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Persistence/Survival probability  

 One-dimensional continuous-time stochastic process �x(τ)

 Persistence or survival probability

x(τ)

τ

x0

0

S(x0, t) = Prob (x(τ) > 0 , ∀τ ∈ [0,t] |x(0) = x0 > 0)

A classical (and difficult!) question in the theory of 
stochastic processes



 It is easy to compute for continuous time Markov processes 

Persistence/Survival probability �   S(X0, t)

For 1d-Brownian motion with diffusion constant �D

S(X0, t) = erf ( X0

4Dt ) where erf(z) =
2

π ∫
z

0
e−x2 dx

 Much harder for non-Markov processes: it has generated enormous 
activities in maths and in stat. mech. over the last decades 

A. J. Bray, S. N. Majumdar, G. S., Adv. Phys. 62, 225 (2013)

F. Aurzada, T. Simon, Lévy matters V, 185, (Springer, 2015)

 This talk: exact results for the persistence in a class of non 
Markov processes, namely d-dimensional persistent random walks/
run-and-tumble processes 

Exact and suprisingly universal results !

∼
t→∞

X0

πDt
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Passive vs active particles

  Passive BM: random motion due to collisions with other molecules 

 Active particle: the particle absorbs energy directly from the 
environment �  a ballistic motion (Run) with a constant velocity �  
during an exponentially distributed random time with mean �  
(persistence time), followed by a local reorientation of the velocity 
(Tumble)... another run...

⟹ ⃗v
γ−1

Ex: widely used to model dynamics of living matter, like E. Coli

Berg (2004), Tailleur and Cates (2008), … 



Run and tumble particle in d dimensions: the model

O

⃗ℓ 1

⃗ℓ 2⃗ℓ 3

⃗ℓ 4

⃗ℓ 5
⃗ℓ 6

⃗ℓ n

 The particle, starting from the origin, chooses a random velocity �  
from a distribution �  and runs ballistically during a random run-time 
�  drawn (independently) from an exponential distribution �

⃗v 1
W( ⃗v )

τ1 τ1 ∼ Exp(γ)

persistence time: �γ−1

 At the end of the run, the particle tumbles instantaneously, chooses a 
new velocity �  from the same distribution �  (independently of � ) 
and runs ballistically during a random run-time �  also 
independently of �

⃗v 2 W( ⃗v ) ⃗v 1
τ2 ∼ Exp(γ)

τ1

run lengths: �ℓi = | ⃗vi |τi

 … 



Run and tumble particle in d dimensions: the model

O

ℓ1

ℓ2ℓ3

ℓ4

ℓ5 ℓ6

ℓn

 The time scale is set by �γ−1

 Two ``parameters’’: �  and �d W( ⃗v )

 The special choice:

W( ⃗v ) =
1

Sdvd−1
0

δ( | ⃗v | − v0) , v0 > 0

is the standard RTP or persistent random walk

 The persistent random walk  has already a long story

 R. Fürth (1920) ``The Brownian motion when considering persistence of the 
direction of movement. With applications to the movement of living infusoria’’ 


 M. Kac (1974), ``A stochastic model related to the telegrapher’s equation’’


 see also R. P. Feynman (1965), ``Relativistic chessboard model’’ 



Run and tumble particle in d dimensions: the model

O

ℓ1

ℓ2ℓ3

ℓ4

ℓ5 ℓ6

ℓn

 The time scale is set by �γ−1

 Two ``parameters’’: �  and �d W( ⃗v )

 The special choice:

W( ⃗v ) =
1

Sdvd−1
0

δ( | ⃗v | − v0) , v0 > 0

is the standard RTP or persistent random walk

 Several properties, like the proba. distribution at time � , are well known
t

Orsingher ’95, Weiss ’02,…, Angelani et al. ’14, Artuso et al. ’14, Malakar et al. ’18, 

Evans, Majumdar ’18, Le Doussal, Majumdar, G. S. ’19   

e. g., K. Martens, L. Angelani, R. Di Leonardo, L. Bocquet ’12  

W(v) =
1
2

δ(v − v0) +
1
2

δ(v + v0)d = 1  and 

 However, the survival probability was only known for 



Survival probability in �  and constant speed �d = 1 v0

 Exact solution via coupled backward Fokker-Planck equations

dX
dt

= v0 σ(t) , { X(0) = X0

σ(0) = ± 1 w . proba 1/2

 The survival probability �  starting from the origin readsS(t) = S(X0 = 0,t)

S(t) =
1
2

e−γt/2 (I0 ( γt
2 ) + I1 ( γt

2 ))
modified Bessel 

functions 
 Algebraic decay for � , �t ≫ γ−1 S(t) ∼ 1/ πγt

 How to compute �  for � ?S(t) d > 1 Much more difficult because the

different components of �  get coupled (unlike Brownian motion)…⃗X(t)

Orsingher ’95, Weiss ’02,…, Angelani et al. ’14, Artuso 
et al. ’14, Malakar et al. ’18, Evans, Majumdar ’18, 

Le Doussal, Majumdar, G. S. ’19   



A simple question for the d-dimensional RTP model

x

y

 The RTP starts from the origin at �  


 Two parameters: �  and � 

                               

t = 0

d W( ⃗v ) = W(− ⃗v )

0

S(t) = proba. that the � component of the RTP’s position 
does not become negative up to time �

x−
t

that the RTP does not cross the hyperplane �  up to �x = 0 t
, i.e., the proba.

Q: how does �  depend on the dimension �  and �  ?S(t) d W( ⃗v )



Survival probability �  vs �  in � : start with numericsS(t) t d > 1

0 2 4 6 8 10
t

0

0.1

0.2

0.3

0.4

0.5

0.6

S(
t)

Theory
d=1

Theory: �  S(t) =
1
2

e−γt/2 (I0 ( γt
2 ) + I1 ( γt

2 ))
Velocity distribution: �W(v) =

1
2

δ(v − v0) +
1
2

δ(v + v0)
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Survival probability �  vs �  in � : start with numericsS(t) t d > 1
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Survival probability �  vs �  in � : start with numericsS(t) t d > 1

0 2 4 6 8 10
t

0

0.1

0.2

0.3

0.4

0.5

0.6

S(
t)

Theory
d=1
d=2
d=3
half-Cauchy W(v)

Theory: �  S(t) =
1
2

e−γt/2 (I0 ( γt
2 ) + I1 ( γt

2 ))
Isotropic velocity distribution: �  in �W( ⃗v ) ∝

θ( | ⃗v | )
1 + v2

d = 2



Survival probability �  vs � : a universal behaviorS(t) t

0 2 4 6 8 10
t

0

0.1

0.2

0.3

0.4

0.5

0.6

S(
t)

Theory
d=1
d=2
d=3
half-Cauchy W(v)

This suggests that this result for is universal for all time �t
(and not just for large � )t

�  is independent of the dimension �  and the symmetric 
velocity distribution �  
S(t) d

W( ⃗v )
F. Mori, P. Le Doussal, S. N. Majumdar, G. S. PRL (2020)

S(t) =
1
2

e−γt/2 (I0 ( γt
2 ) + I1 ( γt

2 ))

This is a consequence of the Sparre Andersen theorem 
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Sparre Andersen theorem for 1d random walk

 Random walk in dimension d=1
initial position : �X0 = 0
Markov dynamics : �Xk = Xk−1 + ηk , k ≥ 1

i.i.d. random variables with a continuous 
and symmetric distribution �p(η)

 Note that �  is arbitrary and includes Lévy flights, i.e.,p(η)
p(η) ∝

η→±∞
|η |−μ−1 , 0 < μ < 2

kX0 = 0



Sparre Andersen theorem for 1d random walk

 Survival probability, starting from the origin �X0 = 0

q(n) = Prob (X1 ≥ 0, X2 ≥ 0, ⋯, Xn ≥ 0 |X0 = 0)

 Sparre Andersen theorem (1954)

q(n) =
1

22n (2n
n ) holds for any continuous and 

symmetric jump distribution �p(η)

Its generating function is thus given by

q̃(z) = ∑
n≥0

q(n) zn =
1

1 − z



A simple proof of the Sparre Andersen theorem
Ph. Mounaix, S. N. Majumdar, G. S., J. Phys. A (2020)

X0 �Xk = Xk−1 + ηk

 �X0 = 0

Xmin

n
m

 Consider the time of the minimum �   tmin

`` � ’’   �     `` � ’’ tmin = m ⟺ Xm = Xmin = min{X0, X1, ⋯, Xn}

 Probability distribution of the minimum �   tmin

Pn(m) = Prob(tmin = m) = q(m)q(n − m) , 0 ≤ m ≤ n

survival proba. up to step �n − m

Xn



A simple proof of the Sparre Andersen theorem
Ph. Mounaix, S. N. Majumdar, G. S., J. Phys. A (2020)

�Xk = Xk−1 + ηk

 �X0 = 0
X0

Xmin

n
m

 Probability distribution of the minimum �   tmin

Pn(m) = Prob(tmin = m) = q(m)q(n − m) , 0 ≤ m ≤ n

 Normalization condition imposes
n

∑
m=0

Pn(m) = 1 ⟺
n

∑
m=0

q(m)q(n − m) = 1

 Taking the generating function w.r.t. �n

q̃(z)2 =
1

1 − z
⟹ q̃(z) =

1

1 − z

q̃(z) = ∑
m≥0

znq(n)



Outline

 Run-and-tumble particle (RTP): a model of active matter

 A first stage with the Sparre Andersen theorem

 From the Sparre Andersen theo. to the survival proba. of and RTP 

 Conclusion



Step 1: dynamics of the � -componentx

 Let �  denote the � -component of the RTP at time �   X(τ) x τ

 � : the � -component of the RTP at the instant of the �  tumbling  Xk x (k + 1)th

 The nber of tumblings �  on a fixed time interval �  is a random variableNT(t) [0, t]

x

y

0

kX0 = 0

X1
X1

X2

X2

Xn

 Survival proba.  S(t) = Prob[X(τ) ≥ 0 , ∀τ ∈ [0,t] | X(0) = 0]

S(t) =
∞

∑
n=1

Prob[X1 ≥ 0, X2 ≥ 0, ⋯, Xn ≥ 0, NT(t) = n |X0 = 0]



Step 1: dynamics of the � -componentx

x

y

0

kX0 = 0

X1
X1

X2

X2

Xn

x1

x2

⃗ℓ 1 ⃗ℓ 2

Recall that the run lengths are given by �ℓi = | ⃗vi |τi

independent random variables

To compute �  we 
need the joint distribution of �

Prob[X1 ≥ 0, X2 ≥ 0, ⋯, Xn ≥ 0, NT(t) = n |X0 = 0]
{ ⃗vi}1≤i≤n, {τi}1≤i≤n & NT(t)

n

∏
i=1

W( ⃗vi)



Step 2: joint distribution of �{τi}1≤i≤n & NT(t)

x

y

0 X1

X2

⃗ℓ 1 ⃗ℓ 2

Duration of the �  run: �ith τi

 Let �  be a realisation 
with �  runs 

{τ1, τ2, ⋯, τn}
NT(t) = n

 Note that the last run �  is 
unfinished and is thus different from 
the other run times

τn

 � : proba weight of a « configuration » �  & �P({τi}1≤i≤n, n | t) {τ1, τ2, ⋯, τn} NT(t) = n

P({τi}1≤i≤n, n | t) = [
n−1

∏
i=1

p(τi)] ∫
∞

τn

p(τ) dτ δ (
n

∑
i=1

τi − t) ,

=
1
γ [

n

∏
i=1

γ e−γτi] δ (
n

∑
i=1

τi − t)
Puts all �  run times on equal footing (up to a factor � )n γ

p(τ) = γe−γτ

only true for exp. run 

times ! 



Step 3: joint distribution of �{xi}1≤i≤n & NT(t)

 Let �  be the � -component of � , 
i.e. �  in �  dimensions  

xi x ⃗ℓ i = τi ⃗vi
xi = ⃗ℓi ⋅ ⃗e x dx

y

0 X1

X2

⃗ℓ 1 ⃗ℓ 2

P({xi}1≤i≤n, n | t) =
1
γ [

n

∏
i=1

∫
∞

0
dτi γe−γτi ∫ dd ⃗vi W( ⃗vi )δ (xi − τi ⃗v i ⋅ ⃗ex)]

× δ (
n

∑
i=1

τi − t)
Use Laplace transform with respect to �t



Taking Laplace transform with respect to �  and re-organizingt

Step 4: go to Laplace space (« grand-canonical » ensemble)

∫
∞

0
e−st P ({xi}1≤i≤n, n; t) dt =

1
γ ( γ

γ + s )
n n

∏
i=1

p̃s(xi)

p̃s(x) = (γ + s)∫
∞

0
dτ e−(γ+s)τ ∫ dd ⃗v W( ⃗v ) δ (x − τ ⃗v ⋅ ⃗e x)

contains all the dependence 

on �  d & W( ⃗v )

The crucial point is that �  can be interpreted as a proba. densityp̃s(x)

 Easy to see that �p̃s(x) ≥ 0 , ∀ x ∈ ℝ

 One can check that it is normalized �∫
∞

−∞
p̃s(x) dx = 1

 It is symmetric, �  and continuousp̃s(x) = p̃s(−x)



Taking Laplace transform with respect to �  and re-organizingt

Step 4: go to Laplace space (« grand-canonical ensemble »)

∫
∞

0
e−st P ({xi}1≤i≤n, n; t) dt =

1
γ ( γ

γ + s )
n n

∏
i=1

p̃s(xi)

p̃s(x) = (γ + s)∫
∞

0
dτ e−(γ+s)τ ∫ dd ⃗v W( ⃗v ) δ (x − τ ⃗v ⋅ ⃗e x)

Inverting the Laplace transform yields

P ({xi}1≤i≤n, n; t) = ∫Γ

ds
2πi

es t 1
γ ( γ

γ + s )
n n

∏
i=1

p̃s(xi)



Step 5: back to Sparre Andersen

proba. that the � component of the RTP’s position does 
not become negative up to time �

x−
t

Survival proba. �S(t) =

Let ’s relate it to the survival proba. of the effective � random walk 1d−

P ({xi}1≤i≤n, n; t) = ∫Γ

ds
2πi

es t 1
γ ( γ

γ + s )
n n

∏
i=1

p̃s(xi)

S(t) =
∞

∑
n=1

∫
∞

−∞
dx1⋯∫

∞

−∞
dx1P ({xi}1≤i≤n, n; t) θ(x1)θ(x1 + x2)⋯θ(x1 + x2 + ⋯xn)

qn = ∫
∞

−∞
dx1⋯∫

∞

−∞
dx1

n

∏
i=1

p̃s(xi) θ(x1) θ(x1 + x2)⋯θ(x1 + x2 + ⋯xn)

S(t) = ∫Γ

ds
2πi

es t 1
γ

∞

∑
n=1

( γ
γ + s )

n

qn

qn =
1

22n (2n
n ) universal, thanks to Sparre Andersen thm !

θ(x) = { 1 , x ≥ 0
0 , x < 0



Step 5: back to Sparre Andersen

Survival probability

S(t) = ∫Γ

ds
2πi

es t 1
γ

∞

∑
n=1

( γ
γ + s )

n

qn qn =
1

22n (2n
n )with

S(t) = ∫Γ

ds
2π i

es t 1
γ [ γ + s

s
− 1]

Inverting the Laplace transform yields

S(t) =
1
2

e−γt/2 (I0 ( γt
2 ) + I1 ( γt

2 ))
universal, i.e., independent of �  and 

�  ! 
d

W( ⃗v ) = W(− ⃗v )
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Summary and Conclusion 

 Universal behaviour of the survival proba. �  for a wide class of 
run-and-tumble model 

S(t)

  Independent of dimension �  and velocity distribution �d W( ⃗v )

  Consequence of the Sparre Andersen theorem

 Universality of other related observables: dist. of the time of the 
maximum, record statistics, occupation time (more to discover ?)

 Similar universality found in a discrete-time version of the RTP
B. Lacroix-A-Chez-Toine, F. Mori, J. Phys. A (2020)

 Beyond universality using Spitzer ’s formula for �   S(X0 > 0 , t)
B. De Bruyne, S. N. Majumdar, G. S. (2021)

 Universality is lost for power law distribution of the run-times 
(Lévy walks) — universality is recovered only at late times 



Survival probability starting from �X0 > 0
Exact result for the double Laplace transform in �  and arbitrary 
velocity distribution �  — not necessarily symmetric 

d = 1
W(v)

∫
∞

0
dX0 ∫

∞

0
dt S(X0, t) e−λ X0−s t =

γ + s
γ λ s

exp −
i

2π ∫i ℝ
dz ln ( z + λ

z )
∫ ∞

−∞
dv v W(v)

(γ + s + z v)2

1
γ − ∫ ∞

−∞
dv W(v)

(γ + s + z v)

−
1
γλ

B. De Bruyne, S. N. Majumdar, G. S., J. Stat. Mech. (2021)

Simplest example: « standard » RTP with a uniform drift �μ

W(v) =
1
2

δ(v − μ − v0) +
1
2

δ(v − μ + v0)

 Explicit result for �  in terms of Bessel functionsS(X0, t)

 Rich behaviour in the �  plane(μ, v0)


