 056101 (2023)

- Introduction
- Dimensional dependence of the jamming transition
- Sample to sample fluctuation

• Introduction

- Dimensional dependence of the jamming transition
- Sample to sample fluctuation

Introduction: What is granular material?

Consisting of large enough particles (0.1mm) so that thermal fluctuations are negligible

M&M Candies

Forms

Sand & rock

Snow powders

Grains

Introduction: What is the jamming transition?

The jamming transition is a phase transition from fluid to solid at zero temperature

• Introduction

- Dimensional dependence of the jamming transition
- Sample to sample fluctuation

- Introduction
- Dimensional dependence of the jamming transition
- Sample to sample fluctuation

- Introduction
- Dimensional dependence of the jamming transition
 - Review for known results in d=2 and d=3
 - Results in quasi 1d.
- Sample to sample fluctuation

- Introduction
- Dimensional dependence of the jamming transition
 - Review for known results in d=2 and d=3
 - Results in quasi 1d.
- Sample to sample fluctuation

Frictionless spherical particles

Stability argument by Maxwell

J. C. Maxwell (1864)

of constraints > # of degrees of freedom

of constraints = # of contacts = Nz/2

of degrees of freedom = Nd

Scaling relation $z-2d \propto (arphi-arphi_J)^{0.5}$

The critical exponent does not depend on the spatial dimensions!

Scaling relation
$$G \sim (\varphi - \varphi_J)^{1/2}$$

The critical exponent does not depend on the spatial dimensions!

Radial distribution function

$$g(r) = \frac{1}{N} \sum_{i \neq j} \delta(r - |\vec{x}_i - \vec{x}_j|)$$

Radial distribution function

Scaling relation $g(h) \sim h^{-\gamma}, \gamma = 0.41...$

The critical exponent does not depend on the spatial dimensions!

Excess contact number

$$z - 2d \propto (\varphi - \varphi_J)^{0.5}$$

Radial distribution function

$$g(h) \sim h^{-\gamma}, \, \gamma = 0.41$$

The critical exponent does not depend on the spatial dimensions. **Furthermore, the exponents agree with the mean-field prediction.** P. Charbonneau *et al.* (2014)

The upper critical dimension <= 2.

- Introduction
- Dimensional dependence of the jamming transition
 - Review for known results in d=2 and d=3
 - Results in quasi 1d.
- Sample to sample fluctuation

- Introduction
- Dimensional dependence of the jamming transition
 - Review for known results in d=2 and d=3
 - Results in quasi 1d.
- Sample to sample fluctuation

Motivation

The upper critical dimension <=2

What will happen below the upper critical dimension?

Let we consider the quasi-one-dimensional system

Interaction potential

Interaction between particles $V_{N} = \sum_{i < j}^{1,N} v(h_{ij}) + \sum_{i=1}^{N} v(h_{i}^{b}) + \sum_{i=1}^{N} v(h_{i}^{t})$ Interaction between walls and particles $v(h) = k \frac{h^{2}}{2} \theta(-h)$

Algorithm

We want to determine the jamming transition point, where particles begin to interact and has a finite interaction potential.

- 1. Start from a random configuration.
- 2. Increase the packing fraction $\phi \rightarrow \phi + \delta \phi$.
- 3. Remove contact by the energy minimization.
- 4. Repeat 2 and 3. $\delta \phi \rightarrow -\delta \phi/2$ each time the transition point is crossed.

Ly is fixed during the compression.

Results at the jamming transition point

Does Maxwell's isostatic condition hold in quasi 1d? Unlike the bulk two dimensional system, the contact number is not 4(=2d)!

Mxwell's isostatic condition revisited

of constraints = # of degrees of freedom

Maxwells condition revisited

of constraints per particle at the jamming transition point

The system is always isostatic!

Scaling of the excess constraints

For small *Ly*, we observe $\delta c \sim \delta \phi$.

Scaling of the radial distribution

Cumulative distribution function $CDF(h) = \int_{0}^{h} dh'g(h') \sim hg(h)$

For small Ly, we observe $g(h) \sim h^0$

Summary

2d and higher dimensions

Isostatic at jamming (# of constraints = # of degrees of freedom)

of the excess constraints $\delta z \sim \delta c \sim \delta \varphi^{1/2}$

Radial distribution function

$$g(h) \sim h^{-\gamma}$$

Quasi 1d

Isostatic at jamming (# of constraints = # of degrees of freedom)

of the excess constraints

 $\delta c \sim \delta \varphi$

Radial distribution function

 $g(h) \sim h^0$

These results confirmed $1 < d_{UP} < 2$

Unsolved Questions

- What is the precise value of d_{UP} ?
- What physical mechanism determines d_{UP} ?

- Introduction
- Dimensional dependence of the jamming transition
- Fluctuation near jamming

- Introduction
- Dimensional dependence of the jamming transition
- Fluctuation near jamming

Fluctuation near Jamming JCP 158, 056101 (2023)

Harukuni Ikeda (Gakushuin Univ.)

 $T = T_c$

Classical Ising model

 $T < T_c$

Critical fluctuation!

Ginzburg Criterion

 \rightarrow

MFT exact

 $T = T_c$

Classical Ising model

 $T < T_c$

Critical fluctuation!

Doe the critical fluctuation appear at the jamming transition point? Can we construct the "Ginzburg criteria" for jamming?

Method

sample fluctuation

Ising model

Transition occurs at T>0 There are thermal fluctuations.

Jamming

Transition occurs at T=0 No thermal fluctuations ↓ Sample to sample fluctuation for 10^3 samples with different IC

Numerical simulations for frictionless spherical particles in d=2

Method Algorithm

- 1. Generate a random initial configuration. C. O'Hern et al. (2003)
- 2. Increase density $\varphi \rightarrow \varphi + \delta \varphi$.
- 3. Minimize energy.
- 4. Repeat 2-3.

Mean values

Results

*Results of density control are plotted as a function of the average pressure at each density.

Mean values do not depend on the control parameters!

Sample to sample fluctuation

Differences are qualitative rather than quantitative

- Pressure control: do not diverge
- Density control: diverge

Finite size scaling

$$N_{cor} \sim \delta \varphi^{-2}$$

Finite size scaling

Finite size scaling

Scaling plot for mean-value

Scaling plot for fluctuation

Phenomenological model

Theory

Mean value $= A \delta \varphi$

Mean value + fluctuation

$$p = A\delta \varphi + \xi, \langle \xi^2 \rangle = \Delta/N$$

Phenomenological model

Theory

Mean value $= A \delta \varphi$

Mean value + fluctuation

$$p = A\delta \varphi + \xi, \langle \xi^2 \rangle = \Delta/N$$

- Fluctuations of the pressure control do not diverge.
- Fluctuations of the density control do diverge.
- Correlated volume of the fluctuation diverges as $N_{\rm cor} \sim \delta \varphi^{-2}$, different from that of the mean value $N_{\rm cor} \sim \delta \varphi^{-1/2}$

All those results can not be explained by the current meanfield theory.

Future Work

Can we construct the mean-field theory for the sample to sample fluctuation?

cf: Random Field Ising model $\langle m^2 \rangle_{sample} \gg \langle m^2 \rangle_{thermal}$

-> Higher upper critical dimension d_u = 6 than the pure Ising d_u=4