First-passage properties of persistent random walks/ run-and-tumble particles

Grégory Schehr
Laboratoire de Physique Théorique et Hautes Energies,
CNRS - Sorbonne Université

$$
\begin{gathered}
\text { Japan-France joint seminar } \\
\text { Kyoto, 13-16 Dec. } 2023
\end{gathered}
$$

in collaboration with

- Pierre Le Doussal (LPENS, Paris)
- Satya N. Majumdar (LPTMS, Orsay)
- Francesco Mori (Univ. Oxford)

Phys. Rev. Lett. 124, 090603 (2020), Phys. Rev. E 102, 042133 (2020)

Persistence/Survival probability

- One-dimensional continuous-time stochastic process $x(\tau)$

- Persistence or survival probability

$$
S\left(x_{0}, t\right)=\operatorname{Prob}\left(x(\tau)>0, \forall \tau \in[0, t] \mid x(0)=x_{0}>0\right)
$$

A classical (and difficult!) question in the theory of stochastic processes

Persistence/Survival probability $S\left(X_{0}, t\right)$

- It is easy to compute for continuous time Markov processes

For 1d-Brownian motion with diffusion constant D

$$
\begin{aligned}
S\left(X_{0}, t\right) & =\operatorname{erf}\left(\frac{X_{0}}{\sqrt{4 D t}}\right) \text { where } \operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-x^{2}} d x \\
& \sim \frac{X_{0}}{\sqrt{\pi D t}}
\end{aligned}
$$

- Much harder for non-Markov processes: it has generated enormous activities in maths and in stat. mech. over the last decades

$$
\begin{aligned}
& \text { A. J. Bray, S. N. Majumdar, G. S., Adv. Phys. 62, } 225 \text { (2013) } \\
& \text { F. Aurzada, T. Simon, Lévy matters V, 185, (Springer, 2015) }
\end{aligned}
$$

- This talk: exact results for the persistence in a class of non Markov processes, namely d-dimensional persistent random walks/ run-and-tumble processes

Exact and suprisingly universal results!

Outline

- Run-and-tumble particle (RTP): a model of active matter
- A first stage with the Sparre Andersen theorem
- From the Sparre Andersen theo. to the survival proba. of and RTP

Outline

- Run-and-tumble particle (RTP): a model of active matter
- A first stage with the Sparre Andersen theorem
- From the Sparre Andersen theo. to the survival proba. of and RTP

Passive vs active particles

- Passive BM: random motion due to collisions with other molecules
- Active particle: the particle absorbs energy directly from the environment $\Longrightarrow a$ ballistic motion (Run) with a constant velocity $\overrightarrow{\mathbf{v}}$ during an exponentially distributed random time with mean γ^{-1} (persistence time), followed by a local reorientation of the velocity (Tumble)... another run...

Ex: widely used to model dynamics of living matter, like E. Coli

Run and tumble particle in dimensions: the model

 persistence time: γ^{-1}run lengths: $\ell_{i}=\left|\overrightarrow{\mathbf{v}_{\mathbf{i}}}\right| \tau_{i}$

- The particle, starting from the origin, chooses a random velocity $\overrightarrow{\mathbf{v}}_{1}$ from a distribution $W(\overrightarrow{\mathbf{v}})$ and runs ballistically during a random run-time τ_{1} drawn (independently) from an exponential distribution $\tau_{1} \sim \operatorname{Exp}(\gamma)$
- At the end of the run, the particle tumbles instantaneously, chooses a new velocity $\overrightarrow{\mathbf{v}}_{2}$ from the same distribution $W(\overrightarrow{\mathbf{v}})$ (independently of $\overrightarrow{\mathbf{v}}_{1}$) and runs ballistically during a random run-time $\tau_{2} \sim \operatorname{Exp}(\gamma)$ also independently of τ_{1}

Run and tumble particle in dimensions: the model

- The time scale is set by γ^{-1}
- Two "parameters": d and $W(\overrightarrow{\mathbf{v}})$
- The special choice:
$W(\overrightarrow{\mathbf{v}})=\frac{1}{S_{d} v_{0}^{d-1}} \delta\left(|\overrightarrow{\mathbf{v}}|-v_{0}\right) \quad, \quad v_{0}>0$
is the standard RTP or persistent random walk
- The persistent random walk has already a long story
© R. Fürth (1920) "The Brownian motion when considering persistence of the direction of movement. With applications to the movement of living infusoria"
- M. Kac (1974), "A stochastic model related to the telegrapher's equation"

B see also R. P. Feynman (1965), "Relativistic chessboard model"

Run and tumble particle in dimensions: the model

- The time scale is set by γ^{-1}
- Two "parameters": d and $W(\overrightarrow{\mathbf{v}})$
- The special choice:
$W(\overrightarrow{\mathbf{v}})=\frac{1}{S_{d} v_{0}^{d-1}} \delta\left(|\overrightarrow{\mathbf{v}}|-v_{0}\right) \quad, \quad v_{0}>0$
is the standard RTP or persistent random walk
Several properties, like the proba. distribution at time t, are well known
e. g., K. Martens, L. Angelani, R. Di Leonardo, L. Bocquet '12
- However, the survival probability was only known for

$$
d=1 \quad \text { and } \quad W(v)=\frac{1}{2} \delta\left(v-v_{0}\right)+\frac{1}{2} \delta\left(v+v_{0}\right)
$$

Orsingher '95, Weiss '02,..., Angelani et al. '14, Artuso et al. '14, Malakar et al. '18, Evans, Majumdar '18, Le Doussal, Majumdar, G. S. '19

Survival probability in $d=1$ and constant speed v_{0}

$$
\frac{d X}{d t}=v_{0} \sigma(t) \quad, \quad\left\{\begin{array}{l}
X(0)=X_{0} \\
\sigma(0)= \pm 1 \quad \text { w. proba } \quad 1 / 2
\end{array}\right.
$$

- Exact solution via coupled backward Fokker-Planck equations
- The survival probability $S(t)=S\left(X_{0}=0, t\right)$ starting from the origin reads

$$
S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}\left(\frac{\gamma t}{2}\right)+I_{1}\left(\frac{\gamma t}{2}\right)\right)
$$

Orsingher '95, Weiss '02,..., Angelani et al. '14, Artuso et al. '14, Malakar et al. '18, Evans, Majumdar '18,
Le Doussal, Majumdar, G. S. '19

Modified Bessel functions

- Algebraic decay for $t \gg \gamma^{-1}, S(t) \sim 1 / \sqrt{\pi \gamma t}$

How to compute $S(t)$ for $d>1$? Much more difficult because the different components of $\overrightarrow{\mathbf{X}}(t)$ get coupled (unlike Brownian motion)...

A simple question for the d-dimensional RTP model
\uparrow^{y}

- The RTP starts from the origin at $t=0$
- Two parameters: d and $W(\overrightarrow{\mathbf{v}})=W(-\overrightarrow{\mathbf{v}})$
$S(t)=$ proba. that the x-component of the RTP's position does not become negative up to time t, i.e., the proba. that the RTP does not cross the hyperplane $x=0$ up to t

Q: how does $S(t)$ depend on the dimension d and $W(\overrightarrow{\mathbf{v}})$

Survival probability $S(t)$ vs t in $d>1$: start with numerics

Theory: $S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}\left(\frac{\gamma t}{2}\right)+I_{1}\left(\frac{\gamma t}{2}\right)\right)$
Velocity distribution: $W(v)=\frac{1}{2} \delta\left(v-v_{0}\right)+\frac{1}{2} \delta\left(v+v_{0}\right)$

Survival probability $S(t)$ vs t in $d>1$: start with numerics

Theory: $S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}\left(\frac{\gamma t}{2}\right)+I_{1}\left(\frac{\gamma t}{2}\right)\right)$
Isotropic velocity distribution: $W(\overrightarrow{\mathbf{v}}) \propto \delta\left(|\overrightarrow{\mathbf{v}}|-v_{0}\right)$ in $d=2$

Survival probability $S(t)$ vs t in $d>1$: start with numerics

Isotropic velocity distribution: $W(\overrightarrow{\mathbf{v}}) \propto \delta\left(|\overrightarrow{\mathbf{v}}|-v_{0}\right)$ in $d=3$

Survival probability $S(t)$ vs t in $d>1$: start with numerics

$$
\text { Theory: } S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}\left(\frac{\gamma t}{2}\right)+I_{1}\left(\frac{\gamma t}{2}\right)\right)
$$

Isotropic velocity distribution: $W(\overrightarrow{\mathbf{v}}) \propto \frac{\theta(|\overrightarrow{\mathbf{v}}|)}{1+\mathbf{v}^{2}}$ in $d=2$

Survival probability $S(t)$ vs t : a universal behavior

$$
S(t)=\frac{1}{2} e^{-\gamma \gamma t 2}\left(I_{0}\left(\frac{\gamma t}{2}\right)+I_{1}\left(\frac{\gamma t}{2}\right)\right)
$$

This suggests that this result for is universal for all time t (and not just for large t)
$S(t)$ is independent of the dimension d and the symmetric velocity distribution $W(\overrightarrow{\mathbf{v}})$
F. Mori, P. Le Doussal, S. N. Majumdar, G. S. PRL (2020)

This is a consequence of the Sparre Andersen theorem

Outline

- Run-and-tumble particle (RTP): a model of active matter
- A first stage with the Sparre Andersen theorem
- From the Sparre Andersen theo. to the survival proba. of an RTP

Sparre Andersen theorem for 1d random walk

- Random walk in dimension d=1
initial position: $X_{0}=0$
Markov dynamics : $X_{k}=X_{k-1}+\eta_{k}, \quad k \geq 1$
i.i.d. random variables with a continuous and symmetric distribution $p(\eta)$
- Note that $p(\eta)$ is arbitrary and includes Lévy flights, i.e.,

$$
p(\eta) \underset{\eta \rightarrow \pm \infty}{\propto}|\eta|^{-\mu-1}, 0<\mu<2
$$

Sparre Andersen theorem for 1d random walk

- Survival probability, starting from the origin $X_{0}=0$

$$
q(n)=\operatorname{Prob}\left(X_{1} \geq 0, X_{2} \geq 0, \cdots, X_{n} \geq 0 \mid X_{0}=0\right)
$$

- Sparre Andersen theorem (1954)

$$
q(n)=\frac{1}{2^{2 n}}\binom{2 n}{n}
$$

holds for any continuous and
symmetric jump distribution $p(\eta)$

- Its generating function is thus given by

$$
\tilde{q}(z)=\sum_{n \geq 0} q(n) z^{n}=\frac{1}{\sqrt{1-z}}
$$

A simple proof of the Sparre Andersen theorem
Ph. Mounaix, S. N. Majumdar, G. S., J. Phys. A (2020)

$$
\begin{aligned}
& X_{0}=0 \\
& X_{k}=X_{k-1}+\eta_{k}
\end{aligned}
$$

- Consider the time of the minimum $t_{\text {min }}$

$$
" t_{\min }=m^{\prime \prime} \Longleftrightarrow \quad " X_{m}=X_{\min }=\min \left\{X_{0}, X_{1}, \cdots, X_{n}\right\} "
$$

- Probability distribution of the minimum $t_{\text {min }}$

$$
P_{n}(m)=\operatorname{Prob}\left(t_{\min }=m\right)=q(m) q(n-m) \quad, \quad 0 \leq m \leq n
$$

A simple proof of the Sparre Andersen theorem
Ph. Mounaix, S. N. Majumdar, G. S., J. Phys. A (2020)

$$
\begin{aligned}
& X_{0}=0 \\
& X_{k}=X_{k-1}+\eta_{k}
\end{aligned}
$$

- Probability distribution of the minimum $t_{\min }$

$$
P_{n}(m)=\operatorname{Prob}\left(t_{\min }=m\right)=q(m) q(n-m) \quad, \quad 0 \leq m \leq n
$$

- Normalization condition imposes

$$
\sum_{m=0}^{n} P_{n}(m)=1 \Longleftrightarrow \sum_{m=0}^{n} q(m) q(n-m)=1
$$

- Taking the generating function w.r.t. n

$$
\tilde{q}(z)^{2}=\frac{1}{1-z} \Longrightarrow \tilde{q}(z)=\frac{1}{\sqrt{1-z}}
$$

$$
\tilde{q}(z)=\sum_{m \geq 0} z^{n} q(n)
$$

Outline

- Run-and-tumble particle (RTP): a model of active matter
- A first stage with the Sparre Andersen theorem

Step 1: dynamics of the x-component

Let $X(\tau)$ denote the x-component of the RTP at time τ

- X_{k} : the x-component of the RTP at the instant of the $(k+1)^{\text {th }}$ tumbling
- The nber of tumblings $N_{T}(t)$ on a fixed time interval $[0, t]$ is a random variable
- Survival proba. $S(t)=\operatorname{Prob}[X(\tau) \geq 0, \forall \tau \in[0, t] \mid X(0)=0]$

$$
S(t)=\sum_{n=1}^{\infty} \operatorname{Prob}\left[X_{1} \geq 0, X_{2} \geq 0, \cdots, X_{n} \geq 0, N_{T}(t)=n \mid X_{0}=0\right]
$$

Step 1: dynamics of the x-component

- Recall that the run lengths are given by $\ell_{i}=\left|\overrightarrow{\mathbf{v}_{\mathbf{i}}}\right| \tau_{i}$
independent random variables
- To compute $\operatorname{Prob}\left[X_{1} \geq 0, X_{2} \geq 0, \cdots, X_{n} \geq 0, N_{T}(t)=n \mid X_{0}=0\right]$ we need the joint distribution of $\left\{\overrightarrow{\mathbf{v}}_{\mathbf{i}}\right\}_{1 \leq i \leq n}, \quad\left\{\tau_{i}\right\}_{1 \leq i \leq n} \quad \& \quad N_{T}(t)$

$$
\prod_{i=1}^{n} w\left(\overrightarrow{\vec{v}_{\mathbf{i}}}\right)
$$

Step 2: joint distribution of $\left\{\tau_{i}\right\}_{1 \leq i \leq n}$ \& $N_{T}(t)$

- Duration of the $i^{\text {th }}$ run: τ_{i}
- Let $\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{n}\right\}$ be a realisation with $N_{T}(t)=n$ runs
- Note that the last run τ_{n} is unfinished and is thus different from the other run times
* $P\left(\left\{\tau_{i}\right\}_{1 \leq i \leq n}, n \mid t\right)$: proba weight of a 《 configuration 》 $\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{n}\right\} \& N_{T}(t)=n$

$$
\begin{aligned}
P\left(\left\{\tau_{i}\right\}_{1 \leq i \leq n}, n \mid t\right) & =\left[\prod_{i=1}^{n-1} p\left(\tau_{i}\right)\right] \int_{\tau_{n}}^{\infty} p(\tau) d \tau \delta\left(\sum_{i=1}^{n} \tau_{i}-t\right), \quad p(\tau)=\gamma e^{-\gamma \tau} \\
& =\frac{1}{\gamma}\left[\prod_{i=1}^{n} \gamma e^{-\gamma \tau_{i}}\right] \delta\left(\sum_{i=1}^{n} \tau_{i}-t\right) \quad \begin{array}{c}
\text { only true for exp. run } \\
\text { times! }
\end{array}
\end{aligned}
$$

Puts all n run times on equal footing (up to a factor γ)

Step 3: joint distribution of $\left\{x_{i}\right\}_{1 \leq i \leq n} \quad \& \quad N_{T}(t)$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { Let } x_{i} \text { be the } x \text {-component of } \vec{\ell}_{i}=\tau_{i} \overrightarrow{\mathbf{v}}_{\mathbf{i}} \\
\text { i.e. } x_{i}=\vec{\ell}_{\mathbf{i}} \cdot \overrightarrow{\mathbf{e}}_{x} \text { in } d \text { dimensions } \\
\\
\times\left(\left\{x_{i}\right\}_{1 \leq i \leq n}, n \mid t\right)=\frac{1}{\gamma}\left[\prod_{i=1}^{n} \int_{0}^{\infty} d \tau_{i} \gamma e^{-\gamma \tau_{i}} \int d^{d} \overrightarrow{\mathbf{v}}_{\mathbf{i}} W\left(\overrightarrow{\mathbf{v}_{\mathbf{i}}}\right) \delta\left(x_{i}-\tau_{i} \overrightarrow{\mathbf{v}}_{i} \cdot \overrightarrow{\mathbf{e}_{\mathbf{x}}}\right)\right]
\end{array}
\end{aligned}
$$

Use Laplace transform with respect to t

Taking Laplace transform with respect to t and re-organizing

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} P\left(\left\{x_{i}\right\}_{1 \leq i \leq n}, n ; t\right) d t=\frac{1}{\gamma}\left(\frac{\gamma}{\gamma+s}\right)^{n} \prod_{i=1}^{n} \tilde{p}_{s}\left(x_{i}\right) \\
& \tilde{p}_{s}(x)=(\gamma+s) \int_{0}^{\infty} d \tau e^{-(\gamma+s) \tau} \int d^{d} \overrightarrow{\mathbf{v}} W(\overrightarrow{\mathbf{v}}) \delta\left(x-\tau \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{e}}_{x}\right)
\end{aligned}
$$

contains all the dependence on d \& $W(\overrightarrow{\mathbf{v}})$

The crucial point is that $\tilde{p}_{s}(x)$ can be interpreted as a proba. density

- Easy to see that $\tilde{p}_{s}(x) \geq 0, \forall x \in \mathbb{R}$
- One can check that it is normalized $\int_{-\infty}^{\infty} \tilde{p}_{s}(x) d x=1$
${ }^{\bullet}$ It is symmetric, $\tilde{p}_{s}(x)=\tilde{p}_{s}(-x)$ and continuous

Taking Laplace transform with respect to t and re-organizing

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} P\left(\left\{x_{i}\right\}_{1 \leq i \leq n}, n ; t\right) d t=\frac{1}{\gamma}\left(\frac{\gamma}{\gamma+s}\right)^{n} \prod_{i=1}^{n} \tilde{p}_{s}\left(x_{i}\right) \\
& \tilde{p}_{s}(x)=(\gamma+s) \int_{0}^{\infty} d \tau e^{-(\gamma+s) \tau} \int d^{d} \overrightarrow{\mathbf{v}} W(\overrightarrow{\mathbf{v}}) \delta\left(x-\tau \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{e}}_{x}\right)
\end{aligned}
$$

Inverting the Laplace transform yields

$$
P\left(\left\{x_{i}\right\}_{1 \leq i \leq n}, n ; t\right)=\int_{\Gamma} \frac{d s}{2 \pi i} e^{s t} \frac{1}{\gamma}\left(\frac{\gamma}{\gamma+s}\right)^{n} \prod_{i=1}^{n} \tilde{p}_{s}\left(x_{i}\right)
$$

Step 5: back to Sparre Andersen

Survival proba. $S(t)=$ proba. that the x-component of the RTP's position does not become negative up to time t

- Let's relate it to the survival proba. of the effective $1 d$-random walk

$$
\begin{aligned}
& P\left(\left\{x_{i}\right\}_{1 \leq i \leq n}, n ; t\right)=\int_{\Gamma} \frac{d s}{2 \pi i} e^{s t} \frac{1}{\gamma}\left(\frac{\gamma}{\gamma+s}\right)^{n} \prod_{i=1}^{n} \tilde{p}_{s}\left(x_{i}\right) \\
& S(t)=\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} d x_{1} \cdots \int_{-\infty}^{\infty} d x_{1} P\left(\left\{x_{i}\right\}_{1 \leq i \leq n}, n ; t\right) \theta\left(x_{1}\right) \theta\left(x_{1}+x_{2}\right) \cdots \theta\left(x_{1}+x_{2}+\cdots x_{n}\right) \\
& S(t)=\int_{\Gamma} \frac{d s}{2 \pi i} e^{s t} \frac{1}{\gamma} \sum_{n=1}^{\infty}\left(\frac{\gamma}{\gamma+s}\right)^{n} q_{n} \quad \theta(x)=\left\{\begin{array}{c}
1, x \geq 0 \\
0, x<0
\end{array}\right. \\
& q_{n}=\int_{-\infty}^{\infty} d x_{1} \cdots \int_{-\infty}^{\infty} d x_{1} \prod_{i=1}^{n} \tilde{p}_{s}\left(x_{i}\right) \theta\left(x_{1}\right) \theta\left(x_{1}+x_{2}\right) \cdots \theta\left(x_{1}+x_{2}+\cdots x_{n}\right) \\
& q_{n}=\frac{1}{2^{2 n}\binom{2 n}{n} \quad \text { universal, thanks to Sparre Andersen thm ! }}
\end{aligned}
$$

Step 5: back to Sparre Andersen

$$
S(t)=\int_{\Gamma} \frac{d s}{2 \pi i} e^{s t} \frac{1}{\gamma} \sum_{n=1}^{\infty}\left(\frac{\gamma}{\gamma+s}\right)^{n} q_{n} \quad \text { with } \quad q_{n}=\frac{1}{2^{2 n}}\binom{2 n}{n}
$$

Survival probability

$$
S(t)=\int_{\Gamma} \frac{d s}{2 \pi i} e^{s t} \frac{1}{\gamma}\left[\sqrt{\frac{\gamma+s}{s}}-1\right]
$$

Inverting the Laplace transform yields

$$
S(t)=\frac{1}{2} e^{-\gamma t / 2}\left(I_{0}\left(\frac{\gamma t}{2}\right)+I_{1}\left(\frac{\gamma t}{2}\right)\right)
$$

universal, i.e., independent of d and

$$
W(\overrightarrow{\mathbf{v}})=W(-\overrightarrow{\mathbf{v}})!
$$

Outline

- Run-and-tumble particle (RTP): a model of active matter
- A first stage with the Sparre Andersen theorem
- From the Sparre Andersen theo. to the survival proba. of and RTP

Summary and Conclusion

- Universal behaviour of the survival proba. $S(t)$ for a wide class of run-and-tumble model
- Independent of dimension d and velocity distribution $W(\overrightarrow{\mathbf{v}})$
- Consequence of the Sparre Andersen theorem
- Universality of other related observables: dist. of the time of the maximum, record statistics, occupation time (more to discover?)
- Universality is lost for power law distribution of the run-times (Lévy walks) - universality is recovered only at late times
- Similar universality found in a discrete-time version of the RTP
B. Lacroix-A-Chez-Toine, F. Mori, J. Phys. A (2020)
- Beyond universality using Spitzer's formula for $S\left(X_{0}>0, t\right)$
B. De Bruyne, S. N. Majumdar, G. S. (2021)

Survival probability starting from $X_{0}>0$

Exact result for the double Laplace transform in $d=1$ and arbitrary velocity distribution $W(v)$ - not necessarily symmetric

$$
\int_{0}^{\infty} d X_{0} \int_{0}^{\infty} d t S\left(X_{0}, t\right) e^{-\lambda X_{0}-s t}=\frac{\gamma+s}{\gamma \lambda s} \exp \left(-\frac{i}{2 \pi} \int_{i \mathbb{R}} d z \ln \left(\frac{z+\lambda}{z}\right) \frac{\int_{-\infty}^{\infty} d v \frac{v W(v)}{(\gamma+s+z v)^{2}}}{\frac{1}{\gamma}-\int_{-\infty}^{\infty} d v \frac{W(v)}{(\gamma+s+z v)}}\right)-\frac{1}{\gamma \lambda}
$$

B. De Bruyne, S. N. Majumdar, G. S., J. Stat. Mech. (2021)

Simplest example: < standard »RTP with a uniform drift μ

$$
W(v)=\frac{1}{2} \delta\left(v-\mu-v_{0}\right)+\frac{1}{2} \delta\left(v-\mu+v_{0}\right)
$$

- Explicit result for $S\left(X_{0}, t\right)$ in terms of Bessel functions
- Rich behaviour in the $\left(\mu, v_{0}\right)$ plane

