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Summary

1. New Solutions.

New solutions to the ultradiscrete soliton

equations are obtained.

(a) One is a “negative-soliton” which sat-

isfies the ultradiscrete KdV equation(

Box-Ball system).

But there is not a corresponding trav-

eling wave solution for the discrete KdV

equation.



(b) The other one is a “static-soliton”which

satisfies the ultradiscrete Toda equa-

tion.

But there is not a corresponding trav-

eling wave solution to the discrete Toda

equation.

Ryogo Hirota (2009).



2. Pfaffian Expressions

(a) We know the solutions to the discrete

equations are expressed by pfaffians.

However pfaffians cannot be ultradis-

cretized because of negative problem.

(b) We have found that Casorati perma-

nents play the same role as the Wron-

skian in the ultradiscrete equations.

D.Takahashi and R.Hirota,(2007).

H.Nagai,(2008).



3. Ultradiscrete Analogue of

Identities of Pfaffians (Determinants)

(a) The Casorati permanent solves the ul-

tradiscrete 2-D Toda equation (up to

N = 4).

“超離散プッリュカー関係式を用いたソリトン
解の証明”,長井秀友、高橋大輔.

(b) Identities of ultradiscrete pfaffians

Ryogo Hirota, to appear.



4. Periodic Phase Solitons

(a) Shinya Nakamura (Waseda Univ.) has
found that the ultradiscrete hungry Lotka-
Volterra eq.

Fm
n+1 + Fm+1

n =

max(Fm
n + Fm+1

n+1 , Fm
n−M + Fm+1

n+M+1 − 1)

exhibits “Periodic Phase Soliton” of
the form

Fm
n = max(0, pm − qn + ϕ(n)),

where ϕ(n) is a periodic function of n

with a period M .

But there is not a corresponding so-
lution for the discrete hungry Lotka-
Volterra equation.



(b) He has found τ−function of N periodic

phase soliton expressed by the Casorati

permanent.

He has proved using “permanent tech-

nique” that the τ−function solves the

ultradiscrete hungry Lotka-Volterra equa-

tion for M = 2.



5. New Gauge Transformation

(a) The bilinear equations are invariant un-

der the simple gauge transformation of

the exponential type.

f → f exp(c0 + c1l + c2m + c3n).

(b) Inspired by Nakamura’s results I have

found a discrete equation which is in-

variant under the new gauge transfor-

mation

f → fϕ(n),

where ϕ(n) is a periodic function of n

with a period M.

(c) The new gauge changes the interac-

tion (phase shifts) of solitons drasti-

cally.



1. New Solutions

Solutions to the ultradiscrete soliton
equations have been obtained by

ultradiscretizing the known solutions to the
discrete equations.

I review “new solutions” to the ultradiscrete
soliton equations,which have no correspond-
ing solutions to the discrete soliton equations.

1. Negative solutions to the ultradiscrete KdV
eq.

A discrete KdV eq.(Box and Ball system)

1

um+1
n+1

−
1

um
n

= δ(um
n+1 − um+1

n )

is transformed,through the dependent vari-
able transformation

um
n =

fm
n+1fm+1

n

fm
n fm+1

n+1

,



into the bilinear eq.

fm−1
n fm+1

n+1 =

δfm−1
n+1 fm+1

n + (1 − δ)fm
n fm

n+1. (1)

We look for a “negative-soliton” traveling

with the speed 1

um
n =

fm
n+1fm+1

n

fm
n fm+1

n+1

≤ 1,

fm
n = f(n − m),

which give the following relations

fm−1
n+1 fm+1

n

fm
n+1fm

n
= um

n+1um
n . (2)

fm+1
n+1 fm−1

n

fm
n+1fm

n
= 1, (3)



Equation (1) is rearranged as

fm−1
n fm+1

n+1

fm
n fm

n+1

= δ
fm−1
n+1 fm+1

n

fm
n fm

n+1

+ 1 − δ (4)

which is reduced using the relations (2)

and (3) to

1 = δum
n+1um

n + 1 − δ,

which is not satisfied by a negative-soliton

um
n ≤ 1.

However, the above equation is reduced,

in the ultradiscrete limit, to the following

form,

0 = max(Ûm
n + Ûm

n+1 − 1,0),

which is satisfied by the negative-soliton

Ûm
n ≤ 0

.



The negative-soliton plays an important
role in the initial value problem of the
Box-Ball system.

It generates many balls in a box over the
capacity of the box after colliding with a
soliton as is shown below.

m=0 {0,1,1,1,1,1,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0}

m=1 {0,0,0,0,0,0,1,1,1,1,1,-2,0,0,0,0,0,0,0,0,0,0,0}

m=2 {0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0}

m=3 {0,0,0,0,0,0,0,0,0,0,0,-2,1,1,1,1,1,0,0,0,0,0,0}

m=4 {0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,1,1,1,1,1,0}

Three balls in a box of capacity 1.



2. Static solutions to the ultradiscrete Toda
eq.

We have the discrete Toda equation in
the bilinear form

fm+1
n fm−1

n − (fm
n )2

= δ2[fm
n+1fm

n−1 − (fm
n )2] (5)

which is transformed into the discrete Toda
equation

V m+1
n V m−1

n

(V m
n )2

=
(1 + δ̂2V m

n+1)(1 + δ̂2V m
n−1)

(1 + δ̂2V m
n )2

,

δ̂2 =
δ2

1 − δ2
, (6)

through the transformation

V m
n =

fm
n+1fm

n−1

(fm
n )2

.

Let

V m
n = exp(xm

n /ϵ), δ = exp(−L/ϵ).



Then we obtain an nonlinear discrete equa-
tion of xm

n ,

xm+1
n − 2xm

n + xm−1
n

= ϵ log[
(1 + δ̂2 exp(xm

n+1/ϵ))(1 + δ̂2 exp(xm
n−1/ϵ)

(1 + δ̂2 exp(xm
n /ϵ))2

],

which is reduced, in the small limit of ϵ,

to the ultradiscrete Toda equation,

xm+1
n − 2xm

n + xm−1
n

= max(0, xm
n+1 − 2L) − 2max(0, xm

n − 2L)

+max(0, xm
n−1 − 2L).



We look for a static solution V s(n),

V s(n) =
fm
n+1fm

n−1

(fm
n )2

,

fm
n = fs(n),

to the discrete Toda equation.

The bilinear equation (5) is rearranged as

fm+1
n fm−1

n

(fm
n )2

+ δ2 = 1 + δ2
fm
n+1fm

n−1

(fm
n )2

,

which is reduced, for a static solution, to

1 + δ2 = 1 + δ2V s(n).

Obviously V s(n) does not solve it except
a trivial case V s(n) = 1.

However the above equation is reduce, in
the ultradiscrete limit, to

max(0,−2L) = max(0, xs(n) − 2L)

which is satisfied by xs(n) if

xs(n) ≤ 2L, for all n.



The static solution plays an important

role in the ultradiscrete nonuniform Toda

equation.

We have calculated a soliton ym
n passing

through junctions in the nonuniform Toda

lattice.

The figure shows the non-uniformity c(n)

introduced to the discrete Toda lattice,where

the atoms located at −5 ≤ n ≤ 5 are dif-

ferent from others.

c(n)
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We observe a soliton passing through junc-

tions generates ripples at the junctions.



We have calculated a soliton passing through

junctions of the ultradiscrete nonuniform

Toda equation,

ym+1
n − 2ym

n + ym−1
n

= max[0, ym
n+1 − 2L + c(n + 1)]

−2max[0, ym
n − 2L + c(n)]

+max[0, ym
n−1 − 2L + c(n − 1)].
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In the figures the solid lines express theoreti-

cal values of y(m, n) as a function of n, while

the dots indicates numerical values of ym
n .

All dots are on the solid lines.

Ryogo Hirota,“New Solutions to the Ultradis-

crete Soliton Equations”,

STUDIES IN APPLIED MATHEMATICS 122:361-

376(2009).



2. Pfaffian Expressions

Multi-soliton solution to the soliton equation

is expressed by the pfaffian and the bilinear

form of the soliton equation is reduced to

the identity of pfaffians.

Multi-soliton to a soliton equation has two

types of expression.

1. One is expressed by a sum of exponential

functions which is obtained by a pertur-

bational method.

2. Another is expressed by a pfaffian (deter-

minant).



The perturbational method of finding soliton

solution is very powerful but difficulty of find-

ing solution increases very rapidly as increas-

ing number of solitons included in the solu-

tion.

However we may assume an algebraic struc-

ture of solution by the perturbational method

and find a pfaffian expression for solution.

The τ−function fm
n in the perturbed form has

the following form in general

fm
n = 1 + eη1(m,n) + eη2(m,n)

+a12eη1(m,n)+η2(m,n),

and is easily ultradiscretized.

However pfaffians (determinants) can not be

ultradiscretized due to negative terms.



A remedy for the problem was found by Taka-

hashi and Hirota.

D.Takahashi and R.Hirota:

“ Ultradiscrete Soliton Solution of Permanent

Type”,

JPSJ 76 (2007) 104007,

We have expressed the multi-soliton solutions

to an ultradiscrete soliton equation called “Box

and Ball system” by ultradiscretized perma-

nents instead of determinants.

A permanent is a signature free determinant.

Nagai has shown that soliton solutions to the

ultradiscrete Toda equation are expressed by

the ultradiscretized permanents.

H.Nagai:

“ A New Expression of Soliton Solution to

the Ultradiscrete Toda Equation”,

J.Phys. A 41 (2008) 235204,



These facts suggest that there must be an

idenity of ultradiscretized permanents instead

of determinants.

More generally we expect an identity of ultra-

discretized hafnians instead of pfaffians.

A hafnian is a signature free pfaffian intro-

duced by Caieniello.



3. Ultradiscrete Analogue of

Identities of Pfaffians

(a) Plücker relation:

We look for an ultradiscrete analogue of the

following simple identity of determinants∣∣∣∣∣ a1 a2
b1 b2

∣∣∣∣∣
∣∣∣∣∣ a3 a4

b3 b4

∣∣∣∣∣ −
∣∣∣∣∣ a1 a3

b1 b3

∣∣∣∣∣
∣∣∣∣∣ a2 a4

b2 b4

∣∣∣∣∣
+

∣∣∣∣∣ a1 a4
b1 b4

∣∣∣∣∣
∣∣∣∣∣ a2 a3

b2 b3

∣∣∣∣∣ = 0,

which is one of the Plücker relations.

We replace the determinants by the corre-

sponding permanents∣∣∣∣∣ a1 a2
b1 b2

∣∣∣∣∣
+

∣∣∣∣∣ a3 a4
b3 b4

∣∣∣∣∣
+

−
∣∣∣∣∣ a1 a3

b1 b3

∣∣∣∣∣
+

∣∣∣∣∣ a2 a4
b2 b4

∣∣∣∣∣
+

+

∣∣∣∣∣ a1 a4
b1 b4

∣∣∣∣∣
+

∣∣∣∣∣ a2 a3
b2 b3

∣∣∣∣∣
+

= 0,(7)

Let each term in Eq.(7) be q1, q2 and q3,namely



q1 =

∣∣∣∣∣ a1 a2
b1 b2

∣∣∣∣∣
+

∣∣∣∣∣ a3 a4
b3 b4

∣∣∣∣∣
+

= a1a3b2b4 + a1a4b2b3 + a2a3b1b4 + a2a4b1b3,

q2 =

∣∣∣∣∣ a1 a3
b1 b3

∣∣∣∣∣
+

∣∣∣∣∣ a2 a4
b2 b4

∣∣∣∣∣
+

= a1a2b3b4 + a1a4b2b3 + a2a3b1b4 + a3a4b1b2,

q3 =

∣∣∣∣∣ a1 a4
b1 b4

∣∣∣∣∣
+

∣∣∣∣∣ a2 a3
b2 b3

∣∣∣∣∣
+

= a1a2b3b4 + a1a3b2b4 + a2a4b1b3 + a3a4b1b2,

where q1, q2 and q3 have no negative terms

and can be ultradiscretized.

However the corresponding Plücker relation

does not hold,

q1 − q2 + q3 = 2(a1a3b2b4 + a2a4b1b3) ̸= 0.(8)



We notice that the products of the perma-

nents, q1, q2 and q3 are decomposed into a

sum of common terms q12, q13 and q23,where

qij is the common term of qi and qj for i, j =

1,2,3,

q1 = q12 + q13, q2 = q12 + q23,

q3 = q13 + q23, (9)

where

q12 = a1a4b2b3 + a2a3b1b4,

q13 = a1a3b2b4 + a2a4b1b3,

q23 = a1a2b3b4 + a3a4b1b2.

An ultradiscrete analogue of the Plücker re-

lation is obtained as follows.

Replacing the determinants by the correspod-

ing permanents we have

q1 + q3 = q2. (10)



Let

qi = exp(Qi/ϵ) for i = 1,2,3,

qij = exp(Qij/ϵ) for i, j = 1,2,3,.

In the small limit of ϵ we have an ultradiscrete

analogue of the Plücker relation , Eq.(10),

Q2 = max(Q1, Q3), (11)

which does not hold in general.

We investigate under what conditions on Q1, Q2

and Q3 Eq.(11) does hold. The ultradiscrete

form of Eq.(9) are

Q1 = max(Q12, Q13),

Q2 = max(Q12, Q23),

Q3 = max(Q13, Q23). (12)

Substituting these expressions into Eq.(11)

we obtain

max(Q12, Q23) = max(Q12, Q13, Q23). (13)



Obviously Eq.(13) does hold if

Q13 ≤ max(Q12, Q23).

But it does not hold if

Q13 > max(Q12, Q23).

However if Q13 > max(Q12, Q23) we find, us-
ing Eq.(12)

Q1 = Q3.

Hence we obtain the following algebraic iden-
tity of the ultradiscretized permanents,

[Q2 − max(Q1, Q3)](Q1 − Q3) = 0, (14)

which we call ”ultradiscrete analogue of the
Plücker relation”.



(b) Identities of pfaffians:

It is known that a variety of soliton equations

exhibiting multi-soliton solutions expressed by

pfaffians give rise to the following identity of

pfaffians,

pf(1,2,3,4,5,6, · · · ,2n)pf(5,6, · · · ,2n)

= pf(1,2,5,6, · · · ,2n)pf(3,4,5,6, · · · ,2n)

−pf(1,3,5,6, · · · ,2n)pf(2,4,5,6, · · · ,2n)

+pf(1,4,5,6, · · · ,2n)pf(2,3,5,6, · · · ,2n).

I replace the above pfaffians by the corre-

sponding hafnians.

Let the products of hafnians be

f0 = (1,2,3,4,5,6, · · · ,2n)(5,6, · · · ,2n),

f1 = (1,2,5,6, · · · ,2n)(3,4,5,6, · · · ,2n),

f2 = (1,3,5,6, · · · ,2n)(2,4,5,6, · · · ,2n),

f3 = (1,4,5,6, · · · ,2n)(2,3,5,6, · · · ,2n).



I have proved by induction that the products

of the hafnians are decomposed into the fol-

lowing forms

f0 = f01 + f02 + f03,

f1 = f01 + f12 + f13,

f2 = f02 + f12 + f23,

f3 = f03 + f13 + f23.

Consider a relation,

f0 + f2 = f1 + f3, (15)

which does hold for pfaffians but not for haf-

nians.



Following the same procedure as the one used

before I find the algebraic idenity of the ul-

tradiscretized hafnians,

(max(F0, F2) − max(F1, F3))(F0 − F2)(F1 − F3)

= 0,

where F0, F1, F2 and F3 are the ultradiscrete

form of f0, f1, f2 and f3,respectively.

We call it the ultradiscrete analogue of the

identity of the pfaffians.

Ryogo Hirota,“Ultradiscrete analogue of the

Identity of Pfaffians”,to appear in RIMS

Kôkyûroku Bessatsu.



4. Periodic Phase Solitons

We know that the hungry Lotka-Volterra eq.

(1 + δ1)f
m
n+1fm+1

n = fm
n fm+1

n+1 + δ1fm
n−Mfm+1

n+M+1,

exhibits 1−soliton solution for an integer M ,

fm
n = 1 + r1(m, n), r1(m, n) = ωm

1 k
(n−n1)
1 ,

ω1 =
1 + δ1(1 + k−1

1 + k−2
1 + · · · + k−M

1 )

1 + δ1(1 + k1 + k2
1 + · · · + kM

1 )
.



The ultradiscrete hungry Lotka-Volterra eq.

Fm
n+1 + Fm+1

n =

max(Fm
n + Fm+1

n+1 , Fm
n−M + Fm+1

n+M+1 − 1)

is known to describes an extended ”Box and

Ball system”.

In this system all balls are numbered and the

balls with the smaller number moves earlier.

D.Takahashi “On some soliton systems de-

fined by using boxes and balls”,1993 Interna-

tional Symposium on Nonlinear Theory and

its Applications(NOLTA’93) Hawaii,U.S.A.,

December 5-10,1993,



I have found numerically that the ultradis-

crete hungry Lotka-Volterra equation exhibits

the following soliton solutions for M = 2.

-5 5 10 15

-2

-1

1

2

3

4

-5 5 10 15

-2

-1

1

2

3

4

-5 5 10 15

-2

-1

1

2

3

4

-5 5 10 15

-2

-1

1

2

3

4

-5 5 10 15

-2

-1

1

2

3

4

I called it “Wiggler”.



(a) Shinya Nakamura (Waseda Univ.) discov-
ered that “Wiggler” is expressed by the
following τ− function,

Fm
n = max(0, s1(m, n) + ϕ1(n)),

s1(m, n) = p1m − q1(n − n1),

p1 = Mq1 − 1 > 0,

under the condition

q1 > ϕ1(n + 1) − ϕ1(n), for all n

where ϕ1(n) is periodic function of n of
period M ,

ϕ1(n + M) = ϕ1(n), for all n.

We now call it “ periodic phase soliton”
because of the periodic phase factor ϕ1(n).

We have found that there is not a corre-
sponding solution for the discrete hungry
Lotka-Volterra equation.



(b) He has also found that τ−function of N
periodic phase soliton expressed by the
Casorati permanent,

F m
n =

1

2
max |s1 + ϕ1(n)| + ϕ1(n), |s1 + 3q1 + ϕ1(n + 1)| + ϕ1(n + 1), · · ·

|s2 + ϕ2(n)| + ϕ2(n), |s1 + 3q2 + ϕ2(n + 1)| + ϕ2(n + 1), · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|sN + ϕN(n)| + ϕN(n), |sN + 3qN + ϕN(n + 1)| + ϕN(n + 1), · · ·



He has proved using “permanent tech-

nique” that the τ−function solves the ul-

tradiscrete hungry Lotka-Volterra eq. for

M = 2.



5. Gauge Transformations

The bilinear equations are known to be invari-

ant under the simple gauge transformation of

the exponential type,

f → f exp(c0 + c1l + c2m + c3n).

Inspired by Nakamura’s results I have found

that a discrete equation

fm
n+1fm+1

n = fm
n fm+1

n+1

+δ(fm
n−Mfm+1

n+M+1 − fm
n−M+1fm+1

n+M),(16)

is invariant under the new gauge transforma-

tion,

f → fϕ(n),

where ϕ(n) is a periodic function of n with a

period M.



The new gauge transforms Eq.(16) into

fm
n+1ϕ(n + 1)fm+1

n ϕ(n) = fm
n ϕ(n)fm+1

n+1 ϕ(n + 1)

+δ[fm
n−Mϕ(n − M)fm+1

n+M+1ϕ(n + M + 1)

−fm
n−M+1ϕ(n − M + 1)fm+1

n+Mϕ(n + M)],

which is reduced , by the periodicity of ϕ(n) =

ϕ(n + M), to Eq.(16).

I call Eq.(16) “Discrete Hungry Lotka-Voltera

equation of BKP type” for an integer M ,

which was, for M = 2, called “Discrete Sawada-

Kotera equation.



Let

wm
n =

fm
n−M+1fm+1

n+M

fm
n fm+1

n+1

,

xm
n =

fm
n−Mfm+1

n+M+1

fm
n fm+1

n+1

.

Then Eq.(16) is transformed into a coupled
nonlinear discrete equations,

wm+1
n = wm

n

M−1∏
j=1

1 + δ(xm
n−j − wm

n−j)

1 + δ(xm+1
n+j − wm+1

n+j )
,

xm+1
n = xm

n (wm+1
n /wm

n )
1 + δ(xm

n−M − wm
n−M)

1 + δ(xm+1
n+M − wm+1

n+M)
.

τ−function of one periodic phase soliton is
given by

fm
n = 1 + r1(m, n),

r1(m, n) = ωm
1 k

(n−n1)
1 ϕ(n),

ω1 =
1 + δ/kM

1

1 + δkM
1

.
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Periodic phase soliton of normal type

(ϕ(n) > 0 for all n).
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Periodic phase soliton of singular type

(ϕ(n) < 0 for some n).

In the figures the solid lines express theoreti-

cal values of x(m, n) as a function of n, while

the dots indicates numerical values of xm
n .

All dots are on the solid lines.



The new gauge changes the interaction (phase

shifts) of solitons drastically.

The usual 2-soliton to Eq.(16) is given by

f2(m, n) = 1 + r1(m, n) + r2(m, n)

+a12r1(m, n)r2(m, n),

where

rj(m, n) = ωm
j k

(n−nj)
j ,

ωj =
1 + δ/kM

j

1 + δkM
j

,

aij =
kM
i − kM

j

(kikj)M − 1

ki − kj

kikj − 1
.

for i, j = 1,2.

While 2-periodic phase soliton solution is given

by

f2(m, n) = 1 + r1(m, n) + r2(m, n)

+a12(n)r1(m, n)r2(m, n), (17)



where

rj(m, n) = ωm
j k

(n−nj)
j ϕj(n),

ωj =
1 + δ/kM

j

1 + δkM
j

,

cij =
kM
i − kM

j

(kikj)M − 1
,

aij(n) = −(1/∆ij)

×[
M∑

n1=1

bij(n1 + n)
n1−1∏
n2=1

hij(n2 + n)],

∆ij = [
M∏

n=1

hij(n)] − 1,

bij(n) = −[hi(n) − hj(n)]cij,

hij(n) = hi(n)hj(n),

hi(n) = kiϕi(n)/ϕi(n − 1), for i, j = 1,2,3.



The usual 3-soliton to Eq.(16) is given by

f3(m, n) = 1 + r1(m, n) + r2(m, n) + r3(m, n)

+a12r1(m, n)r2(m, n)

+a13r1(m, n)r3(m, n)

+a23r2(m, n)r3(m, n)

+a123r1(m, n)r2(m, n)r3(m, n),

where

rj(m, n) = ωm
j k

(n−nj)
j ,

ωj =
1 + δ/kM

j

1 + δkM
j

,

aij =
kM
i − kM

j

(kikj)M − 1

ki − kj

kikj − 1
.

a123 = a12a13a23,

for i, j = 1,2,3.



While 3-periodic phase soliton solution is given

by

f3(m, n) = 1 + r1(m, n) + r2(m, n) + r3(m, n)

+a12(n)r1(m, n)r2(m, n)

+a13(n)r1(m, n)r3(m, n)

+a23(n)r2(m, n)r3(m, n)

+a123(n)r1(m, n)r2(m, n)r3(m, n),

where

a123(n) = −(1/∆123)

×[
M∑

n1=1

b123(n1 + n)
n1−1∏
n2=1

h123(n2 + n)],

∆123 = [
M∏

n=1

h123(n)] − 1,

b123 = b̄12(n) − b̄13(n) + b̄23(n),

h123 = h1(n)h2(n)h3(n),

b̄12(n) = [a12(n)h12(n) − a12(n − 1)h3(n)]c13c23,

b̄13(n) = [a13(n)h13(n) − a13(n − 1)h2(n)]c12c23,

b̄23(n) = [a23(n)h23(n) − a23(n − 1)h1(n)]c12c13.



What we get,substituting the conjectured

τ−function (17) into the bilinear form (16),

is not an explicit form of a12(n) nor

a12(n + 1), but a relation between a12(n)

and a12(n + 1).

We have totally M such relations,which de-

termine an individual a12(n). a12 is not a

scalar but a vector whose elements are a12(n),

for n = 1,2, · · · , M.


