Phase coexisting heat conduction in the Hamilton Potts model

Michikazu Kobayashi

School of Environmental Science and Engineering Kochi University of Technology

Mar. 16 2023, Japan-France joint seminar "Physics of dense and active disordered materials"

MK, N. Nakagawa, and S. Sasa, arXiv:2212.12289

• Shin-ichi Sasa (Kyoto University)

• Naoko Nakagawa (Ibaraki University)

What we want to show

N. Nakagawa and S. Sasa, PRL **119** 260602 (2017); JSP **177** 825 (2019); PRR **4** 033155 (2022)

Phase coexistence separated by the interface

Non-equilibrium (with current)

- Temperature gradient appears
- Interface temperature θ differs from $\mathcal{T}_{\rm c}$
- \bullet \Rightarrow Supercooled (or heated) is stabilized
- $\theta \neq T_c$: Violation of local equilibrium thermodynamics.

Order-disorder coexistence separated by an interface

- Order-disorder coexistence (1st ordered transition) separated by an interface.
- Energy conserving system with equal heat injection and release.

We try to numerically show the violation of the local equilibrium thermodynamics by confirming $\theta \neq T_c$ with the dynamical field model.

Global thermodynamics prediction

$$\theta - T_{c} = |J| \left(\frac{1}{\kappa^{o}} - \frac{1}{\kappa^{d}}\right) \frac{X(L_{x} - X)}{2L_{x}} + O(\varepsilon^{2})$$

This work

Experimental and numerical confirmation are challenging -

- Experiment: controlling adiabaticity is difficult
- MD simulation : detection of interface temperature is difficult due to discreteness

This work

Global thermodynamics prediction $\theta - T_{c} = |J| \left(\frac{1}{\kappa^{o}} - \frac{1}{\kappa^{d}}\right) \frac{X(L_{x} - X)}{2L_{x}} + O(\varepsilon^{2})$

Experimental and numerical confirmation are challenging

- Experiment: controlling adiabaticity is difficult
- MD simulation : detection of interface temperature is difficult due to discreteness

We try to numerically detect global thermodynamic prediction by using the continuous and dynamical field theory : *"Hamilton-Potts model"*

Hamilton-Potts model

Potts model

q-state Potts model as statistical model showing phase transition –

$$\mathcal{H} = -J \sum_{\langle i,j
angle} \delta_{a_i,a_j} \qquad a_i = 1, \cdots, q^{-1}$$

Extension to dynamical model

q-state Potts model is not dynamical model -

$$\mathcal{H} = -J \sum_{\langle i,j
angle} \delta_{a_i,a_j} \qquad a_i = 1, \cdots, q$$

Extension to dynamical model as continuous-field theory

$$\mathcal{H}(\phi, \pi) = \int_{D} d^{2}r \left[\frac{1}{2} \sum_{a=1}^{q-1} \left\{ \pi^{a}(\mathbf{r})^{2} + |\nabla \phi^{a}(\mathbf{r})|^{2} \right\} + V(\phi) \right]$$
$$(\phi^{1}(\mathbf{r}), \phi^{2}(\mathbf{r}), \cdots, \phi^{q-1}(\mathbf{r})) : (q-1) \text{-dimensional real field}$$
$$(\pi^{1}(\mathbf{r}), \pi^{2}(\mathbf{r}), \cdots, \pi^{q-1}(\mathbf{r})) : \text{Momentum field conjugate to } \phi$$

$$q\text{-state Hamilton Potts model}$$
$$\mathcal{H}(\phi, \pi) = \int_{D} d^{2}r \left[\frac{1}{2} \sum_{a=1}^{q-1} \left\{ \pi^{a}(\mathbf{r})^{2} + |\nabla \phi^{a}(\mathbf{r})|^{2} \right\} + V(\phi) \right]$$

Potential $V(\phi)$ has q symmetric minima $V(\phi) = \frac{1}{2} \prod_{k=1}^{q} \sum_{a=1}^{q-1} (\phi^a - \mu_k^a)^2 \qquad \mu_{1 \le k \le q}^a : q$ -vertices of (q-1)-regular simplex

(q-1) regular simplex

q = 2 case : Continuous extension of Ising model

1-simplex : line segment on a 1D line

$$\mu_1 = -1$$
 $\mu_2 = +1$

Real Ginzburg-Landau model

$$\mathcal{H}(\phi, \pi) = \int_{D} d^{2}r \left[\frac{1}{2} \sum_{a=1}^{q-1} \left\{ (\pi^{a})^{2} + |\nabla \phi^{a}|^{2} \right\} + \frac{1}{2} \prod_{k=1}^{q} \sum_{a=1}^{q-1} (\phi^{a} - \mu_{k}^{a})^{2} \right]$$

$$\xrightarrow{q=2}{\longrightarrow} \int_{D} d^{2}r \left[\frac{1}{2} \left(\pi^{2} + |\nabla \phi|^{2} \right) + \frac{1}{2} (\phi^{2} - 1)^{2} \right]$$

q = 3 case : Continuous extension of 3-state Potts (or 3-state clock) model

2-dimensional real field $(\phi^1, \phi^2) \Rightarrow$ complex field $\phi = \phi^1 + i\phi^2$

$$\mathcal{H}(\phi,\pi) \xrightarrow{q=3} \int_{D} d^{2}r \left[\frac{1}{2} \left\{ \pi \pi^{*} + |\nabla \phi| |\nabla \phi^{*}| \right\} + \frac{1}{2} |\phi^{3} - 1|^{2} \right] \qquad \phi^{3} = 1 \rightarrow \phi = 1, \frac{-1 \pm \sqrt{3}}{2}$$

- Model shows the 1st ordered phase transition in 2-dimensional space with $q \ge 5$
- We can consider the natural dynamics with the Hamilton's equation:

$$rac{\partial \phi^a}{\partial t} = rac{\delta \mathcal{H}}{\delta \pi^a} \qquad rac{\partial \pi^a}{\partial t} = -rac{\delta \mathcal{H}}{\delta \phi^a}$$

• Energy injection and release can be easily introduced by the energy flux:

$$\frac{\partial \mathcal{H}}{\partial t} = \int_D d^2 r \, \sum_{a=1}^{q-1} \nabla \cdot (\pi^a \nabla \phi^a) \, \Rightarrow \, \boldsymbol{j} = \sum_{a=1}^{q-1} \pi^a \nabla \phi^a$$

Numerical simulation – Fixing phase diagram with isothermal system – Number of stateq = 11: Strong 1st ordered transitionSystem size $L_x = L_y = 64$ Grid spacing $\Delta x = 1/8$ \Rightarrow Number of grids $(64 \times 8) \times (64 \times 8) = 512 \times 512$ Boundary conditionPeriodicTreatment of spatial differentialSpectral decomposition

Langevin equation for isothermal system

Langevin equation with temperature T $\frac{\partial \phi^a}{\partial t} = \frac{\delta \mathcal{H}}{\delta \pi^a}$ $\frac{\partial \pi^a}{\partial t} = -\frac{\delta \mathcal{H}}{\delta \phi^a} - \gamma \pi^a + \sqrt{2\gamma T} \xi^a$ $\langle \xi^a(\mathbf{x}, t) \xi^b(\mathbf{x}', t') \rangle = \delta^{ab} \delta(\mathbf{x} - \mathbf{x}') \delta(t - t')$

Temperature dependence of order parameter

$$\bar{m}_{T} = \left\langle \int \frac{d^2 \boldsymbol{r}}{L_x L_y} \sum_{a=1}^{q-1} \phi^a(\boldsymbol{r}) \mu_1^a \right\rangle_{T}$$

Transition temperature is ambiguous due to hysteresis (metastability)

Accelerated Langevin equation with duplicated systems

M. Ohzeki and A. Ichiki, PRE 92, 012105 (2015)

Duplication is originally introduced to accelerate canonical ensemble averaging

$$\rho_{\mathcal{T}}(\phi,\pi) = \frac{1}{\mathcal{Z}} e^{-\mathcal{H}(\phi,\pi)/\mathcal{T}}$$

Case of XY model: $z \sim 2$ (simple Langevin) $\Rightarrow z \lesssim 1.2$ (duplicated Langevin)

Accelerated Langevin equation with duplicated systems

M. Ohzeki and A. Ichiki, PRE 92, 012105 (2015)

Initial condition

- (ϕ_1, π_1) : Snapshot for heating process (maybe superheated)
- (ϕ_2, π_2) : Snapshot for cooling process (maybe supercooled)

17/34

Equilibrium in isolated system

Number of state System size Grid spacing \Rightarrow Number of grids Boundary condition (y) Boundary condition (x) Treatment of spatial differential

q = 11: Strong 1st ordered transition $L_x = 6 \times 64 = 384$ and $L_y = 64$ $\Delta x = 1/8$ $(384 \times 8) \times (64 \times 8) = 3072 \times 512$ Periodic Neumann (differential controlled) Spectral decomposition Initial state : connecting isothermal snapshots

Left : Ordered equilibrium snapshot Right : Disordered equilibrium snapshot

Initial state : connecting isothermal snapshots

Left : Ordered equilibrium snapshot Right : Disordered equilibrium snapshot

Dynamics of interface and temperature

One-dimensional local order parameter and local temperature $m(x) = \int \frac{dy}{L_y} \sum_{a=1}^{q-1} \phi^a \mu_1^a \qquad T(x) = \int \frac{dy}{L_y} \frac{\sum_a \pi^a(r) \pi^a(r)}{2(q-1)}$

Checking for equivalence of ensembles

Non-equilibrium steady state under heat conduction

Heat conduction

J is set to be J = -0.00002(linear-response region)

Interface dynamics: interface under current

Interface dynamics: interface under current

Thermodynamic average

Thermodynamic average

Thermodynamic average

$$A^{mc} \equiv \langle A \rangle_E$$
: equilibrium with $J = 0$ $A^{ss} \equiv \langle A \rangle_{E,J}$: steady state with $J \neq 0$

•
$$T^{ss}(x) = \frac{1}{L_y} \int_0^{L_y} dy \left\langle \sum_{a=1}^{q-1} \frac{(\pi^a)^2}{2(q-1)} \right\rangle_{E,J}$$

- Interface position X_{θ}^{ss} deviates from the position for $T_{c} = T^{ss}(x = X_{c})$
 - $\Rightarrow \text{Stable superheated region appears} \\ \text{(Violation of local equilibrium)}$

Comparison with global thermodynamics prediction

$$\theta^{\mathsf{Th}} = T_{\mathsf{c}} - \frac{X(L_x - X)}{2L_x} J\left(\frac{1}{\kappa^{\mathsf{o}}} - \frac{1}{\kappa^{\mathsf{d}}}\right) + O(\varepsilon^2) \ (> T_{\mathsf{c}} \text{ for Potts model with } \kappa^{\mathsf{o}} < \kappa^{\mathsf{d}})$$

Quantitative agreement between theory and numerical simulation

Finite-size and finite-"smoothness" effects

Global thermodynamics

$$\theta_{\rm Th} = T_{\rm c} - \frac{X(L_x - X)}{2L_x} J\left(\frac{1}{\kappa^{\rm o}} - \frac{1}{\kappa^{\rm d}}\right) + O(\varepsilon^2) \ (> T_{\rm c} \text{ for Potts model with } \kappa^{\rm o} < \kappa^{\rm d})$$

Local equilibrium recovers with not only decreasing the system size $L_x \times L_y$ but also increasing the grid spacing Δx .

 \Rightarrow Smoothness of fields is also needed for the violation of local equilibrium.

Summary

Summary

- We have obtained violation of local equilibrium thermodynamics and the confirmation with theoretical prediction by global thermodynamics by the Hamilton Potts model.
- Violation of local equilibrium strongly depends on not only the finite-size effect but also finite-smoothness effect of fields.

MK, N. Nakagawa, and S. Sasa, arXiv:2212.12289

Is J = -0.00002 small enough for linear-response theory to be established?

Global thermodynamics

$$\theta_{\rm Th} = T_{\rm c} - \frac{X(L_x - X)}{2L_x} J\left(\frac{1}{\kappa^{\rm o}} - \frac{1}{\kappa^{\rm d}}\right) + O(\varepsilon^2)$$

Heat conductivity κ should be obtained

N. Nakagawa and S. Sasa, PRL 119 260602 (2017); JSP 177 825 (2019); PRR 4 033155 (2022)

Global thermodynamics prediction for water with heat bathes at 94°C and 105°C (Liquid-gas interface)

Comparison with global thermodynamics prediction

