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Summary

1. New Solutions.

New solutions to the ultradiscrete soliton
equations are obtained.

(a) One is a “negative-soliton” which sat-
isfies the ultradiscrete KAV equation(
Box-Ball system).

But there is not a corresponding trav-
eling wave solution for the discrete KdV
equation.



(b) The other oneis a “static-soliton” which
satisfies the ultradiscrete Toda equa-
tion.

But there is not a corresponding trav-

eling wave solution to the discrete Toda
equation.

Ryogo Hirota (2009).



2. Pfaffian Expressions

(a) We know the solutions to the discrete

(b)

equations are expressed by pfaffians.

However pfaffians cannot be ultradis-
cretized because of negative problem.

We have found that Casorati perma-
nents play the same role as the Wron-
skian in the ultradiscrete equations.

D.Takahashi and R.Hirota,(2007).

H.Nagai,(2008).



3. Ultradiscrete Analogue of
Identities of Pfaffians (Determinants)

(a) The Casorati permanent solves the ul-
tradiscrete 2-D Toda equation (up to
N =24),

‘U000 ooooon
oooo”,0000ooooa.

(b) Identities of ultradiscrete pfaffians

Ryogo Hirota, to appear.



4. Periodic Phase Solitons

(a) Shinya Nakamura (Waseda Univ.) has
found that the ultradiscrete hungry Lotka-
Volterra eq.

Wi T =

max(Ey + FE F 4+ B — 1)

exhibits “Periodic Phase Soliton” of
the form

Ey" = max(0,pm — qn + ¢(n)),

where ¢(n) is a periodic function of n
with a period M.

But there is not a corresponding Sso-
lution for the discrete hungry Lotka-
Volterra equation.



(b) He has found r—function of N periodic
phase soliton expressed by the Casorati
permanent.

He has proved using “permanent tech-
nique” that the r—function solves the
ultradiscrete hungry Lotka-Volterra equa-
tion for M = 2.



5. New Gauge Transformation

(a)

(b)

(©)

T he bilinear equations are invariant un-
der the simple gauge transformation of
the exponential type.

f— fexp(cg + c1l + com + c3n).

Inspired by Nakamura's results I have
found a discrete equation which is in-
variant under the new gauge transfor-
mation

f—= fo(n),

where ¢(n) is a periodic function of n
with a period M.

The new gauge changes the interac-
tion (phase shifts) of solitons drasti-
cally.



1. New Solutions

Solutions to the ultradiscrete soliton
equations have been obtained by
ultradiscretizing the known solutions to the
discrete equations.

I review “new solutions” to the ultradiscrete
soliton equations,which have no correspond-
ing solutions to the discrete soliton equations.

1. Negative solutions to the ultradiscrete KdV
eq.

A discrete KdV eq.(Box and Ball system)

1 1 1
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is transformed,through the dependent vari-
able transformation
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into the bilinear eq.
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Equation (1) is rearranged as

molpmat o gt
n n+1 n+1
okl gttt 195 (4)

which is reduced using the relations (2)
and (3) to

1= 5u,,rrzn_|_1uz7’ +1 -6,
which is not satisfied by a negative-soliton

unt < 1.

However, the above equation is reduced,
in the ultradiscrete limit, to the following
form,

0 = max(U;'+ U4 — 1,0),

which is satisfied by the negative-soliton

U <0



The negative-soliton plays an important
role in the initial value problem of the
Box-Ball system.

It generates many balls in a box over the

capacity of the box after colliding with a
soliton as is shown below.

mn=0 {0,1,1,1,1,1,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0%}
n=1 {0,0,0,0,0,0,1,1,1,1,1,-2,0,0,0,0,0,0,0,0,0,0,0%}
n=2 {0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0}
n=3 {0,0,0,0,0,0,0,0,0,0,0,-2,1,1,1,1,1,0,0,0,0,0,0%}

n=4 {0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,1,1,1,1,1,0%}

Three balls in a box of capacity 1.



2. Static solutions to the ultradiscrete Toda
ed.

We have the discrete Toda equation in
the bilinear form

Lt = (2
= 52[fn-|-1fn—1 — (M7 (5)
which is transformed into the discrete Toda
equation

m+1vm 1
(V;m)2
(1 + §2vm L)+ 52Vm 1)
(14 62Vv;m)2 ’

. 62
52 — 1_—527 (6)
through the transformation
fm ™m
M — n+1/n—1
" (fi)?

Let
Vit =exp(xpt/e), & =exp(—L/e).



Then we obtain an nonlinear discrete equa-
tion of z*,

:cnm+1 — 2z, + $Zl_1
(1+ 6% exp(zl 1 /€))(1 4 62 exp(a , /€)

= elog| (1 4 62 exp(air/e))? |

which is reduced, in the small limit of g,
to the ultradiscrete Toda equation,

m?—l_l — 2x,t + a:ﬁ_l
= max(0,z,4 1 — 2L) — 2max(0, z," — 2L)
+ max(0,z™ ; — 2L).



We look for a static solution Vs(n),

Ve(n) = 0t . W;g L

to the discrete Toda equation.

T he bilinear equation (5) is rearranged as

m—+1 ,pm—1 fm
n n _|_52 1 _|_52 n—l—l n 1’
(fi)? (fim)?

which is reduced, for a static solution, to

146%2=145%Vs(n).

Obviously Vs(n) does not solve it except
a trivial case Vs(n) = 1.

However the above equation is reduce, in
the ultradiscrete limit, to

max(0, —2L) = max(0,zs(n) — 2L)
which is satisfied by xs(n) if

xs(n) < 2L, for all n.



The static solution plays an important
role in the ultradiscrete nonuniform Toda
equation.

We have calculated a soliton y;;* passing
through junctions in the nonuniform Toda
lattice.

The figure shows the non-uniformity c(n)
introduced to the discrete Toda lattice,where
the atoms located at —5 < n < 5 are dif-
ferent from others.
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We observe a soliton passing through junc-
tions generates ripples at the junctions.



We have calculated a soliton passing through
junctions of the ultradiscrete nonuniform
Toda equation,

ym L —oym 4 yml
= max[0,yp4 1 — 2L + c(n + 1)]
—2max[0,y;" — 2L + c(n)]
+ max[0,y,;" 1 — 2L 4+ c¢(n — 1)].
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In the figures the solid lines express theoreti-
cal values of y(m,n) as a function of n, while
the dots indicates numerical values of y;°.

All dots are on the solid lines.

Ryogo Hirota, “New Solutions to the Ultradis-
crete Soliton Equations’,

STUDIES IN APPLIED MATHEMATICS 122:361-
376(2009).



2. Pfaffian Expressions

Multi-soliton solution to the soliton equation
is expressed by the pfaffian and the bilinear
form of the soliton equation is reduced to
the identity of pfaffians.

Multi-soliton to a soliton equation has two
types of expression.

1. One is expressed by a sum of exponential
functions which is obtained by a pertur-
bational method.

2. Another is expressed by a pfaffian (deter-
minant).



The perturbational method of finding soliton
solution is very powerful but difficulty of find-
ing solution increases very rapidly as increas-
ing number of solitons included in the solu-
tion.

However we may assume an algebraic struc-
ture of solution by the perturbational method
and find a pfaffian expression for solution.

The r—function f/* in the perturbed form has
the following form in general

=14 emlmn) 4 gn2(m.n)
+aq,emmn)time(mn)

and is easily ultradiscretized.

However pfaffians (determinants) can not be
ultradiscretized due to negative terms.



A remedy for the problem was found by Taka-
hashi and Hirota.

D. Takahashi and R.Hirota:

“Ultradiscrete Soliton Solution of Permanent
Type”,

JPSJ 76 (2007) 104007,

We have expressed the multi-soliton solutions
to an ultradiscrete soliton equation called “Box
and Ball system” by ultradiscretized perma-
nents instead of determinants.

A permanent is a signature free determinant.

Nagai has shown that soliton solutions to the
ultradiscrete Toda equation are expressed by
the ultradiscretized permanents.

H.Nagai:

“ A New EXxpression of Soliton Solution to
the Ultradiscrete Toda Equation’,

J.Phys. A 41 (2008) 235204,



These facts suggest that there must be an
idenity of ultradiscretized permanents instead
of determinants.

More generally we expect an identity of ultra-
discretized hafnians instead of pfaffians.

A hafnian is a signature free pfaffian intro-
duced by Caieniello.



3. Ultradiscrete Analogue of
Identities of Pfaffians

(a) Plicker relation:

We look for an ultradiscrete analogue of the
following simple identity of determinants

ap a2 ||laz ag | |a1 a3z || ax ag
by bo || b3 bg by b3 || by by
ay a4 || a2 a3 | _
T by ba |l b by |0

which is one of the Plucker relations.

We replace the determinants by the corre-
sponding permanents

al ao a3z a4 | a1 a3 a> a4
by bo |, | b3 ba |, | b1 b3 |, |b2 bal,
a1 ag a> a3z
+ = 0,(7)
by ba |, | b2 b3 |,

Let each term in Eq.(7) be ¢1, g> and g3,namely



ay aj
b1 b2

a3 aq

+ +

= a1a3bobs + ajagbrb3z + anazbibs + anasbyba,

a1 a3
b1 03

a> as4
by by

+ +

= a1apb3bs + ajasbrbz + arazb1bg + azasbyby,

a1 aa
by by

a> az
by b3

43 —

+ +

= a1a2b3bq 4 a1a3b2bg + a2aqb103 4+ azasb1b2,
where q1,q> and g3 have no negative terms

and can be ultradiscretized.

However the corresponding Plucker relation
does not hold,

q1 — g2 + g3 = 2(a1a3bobg + anasb1b3) #= 0.(8)



We notice that the products of the perma-
nents, qi1,q> and g3 are decomposed into a
sum of common terms q12,qg13 and go>3,where
q;j 1S the common term of g; and g; for i,j =
1,2,3,

q1 = q12 + 913, 92 = q12 + 23,
q3 = q13 + 923, (9)

where

q12 = aiaabob3z + anazbyba,
q13 = a1a3bobg + anasbybs,
g23 = aj1a2b3bs + azasbibs.

An ultradiscrete analogue of the Plucker re-
lation is obtained as follows.

Replacing the determinants by the correspod-
iNng permanents we have

q1 + 93 = q2. (10)



Let

q; = exp(Q;/e) for i =1,2,3,
di; — eXp(Q’L]/E) fore,j =1,2,3,.

In the small limit of e we have an ultradiscrete
analogue of the Pliicker relation , Eq.(10),

Q2 = max(Q1,Q3), (11)

which does not hold in general.

We investigate under what conditions on @01, @»>
and Q3 Eq.(11) does hold. The ultradiscrete
form of Eq.(9) are

Q1 = max(Q12,Q13),
Q2 = Mmax(Q12,Q23),
@3 = max(Q13,Q23). (12)

Substituting these expressions into Eq.(11)
we obtain

max(Q12,@23) = Max(Q12,Q13,@23). (13)



Obviously Eq.(13) does hold if

Q13 < Max(Q12,Q23).

But it does not hold if

Q13 > Max(Q12,Q23).

However if Q13 > max(Q1o,@>3) we find, us-
ing Eq.(12)

Q1 = Q3.

Hence we obtain the following algebraic iden-
tity of the ultradiscretized permanents,

[Q2 — max(Q1,Q3)](Q1 —Q3) =0, (14)

which we call " ultradiscrete analogue of the
Plucker relation’ .



(b) Identities of pfaffians:

It is known that a variety of soliton equations
exhibiting multi-soliton solutions expressed by
pfaffians give rise to the following identity of
pfaffians,

pf(1,2,3,4,5,6,---,2n)pf(5,6,---,2n)

= pf(1,2,5,6,---,2n)pf(3,4,5,6,---,2n)
—pf(1,3,5,6,---,2n)pf(2,4,5,6,---,2n)
+pf(1,4,5,6,---,2n)pf(2,3,5,6,---,2n).

I replace the above pfaffians by the corre-
sponding hafnians.
et the products of hafnians be

fo=1(1,2,3,4,5,6,---,2n)(5,6,---,2n),
f1=1(1,2,5,6,---,2n)(3,4,5,6,---,2n),
f>»=1(1,3,5,6,---,2n)(2,4,5,6,---,2n),
f3=1(1,4,5,6,---,2n)(2,3,5,6,---,2n).



I have proved by induction that the products
of the hafnians are decomposed into the fol-
lowing forms

fo = fo1 + fo2 + fo3,
f1 = fo1+ fiz2 + f13,
fo = fo2 + f12 + f23,
f3 = foz + f13 + f23.

Consider a relation,

fo+ fo= f1+ f3, (15)

which does hold for pfaffians but not for haf-
nians.



Following the same procedure as the one used
before I find the algebraic idenity of the ul-
tradiscretized hafnians,

(max(Fp, F») — max(Fy, F3))(Fo — F2)(F1 — F3)
= 0,

where Fy, F1, F> and F3 are the ultradiscrete
form of fo, f1, fo and f3,respectively.

We call it the ultradiscrete analogue of the
identity of the pfaffians.

Ryogo Hirota, “Ultradiscrete analogue of the
Identity of Pfaffians” ,to appear in RIMS
KoOkyuroku Bessatsu.



4. Periodic Phase Solitons

We know that the hungry Lotka-Volterra eq.

1 1
(L4 0 Fa F T = fr i + o0 f s
exhibits 1—soliton solution for an integer M,

I =14ri(m,n), ri(m,n)=wfk{"""),

B UG o T . e s L0,
FT 140 (kR R




T he ultradiscrete hungry Lotka-Volterra eq.

i ET =

max(F}" + F,:fll, Y o Fgfj\}_'_l - 1)

IS known to describes an extended " Box and
Ball system’ .

In this system all balls are numbered and the
balls with the smaller number moves earlier.

D.Takahashi “On some soliton systems de-
fined by using boxes and balls’ ,1993 Interna-
tional Symposium on Nonlinear Theory and
its Applications(NOLTA’'93) Hawaii,U.S.A.,
December 5-10,1993,



I have found numerically that the ultradis-
crete hungry Lotka-Volterra equation exhibits
the following soliton solutions for M = 2.
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I called it "Wiggler™.



(a) Shinya Nakamura (Waseda Univ.) discov-
ered that “Wiggler” is expressed by the
following — function,

Fy' = max(0,s1(m,n) + ¢1(n)),
si(m,n) =prm —q1(n —ny),
P1 — MQ]. _ 1 > 07

under the condition

q1 > ¢1(n+1) —p1(n), foralln

where ¢1(n) is periodic function of n of
period M,

d1(n+ M) = ¢p1(n), for all n.

We now call it “ periodic phase soliton”
because of the periodic phase factor ¢1(n).

We have found that there is not a corre-
sponding solution for the discrete hungry
Lotka-Volterra equation.



(b) He has also found that r—function of N
periodic phase soliton expressed by the
Casorati permanent,

1
F)" = —max
2

|51 + ¢1(n)| + ¢d1(n), |s1 +3q1 + p1(n+1
s+ ¢2(n)| + ¢2(n),  |s1 4+ 3g2+ ¢2(n+1

sy + dn(n)| + on(n), [sn + 3qy + dn(n+ 1)+ én(n + 1),

=
++
‘S~€~
/\/\
S 3
++
==
N/

He has proved using “permanent tech-
nique” that the r—function solves the ul-
tradiscrete hungry Lotka-Volterra eq. for

M = 2.



5. Gauge Transformations

T he bilinear equations are known to be invari-
ant under the simple gauge transformation of
the exponential type,

f — fexp(cg =+ c1l + com + c3n).

Inspired by Nakamura’'s results I have found
that a discrete equation

1
f7T_|_1fgl+1 — fﬁlfﬁj_l

1 1
FSC i1 — T a1 S ) (16)
IS invariant under the new gauge transforma-
tion,
f— fo(n),

where ¢(n) is a periodic function of n with a
period M.



The new gauge transforms Eq.(16) into

mod(n 4+ DT e(n) = fle(n) 5 o(n + 1)
+Lf7 prb(n — M)fmj]&Han + M+ 1)
— I arp10(n — M+ 1) e (n + M),

which is reduced , by the periodicity of ¢(n) =
o(n+ M), to Eq.(16).

I call Eq.(16) “Discrete Hungry Lotka-Voltera
equation of BKP type” for an integer M,
which was, for M = 2, called “Discrete Sawada-
Kotera equation.



Let
+1
m __ f?T—M—I—lfgl—l—M
n 1
frfr
m __ In—MIn+M-+1
T, = mfm+1 .
n Jn+1

Then Eq.(16) is transformed into a coupled
nonlinear discrete equations,

w y

m—+1 __ mM_l 1+ 5($Zl—j B w;fn—j
gt = T
j=1 xn—l—j - wn—l—j

oy = (wp T up)

1 1N
1+ 6y — wpia)
T—function of one periodic phase soliton is
given by

' =14r1(m,n),
r1(m,n) = W'k (n),

1+6/kY
wi] = A
1+ 6k}
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In the figures the solid lines express theoreti-
cal values of z(m,n) as a function of n, while
the dots indicates numerical values of z".

All dots are on the solid lines.



The new gauge changes the interaction (phase
shifts) of solitons drastically.

The usual 2-soliton to Eq.(16) is given by

fQ(ma ’I’L) =1 —I_ ’T‘]_(m, ’I’L) _I_ 7“2(777,, n)
+aqior1(m,n)ro(m,n),

where
(n—n;)
ri(m,n) = w}-nkj g
1+ 6/k
w; = ;
7146k
M _ M
o kTR kiR
Yo (ki )M — 1kik; — 1
fori,7 =1, 2.

While 2-periodic phase soliton solution is given
by

fo(m,n) =14+ ri(m,n) + ro(m,n)
+ai2(n)ri(m,n)rao(m,n),  (17)



where

ri(m,n) = W),
C146/kN
AR
kM — kM
U (k)M =1
a;;(n) = (1/A29>

ni—1

x| Z sz(nl_l_n) H hzg(n2+n)]

n11 no=1

7,3 = | H hzg(n)]

bij(n) = [h (n) — hj(n)]egy,
h’Lj(n) — h”L(n)h] (n),
hz(n) = kngz(n)/qbz(n — 1), for 1,] = 1,2, 3.



The usual 3-soliton to Eq.(16) is given by

fa(m,n) =1+ ri(m,n) + ro(m,n) + rz(m,n)
+aior1(m,n)ra(m,n)
+a13r1(m, n)rz(m,n)
+ap3ra(m,n)rz(m,n)
+a123r1(m, n)ro(m,n)rz(m,n),

where
m, (n—n;)
ri(m,n) = w; k; :
14 6/k}"

W, — ,
T 140k
M M
0= ik ki k
Y (kk )M — 1Rk — 1
4123 — A12a13423,
for i,j = 1,2,3.




While 3-periodic phase soliton solution is given

by

fa(m,n) =1+ ri(m,n) +ro(m,n) + r3(m,n)
+ay12(n)ri(m,n)ro(m,n)
+a13(n)ri(m,n)rz(m,n)
+ao3(n)ro(m,n)rz(m,n)
+ay23(n)ri(m,n)ro(m,n)rz(m,n),

where

a123(n) =

—(1/A123)
ni—1

X[ Z b123(n1 +n) ] hi23(no+n)l,

ni=1 no=1

M
Aqp3 =[]] hi23(n)] — 1,

n=1

b123 = b12(n) — b13(n) + baz(n),
h123 = h1(n)ha(n)hz(n),

bio(n) =
b13(n) =
boz(n) =

a12(n)h12(n) —ajo(n — 1)hz(n)]
a13(n)h13(n) —a13(n — 1)ha(n)]
(ap3(n)ho3(n) — asz(n — 1)h1(n)]

€13€23;,
€12€23;,
€12€13-



What we get,substituting the conjectured
T—function (17) into the bilinear form (16),
is not an explicit form of a1>(n) nor
a1o(n+ 1), but a relation between a1>(n)

and a12(n + 1).

We have totally M such relations,which de-
termine an individual a1o2(n). ai1o is not a
scalar but a vector whose elements are a152(n),
forn=1,2,---, M.



