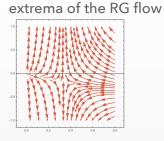
The Large Charge Expansion in QFT

Domenico Orlando INFN | Torino

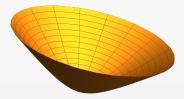
Kavli Asian Winter School | Kyoto | 6 to 8 December 2023

Selected Topics in the Large Quantum Number Expansion, Phys.Rept. 933 (2021) 1–66, arXiv:2008.03308 Resurgence of the large-charge expansion, JHEP 05 (2021) 035, arXiv:2102.12488

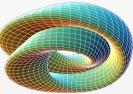
Domenico Orlando INFN | Torino


Kavli Asian Winter School | Kyoto | 6 to 8 December 2023

Selected Topics in the Large Quantum Number Expansion, Phys.Rept. 933 (2021) 1–66, arXiv:2008.03308 Resurgence of the large-charge expansion, JHEP 05 (2021) 035, arXiv:2102.12488



WHY ARE WE HERE? CONFORMAL FIELD THEORIES


quantum gravity

critical phenomena

string theory

WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

Most conformal field theories (CFTs) lack nice limits where they become simple and solvable.

No parameter of the theory can be dialed to a simplifying limit.

WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

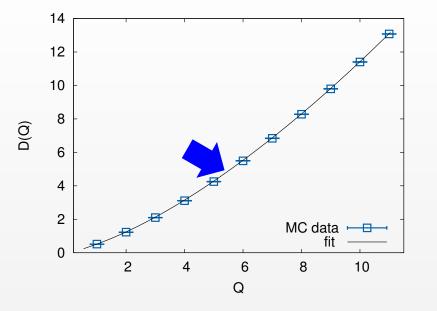
In presence of a **symmetry** there can be **sectors of the theory** where anomalous dimension and OPE coefficients simplify.

THE IDEA

Study subsectors of the theory with fixed quantum number Q.

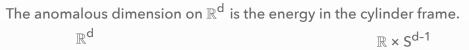
In each sector, a large Q is the **controlling parameter** in a **perturbative expansion**.

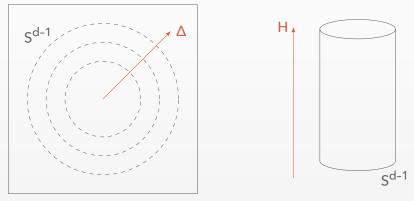
NOT AN ORIGINAL IDEA


CONCRETE RESULTS

We consider the O(N) vector model in three dimensions. In the IR it flows to a conformal fixed point [Wilson & Fisher].

We find an explicit formula for the **dimension of the lowest primary at fixed charge**:


$$\Delta_{\rm Q} = \frac{c_{3/2}}{2\sqrt{\pi}} Q^{3/2} + 2\sqrt{\pi}c_{1/2} Q^{1/2} - 0.094 + \mathcal{O}(Q^{-1/2})$$


SUMMARY OF THE RESULTS: 0(2)

8

STATE-OPERATOR CORRESPONDENCE

Protected by conformal invariance: a well-defined quantity.

We want to write a Wilsonian effective action.

Choose a cutoff Λ , separate the fields into high and low frequency ϕ_H , ϕ_L and do the path integral over the high-frequency part:

$$e^{iS_{\Lambda}(\phi_L)} = \int \mathcal{D}\phi_H \, e^{iS(\phi_H,\phi_L)}$$

We want to write a Wilsonian effective action.

Choose a cutoff Λ , separate the fields into high and low frequency ϕ_H , ϕ_L and do the path integral over the high-frequency part:

$$e^{iS_{\Lambda}(\phi_{L})} = \int \mathcal{D}\phi_{H} e^{iS_{\Lambda}\phi_{H},\phi_{L}}$$

SCALES

• We look at a finite box of typical length R

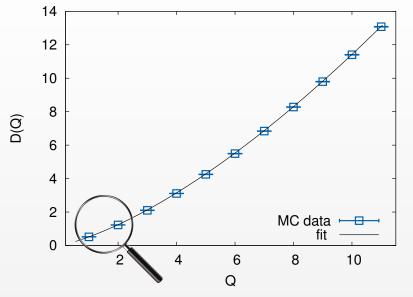
• The U(1) charge Q fixes a second scale $\rho^{1/2} \sim Q^{1/2}/R$

$$\frac{1}{R} \ll \Lambda \ll \rho^{1/2} \sim \frac{Q^{1/2}}{R} \ll \Lambda_{UV}$$

For $\Lambda \ll \rho^{1/2}$ the effective action is weakly coupled and under perturbative control in powers of ρ^{-1} .

NON-LINEAR SIGMA MODEL

In a generic theory[™], picking the lowest state of fixed charge induces a spontaneous symmetry breaking. The low-energy physics is described by a **Goldstone field** <u>X</u>.

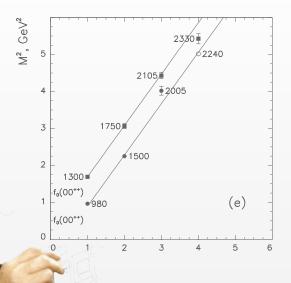

Using conformal invariance, the most general action must take the form

$$\mathsf{L}[\chi] = \mathsf{k}_{3/2} (\partial_\mu \chi \partial^\mu \chi)^{3/2} + \mathsf{k}_{1/2} \mathsf{R} (\partial_\mu \chi \partial^\mu \chi)^{1/2} + \dots$$

These are the leading terms in the expansion around the classical solution $\chi = \mu t$. All other terms are suppressed by powers of 1/Q.

The energy of the lowest state for this action is the conformal dimension of the lowest operator of given charge Q.

TOO GOOD TO BE TRUE?


TOO GOOD TO BE TRUE?

Think of **Regge trajectories**.

The prediction of the theory is

$$m^2 \propto J \Big(1 + \mathcal{O} \Big(J^{\text{--}1} \Big) \Big)$$

but experimentally everything works so well at small J that String Theory was invented.

TOO GOOD TO BE TRUE?

The unreasonable effectiveness

of the large charge expansion.

SELECTED TOPICS IN THE LARGE CHARGE EXPANSION

- O(2) model [Hellerman, DO, Reffert, Watanabe] [Monin, Pirtskhalava, Rattazzi, Seibold]
- fermions [Komargodski, Mezei, Pal, Raviv-Moshe] [Antipin, Bersini, Panopoulos] [Hellerman, Dondi, Kalogerakis, Moser, DO, Reffert]
- holography [Loukas, DO, Reffert, Sarkar] [de la Fuente] [Guo, Liu, Lu, Pang] [Giombi, Komatsu, Offertaler]
- large N
- ε double-scaling
- non-relativistic CFTs
- *N* = 2

bootstrap

resurgence

[DO, Reffert, Pellizzani] [Hellerman, DO, Reffert, Pellizzani, Swanson] [Hellerman, Maeda] [Hellerman, Maeda, DO, Reffert, Watanabe] [Bourget, Rodriguez-Gomez, Russo] [Grassi, Komargodski, Tizzano] [Cremonesi, Lanza, Martucci]

[Álvarez-Gaumé, DO, Reffert] [Giombi, Hyman]

[Antipin, Bersini, Sannino, Wang, Zhang] [Jack, Jones]

[Kravec, Pal] [Hellerman, Swanson] [Favrod, DO, Reffert]

[Arias-Tamargo, Rodriguez-Gomez, Russo]

[Badel, Cuomo, Monin, Rattazzi]

- [Jafferis, Zhiboedov]
- [Dondi, Kalogerakis, DO, Reffert] [Antipin, Bersini, Sannino, Torres] [Watanabe]

THESE LECTURES

The EFT for the O(n) model in 2 + 1 dimensions

THESE LECTURES

The EFT for the O(n) model in 2 + 1 dimensions

Justify and prove all my claims from first principles in the large-N model

THESE LECTURES

The EFT for the O(n) model in 2 + 1 dimensions

Justify and prove all my claims from first principles in the large-N model

Use resurgence for the large-charge EFT

P A R E N T A L ADVISORY EXPLICIT CONTENT