Kavli Asian Winter School 2023
Asymptotic symmetries \& Celestial Holography

Plan : I) Infrared aspects of gravity (\& gauge thy.) in $4 d$ - IFS
a) Bondi gauge \& asymptotic symm.
b) Matching condition $\&$ choige conserve.
c) Scattering $\&$ tower of soft theorems
d) Observables I memory effects
II) a) Conformal primary basis
b) Celestial amplitudes
c) Comments on AdS / CFT in flat space limit
III) a) Celestial OPE I symmetries
b) Infinite symmetry algebras

Gauge-gravity correspondence

functuating metric

QFT / CF
fixed background
Prototypical example : AdS/CFT

* match "symmetries"
* - 11 - observables
* geomery/entauglement
* BHI thermal physics
$S_{B H} \propto \frac{A}{n G} \Rightarrow$ "holographic" principle 1 (Susskind, 'thooft ' 9) beyond AdS ($\Lambda<0$)
Q): Which aspects of gravity are captured by "CFT"?
- textbook GR
- $(3+1)$-dimensional

This course: $\begin{gathered}\Lambda=0 \\ \text { should care }\end{gathered}\left\{\begin{array}{l}-(3+1) \text { gravitational wares } \\ -\end{array}\right.$ about it bc. \& astrophys. BH.
nd leading soft thy \rightarrow subleading $\rightarrow \infty$ tower

 162
I) IR aspects of gravity in AFS
a)

Bondi , v.d. Burg? Metres \& Sachs 160-162
Md AFS * framework for quantifying radiation ($\Lambda=0 G R$) from isolated sores in spacetime
gravitational waves
Neutron stoss,
Black Holes, ...

* observer "for away" from source
\Rightarrow perturbation around Mink. background.
I can also do similar analysis in BH /near-horizon region, see eg. REFS.
In retarded coords (outgoing radiation):

each pt an S^{2} with metric $\gamma_{z \bar{z}}=\frac{2}{(1+z \bar{z})^{2}}$
- (z, \bar{z}) related to (θ, ϕ) by stereographic projection (AB)
* fix "residual" diff invariance by choosing a coord. System in which:

1. waves propagate radially along family of null geodesics $u=$ ct. $\quad(u=t-r)$

$$
\Rightarrow \quad g^{u u} \partial_{\mu} u \partial_{\nu} u=0 \Rightarrow g^{n u}=0 \quad(\times 1)
$$

2. Angulor coordinates $x^{A} \quad(A, B=4,2)$ are constant along null rays:

$$
g^{\mu \nu} \partial_{\mu} u \partial_{\nu} x^{A}=0 \Rightarrow g^{u A}=0 \quad(\times 2)
$$

3. Wave fronts are spherical :

$$
2 r \operatorname{det}\left(r^{-2} \rho_{A B}\right)=0(\times 1)
$$

Total 4 conditions $\left(j^{\mu}, \mu=0, \ldots 3\right.$ in $\left.4 d\right)$
Most general Bondi metric that \rightarrow Mink. as $r \rightarrow \infty$
(*) $\quad d s^{2}=e^{2 \beta} \frac{v}{r} d u^{2}-2 e^{2 \beta} d u d r+g_{A B}\left(d x^{A}-U^{A} d u\right)\left(d x^{\beta}-u^{\beta} d u\right)$ where $\beta, V, g_{A B}, U^{A}$ are functions of $r, u_{1} x^{A}$. Let $g_{A B}=r^{2} \bar{\gamma}_{A B}+r C_{A B}(u, z, \bar{z})+\frac{J_{A B}}{r}+G\left(r^{-2}\right)$

Solving therradial $\varepsilon . \varepsilon \quad[$ Gur, Gre, Er $=0$] in a larger expansion yields further $G_{\mu v}=$ constraints : curvature w.r.t $\bar{\gamma}_{A B}$

$$
\begin{array}{cc}
\frac{V}{r}=-\frac{\bar{R}}{2}+\frac{2 M}{r}+G\left(r^{-2}\right) & \text { Structure } \\
\beta=\frac{1}{r^{2}}\left(-\frac{1}{32} C_{A B} C^{A B}\right)+G\left(r^{-3}\right) & \text { in rays pres. } \\
U^{*}=-\frac{1}{2 r^{2}} D_{B} C^{B A}-\frac{2}{3} \frac{1}{r^{3}}\left[N^{A}-\frac{1}{2} C^{A B} D^{c} C_{B C}\right] \\
& +G\left(r^{-4}\right)
\end{array}
$$

[depends on convention]
Solving $G_{u x}, G_{u A}, G_{A B}$ at $1 / r^{2}$ provides "constraints" / "evolution eq"s" I "flux-balance laws" for $M, N^{A}, J_{A B}$
\qquad Bondi mass -loss formula

$$
\partial_{n} M=-\frac{1}{8} N_{A B} N^{A B}+\frac{1}{8} \bar{\square} \bar{R}+\frac{1}{4} D_{A} t_{B} N^{A B}
$$

* convenient to choose $\bar{\gamma}_{A B}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ (col. plane)
$N_{A B} \equiv \partial_{n} C_{A B}$ where $C_{A B}(u, z, \bar{z})$ is free data [undetermined by the com] $\rightarrow N_{A B} \neq 0 \Leftrightarrow$ flux

Comment: $\partial_{n} N_{A}, \partial_{n} J_{A B}$ a mess , but will see later how to simplify the ce eqn's upon organizing the ass. expansion ion terms of data that carry definite spacetime" weights under the action of asymptotic symmetries [in particular superrotations]

Metrics of the form ($*$) enjoy a longe degree of symmetry
asymptotic symm. = differs that preserve the boundary conditions (or falloffs at large r). and that survive as $r \rightarrow \infty$. (conservative def)

Ex: Look for v.f. ξ that obey

$$
\begin{gathered}
\mathcal{L}_{\xi} g_{u u}=O\left(r^{-1}\right), \mathcal{L}_{\xi} g_{u r}=O\left(r^{-2}\right), \mathcal{L}_{\xi} g_{u z}=O(1) \\
\mathcal{L}_{\xi} g_{z z}=O(r), \mathcal{L}_{\xi} g_{z \bar{z}}=O(1) \quad(* *)
\end{gathered}
$$

$$
\begin{aligned}
\zeta(r, y, w)= & J(z, \bar{z}) \partial_{u}+Y^{\wedge}(z, \bar{z}) \partial_{A} \\
& +\frac{1}{2} D \cdot y(u \partial u-r \partial r)+\ldots
\end{aligned}
$$

$\vec{J}(z, \bar{z})$ is an arbitrary feet ${ }^{n}$ on the sphere

8 param. supert translations - origins BMS extension of Poincare (Y^{A}, Lorentz trans f. $W=\frac{1}{2} D_{A} Y^{\star}$)
YA enlarge this symm. group by allowing for violation of (20) conformal killing eq"s at isolated points on sphere
i) extended BMS: $\partial z Y^{\bar{z}}=\partial \bar{z} Y^{z}=0$ from (**) \Rightarrow supersotations (2 copies of Witt alg.)
ii) generalized BMS: relax $(* *) \Rightarrow$ Diff $\left(S^{2}\right)$
[motivated by bijection between subleading soft thun. \& cons. Law] - see Campiglia-Laddha
iii) Allow for Ways rescaling of S^{2} $\frac{1}{2} D \cdot Y \rightarrow N$ is now arbitrary.
Will focus on i) - classical symm. of gravity MINIMAL EXT. OF BMS include conformal symm. of S^{2}.

Motivation for celestial holography "Codimension-2 holography" :
thy. of gravity in $4:$ AF \sim CFT on ad cut of I.

Review Lecture I

* Asy. flat metrics in Bondi gauge + radial $\varepsilon \varepsilon$

$$
\begin{aligned}
\Rightarrow d s^{2}=d s^{2} \operatorname{Mink} & +\left(r C_{z z}(u, z, \bar{z}) d z^{2}+c c\right) \\
& +\frac{2 M}{r} d u^{2}+\cdots \quad g_{\mu v} d x^{\mu} d x^{v}
\end{aligned}
$$

人 subleading in $1 / r$
$G_{u n}, G_{u z}, G_{z z}=0 \Rightarrow$
(x) $\partial_{n} M=\ldots, \partial_{n} N_{A}=\ldots, \partial_{u} T_{A B}=\ldots$
free data: Czz (u, z, \bar{z}) \& fetus on sphere (unconstrained) (integration cts of (t))

* I large gauge transformations

Larger falloffs preserved under \mathcal{L}_{ξ} * note ass data 3 in part. Cab still changes as
$\nabla_{g \mu} \xi_{r)}=G\left(r^{-\#}\right)$ we only demand $\alpha_{\xi} g_{z z}=O(r)$ IN GENERAL * writ. full g^{*}, but (if you did exercise) to leading orders in $1 / \mathrm{r}$ amounts to solving $\nabla_{(r)}^{(0)} \xi_{r)}=G\left(r_{\text {SR }}^{-*}\right)$ NOTE NOT O

$$
\begin{aligned}
\Rightarrow \quad \xi=f \partial_{n}+y^{A}(z, \bar{z}) \partial_{A}+\frac{1}{2} & D \cdot y\left(u \partial_{u}-r \partial_{r}\right) \\
& +O(V r)
\end{aligned}
$$

subs. comp. determined from req. Bondi gauge $\mathcal{L}_{\xi} g_{r r}=\mathcal{L}_{\xi} g_{r}=0$
$\xi(J, y)$ form an algebra (ext BMS 4)

$$
\begin{aligned}
& {\left[\xi\left(J_{1}, Y_{1}\right), \xi\left(J_{2}, y_{2}\right)\right]=\xi\left(J_{12}, Y_{12}\right) } \\
& \text { where } J_{12}\left.=Y_{1}^{A} \partial_{A} J_{2}-\frac{1}{2} \partial_{A} y_{1}^{A}, J_{2}-(1-1)\right) \\
& y_{12}^{A}=Y_{1}^{A} \partial_{B} Y_{2}^{\beta}-(1 \leftrightarrow 2)
\end{aligned}
$$

[field-dependent bracket for subleading orders in $1 / r$]
Definition: $\Phi_{1, \bar{h}}(z, \bar{z})$ is a conformal primary f ST. field of weights (h, \bar{n}) if it obeys

$$
\begin{equation*}
(J=0) \quad \delta_{y} \Phi_{n_{1} \bar{n}}=\left(y^{A} \partial_{A}+h \partial_{z} y^{z}+\pi \partial_{z} y^{\bar{z}}\right) \Phi_{n \pi} \tag{t}
\end{equation*}
$$

[cf. conformal primary field in $C F T_{2}$]

* Explicit computation of $\delta_{\xi} M, \delta_{\xi} N_{A}$, \qquad
$\delta_{\xi} C_{A B}, \delta_{\xi} N_{A B}$ reveals that only $C_{A B}$ obeys (t). However, one call construct $\widehat{M}, \widehat{N}_{A}, \widehat{J}_{A B}$ that do ! [Donnay, Ruzziconi; Freidel, Pranzetti] Barnich, uzi cons ... Need dy gun @ $\frac{1}{r}$
Exercise: Show that it hence new 11 r cmp . of $\xi\left(\xi^{r}\right.$ too $)$ j imp.

$$
\widehat{M}=M+\frac{1}{8} C_{A B} N^{+B} \text { obeys (x) at } n=0 \text { gut goon }
$$

[* coincIDES W. REAL PART of $\Psi_{2}^{(0)}$ way t.

Similar analysis allows one to identify the following spacetime primaries (at acct)

$$
\begin{aligned}
& M \rightarrow \hat{M}_{\mathbb{C}}=\hat{M}_{\text {not to confuse with }} \widetilde{M}_{2}^{(0)} \\
& N_{A} \rightarrow \hat{J}_{A} \supset \Psi_{1}^{(0)} \\
& \vec{J}_{A B} \rightarrow \widehat{J}_{A B}>\Psi_{0}^{(0)}
\end{aligned}
$$

(h, \bar{h})
$(3 / 2,3 / 2)$
$(2,1)$
$\left(\frac{5}{2}, \frac{1}{2}\right)$

Covariant quantities identifeed by Newman,
Penrose a long time ago. (70s) TRACELESS component of
Ii defined from Weyl tensor R Russo
by contraction w. l, n, m, \bar{m}

$$
\psi_{0}=C_{1 m l m}
$$

(null frame), eg. $\Psi_{2}=-C_{l m \bar{m} n}$

$$
\psi_{1}=C_{\text {ln lm }}
$$

$$
\left\{\begin{array}{l}
l=\partial_{r}, n=e^{-2 p}\left(\partial_{u}+\frac{v}{2 r} \partial_{r}+r^{-2} U^{*} \partial_{A}\right) \\
m=m^{*} \partial_{A} \quad ; m^{*} \bar{m}_{A}=1
\end{array}\right\} \begin{aligned}
& \text { null } \\
& \text { vectors }
\end{aligned}
$$

$$
\text { * } g_{a b}=-l_{a} n_{b}-l_{b} n_{a}+m_{a} \bar{m}_{b}+m_{b} \bar{m}_{a} \geqslant
$$

NP. variables: $\Psi_{i}=\sum_{n \geqslant 0} \Psi_{i}^{(n)} r^{-n-5+i}$
$s \equiv h-\bar{h}, \Delta \equiv h+\bar{h}$, note all have $\Delta=3$ but $S=0,1,2$.

Separating the $S=1$ and
$s=2$ into positive \& neg. helicity components (z)

$$
\begin{align*}
& J \equiv m^{\star} \hat{\mathrm{J}}_{A}, \mathrm{~J}_{-} \equiv \bar{m}^{\star} \hat{J}_{A} \tag{z}\\
& \text { [think } z_{z} \\
& \text { vs 致 } \\
& \text { comp.] }
\end{align*}
$$

$D \equiv m^{A} D_{A}, \bar{D} \equiv \bar{m}^{A} D_{A}, N \equiv \bar{m}^{A} \bar{m}^{B} N_{A B}$

$$
M \sim \Psi_{2}^{(0)}, \quad J \sim \psi_{1}^{(0)}, J \sim \psi_{0}^{(0)}
$$ (and cc. for -)

The $G_{u u}, G_{u A}, G_{A B}$ constraints take a particularity simple form:
$2112 \cdot 15573$ +refs

$$
\partial_{n} Q_{s}=D Q_{s-1}+\frac{s+1}{2} C \cdot Q_{s-2}(+*)
$$

for $s=0,1,2 ;\left\{Q_{-1} \equiv \frac{1}{2} D N\right\} \begin{aligned} & \text { bony } \\ & \text { cond }\end{aligned}$

$$
Q_{0} \equiv M_{c}, Q_{1} \equiv J, Q_{2} \equiv J \quad Q_{-2} \equiv \frac{\partial_{n} N}{2}
$$ cons.

b) Comment: In the following will consider $(* *)$ with $s \in \mathbb{N}$. For $s>2$ these can be shown to be trancations of the evolution eqn's for $\Psi_{0}^{(n)}$ with $n \geqslant 1$.
[or equiv. - evolution eq. for $g_{A B}^{(n)}$]
$(* y)$ can be solved order by order in \# of fields

$$
Q_{s}=Q_{s}^{(1)}+Q_{s}^{(2)}+\ldots+Q_{s}^{(s+1)} \text { (polynomial) }
$$

- $\lim _{u \rightarrow-\infty} Q_{s}(u, z, \bar{z})$ should yield a conserved quantity, but instead diverges. (for $s \geqslant 1$)
- regularize $\Rightarrow q_{s}(z, \bar{z}) \quad[w /$ Pranzetti, Freidel]

Define pairing $\int_{s^{2}} \mathcal{F}(z, \bar{z}) q_{s}^{ \pm}(z, \bar{z}) \equiv \mathbb{Q}_{s}^{ \pm}$

* infinity of charges for all S.
* $S=0,1 \Rightarrow S T$ \& $S R$ charge S
$* s \geqslant 2 \Rightarrow$ higher muttipole moments of grave. frito
Similar analysis on J^{-}(indep BMSy $=C$)
no match \Rightarrow spacetime conservation law
flux through io

$$
\left[\begin{array}{l}
\text { after using stokes } \\
\text { thm. to extend } \\
\text { to integrals over } J^{ \pm}
\end{array}\right]
$$

matching \Rightarrow Lout $\left|Q_{s}^{+} S-S Q_{s}^{-}\right|$in $\rangle=0 \forall s$. $\mathbb{Q}^{ \pm}$truncated to quadratic order.

$$
\begin{aligned}
& \text { Q }{ }^{\text {I }} \text { truncated to quadratic order. } \\
& \left.\Leftrightarrow \lim _{q \rightarrow 0}\langle\text { out }| a(q) S \mid \text { in }\right)=\underbrace{\sum_{n=0}^{\infty} \omega^{n-1} \&^{(n)}}_{\text {tower of }} \text { ohms. soft }|S| \text { in }\rangle \\
& \text { this. }
\end{aligned}
$$

\longrightarrow fix $s=n \Rightarrow(\text { sub })^{s}$ - leading soft than.
DEF: SOFT THM./EXPANSION

C) Example : Leading soft graviton as conservation low of supestranslation charge

$$
(S=0)
$$

Goal: show that \langle out $| \mathbb{Q}_{S=0}^{+} S-S \mathbb{Q}_{S=0}^{-}$|n $\rangle=0$ implies $\lim _{\omega \rightarrow 0} \omega\langle$ out $| a_{ \pm}(\omega \hat{q}) S \mid$ in $\rangle=S_{ \pm}^{(0)}$ cout|Slin \rangle

Start with the definition:

$$
\begin{align*}
Q_{s=0}^{ \pm} & =\left.\int_{S^{2}} \mathcal{F}(z, \bar{z}) M_{C}(z, \bar{z})\right|_{J_{ \pm}} \\
& =\int_{g \pm} F(z, \bar{z}) \partial_{u} M_{c}(u, z, \bar{z}) \\
b \cdot c .\left.Q_{S=0}\right|_{T_{ \pm}^{ \pm}} & =0 \\
& =\int_{J^{ \pm}} \mathcal{F}(z, \bar{z}) \underbrace{\left[\frac{1}{2} D^{2} N\right.}_{\equiv Q_{S}=Q_{0}^{(1)}}+\underbrace{\frac{1}{4}}_{\equiv Q_{H}}=Q_{0}^{(2)} \tag{***}
\end{align*}
$$

\rightarrow How do these act on asymptotic scattering States?
Recall : $h_{A B} \equiv r C_{A B} \sim$ graviton kansu. traceless metric pert.

$$
\begin{aligned}
& r C_{A B}= \frac{\partial x^{N}}{\partial x^{A}} \frac{\partial x^{\nu}}{\partial x^{B}} \overbrace{\mu \nu}(*) \\
& \iint^{3} q\left[a(q) e^{i q \cdot x}+a_{\mu \nu}^{+}(q) e^{-i q \cdot x}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{N v}(q)=\sum_{\alpha, p= \pm} \varepsilon_{N \beta}^{\alpha \beta} a_{\alpha \beta}(q) \quad \text { check } * \\
& \equiv \text { polarization tensors }
\end{aligned}
$$

Excreise: Use the stationary phase approx. to take $r \rightarrow \infty$ limit of $(*)$ \& show that

$$
C_{z z} \propto \int_{0}^{\infty} d \omega\left(a_{+}(\vec{q}) e^{-i \omega u}-a_{-}^{+}(\vec{q}) e^{i \omega u}\right)
$$

$N_{z z} \equiv \partial_{n} C_{z z} \rightarrow$ substitute these mode expansions into $(* * *)$:

$$
\begin{aligned}
Q_{s} & \propto \int_{-\infty}^{\infty} d u \text { Hz }=\lim _{\omega \rightarrow 0} \int_{-\infty}^{\infty} d u e^{i \omega n} N_{z z}(u) \\
& \propto \text { SOFT GRAVITON }
\end{aligned}
$$

QH α quadratic in graviton modes use $\left[a_{ \pm}(\omega), a_{ \pm}^{+}\left(\omega^{\prime}\right)\right]=2 \omega \delta\left(\omega-\omega^{\prime}\right)$ $\delta^{2}\left(z, z^{\prime}\right)$
to compute action on asl. particle states \Rightarrow

$$
\left[Q_{H}, a_{ \pm}^{+}\left(p_{i}\right)\right] \propto S_{ \pm}^{(0)}\left(p_{i}\right) a_{ \pm}^{+}\left(p_{i}\right)
$$

Finally, inserting this into conservation law:

$$
\underbrace{\operatorname{cout}\left|\left[Q_{S}, S\right] \operatorname{lin}\right\rangle}_{\alpha \mid I+\text { crossing }}=-\underbrace{\langle\text { out }|\left[Q_{H, S}\right]|\operatorname{lin}\rangle}_{\omega \rightarrow 0}
$$

- repeat same steps to deduce subleading \& whole tower of soft hms from Ward id.
KEY OBSERVATION: $\mathbb{Q}_{s}=Q_{s}[N, C]$ and $\quad\left\{N(u, z), C\left(u^{\prime}, z^{\prime}\right)\right\} \propto \delta\left(u-u^{\prime}\right)$

$$
\delta^{2}\left(z, z^{\prime}\right)
$$

CHARGE ALGEBRA

$$
\begin{aligned}
\left\{q_{s}(z, \bar{z})=\right. & \left.q_{s^{\prime}}\left(z_{1}^{\prime} \bar{z}\right)\right\}^{1}=\left\{q_{s}^{2}, q_{s^{\prime}}^{1}\right\}+\left(s \leftrightarrow s^{\prime}\right) \\
= & \frac{k^{2}}{8}[
\end{aligned} \begin{aligned}
& -\left(s^{\prime}+1\right) q_{s^{\prime}+s-1}^{\prime}\left(z^{\prime}\right) D_{z} \delta\left(z, z^{\prime}\right) \\
& \\
& \left.+(s+1) q^{\prime} s^{\prime}+s-1(z) D_{z^{\prime}} \delta\left(z, z^{\prime}\right)\right]
\end{aligned}
$$

$\Rightarrow w_{\infty}$ debra on gravitational phase space!!
$S=1 \longrightarrow$ Virasoro algebra

Brief comment on memory

$$
\begin{aligned}
& Q_{s}=\int d u N_{z z} \alpha \lim _{\omega \rightarrow 0} \omega\left(a(\omega)+a^{+}(\omega)\right) \\
& =\int_{-\infty}^{\infty} d u \partial_{n} C_{z z}=C_{z z}(u=+\infty)-C_{z z}(u=-\infty, \\
& \text { Nz=0, } \\
& \text { - vacuum before } u_{i} \\
& \text { \& after af } \\
& \text { - } N a z \neq 0 \text { (}+ \text { zero mode) } \\
& \Rightarrow \Delta C_{z z} \neq 0 \\
& \stackrel{\text { gl. }}{\Rightarrow} C_{z z}=D_{z}^{2} N \Theta\left(u-u_{i}\right)
\end{aligned}
$$

Gravitational memory effect.
is the FT of the leading soft pole [conversely, scattering auplit allow us to extract an infrared $\frac{\text { classical dos. in the soft limit] }}{\|}$ G. MEMORY.
$\star Q_{s}^{(1)}, s \in N_{+}$: tower of $(\text {sub })^{s}$-lead. memories ('23 w/Freidel \& Pranzetti)
d) Aside on vacuum structure \& memory

First notice that vacuum metrics $\left(N_{A B}=0\right)$ are param. by $C_{A B}^{\mathrm{vac}}=-2 \partial_{A} \partial_{B} C \neq 0$ where $C=C(z, \bar{z})$. Under $S T: \delta_{J} C=J /$ shift (cf. Goldstone) .
Vacuum near $i^{0}, t^{+}(u \rightarrow \mp \infty)$ parameterized by

$$
\begin{aligned}
& C_{z z} \stackrel{u \rightarrow \pm \infty}{=}-2 \partial_{z}^{2} C_{ \pm}(z, \bar{z})+\left(u+C_{ \pm}\right) N_{z z}^{v a c}+G\left(u^{-1}\right) \\
& N_{z z} \stackrel{u \rightarrow \pm \infty}{=} N_{a z}^{v a c}+G\left(u^{-2}\right)
\end{aligned}
$$

* where $C_{ \pm}$trans f. as primaries (t) of $\left(-\frac{1}{2},-\frac{1}{2}\right)$
* $C_{ \pm}$enter in del. of Goldstone \&Mem. modes par. Soft sector of grave. phase space

$$
b=\frac{1}{2}\left(C_{+}+C_{-}\right), \quad \mathcal{N}^{(0)}=\frac{1}{2}\left(C_{+}-C_{-}\right)
$$

canonically paired:

$$
\left\{\partial_{z}^{2} \omega^{(0)}, \partial_{z^{2}}^{2}, b\right\} \propto \delta^{(z)}\left(z, z^{\prime}\right) C z
$$

effect (leading)
$N_{z z}^{\mathrm{Vac}}=\frac{1}{2}\left(\partial_{z} \varphi\right)^{2}-\partial_{z}^{2} \varphi$ whore $\varphi(()$ is a Liouville field transforming as $\delta \varphi=Y^{A} \partial_{A} \varphi+\underset{\text { shift }}{\text { ahA }_{A} y^{A}}$ where $y^{A}=\left(y^{z}, 0\right) \quad$ (otherwise weight +0)

$$
\delta N_{z z}^{v a c}=\left(y^{z} \partial_{z}+2 \partial_{z} y^{z}\right) N_{z z}^{v a c}-\partial_{z}^{3} y^{z}
$$

\hat{r}
[con also write
recall this is holomorphic
$\{f, z\}=\frac{f^{m}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$ Sch . der.

$$
\begin{gathered}
N_{z z}^{\text {vac }}=-\{G(z), z\} \\
\left.G^{\prime}(z)=e^{\varphi}\right]
\end{gathered}
$$

Nat pram. the superrotation vacua and it will shift under superrotations.

Caw use these to construct:

$$
\begin{aligned}
& \hat{C}_{A B} \equiv C_{A B}\left[C_{A B}^{\mathrm{vac}}-u N_{A B}^{\mathrm{vac}}\right] \\
& \tilde{N}_{A B} \equiv N_{A B}-N_{A B}^{\mathrm{vac}}
\end{aligned}
$$ for primary © $u=0$ to hold.

that transform like primaries of weights $\left(\tilde{c}_{z z}\right)\left(+\frac{3}{2},-\frac{1}{2}\right)$ and $(2,0)$ ($\left.\tilde{N}_{z z}\right)$ under supesseot $(0,2)(\tilde{N} \bar{z} \bar{z})$ at $u \neq 0$. $(\bar{c} \overline{\bar{x} \bar{x}})\left(-\frac{1}{2}, \frac{3}{2}\right)$

Review hectare 2
vacuum Einstein equations © large $r \rightarrow$

$$
-\partial_{n} Q_{s}=D Q_{s-1}+\frac{s+1}{2} c \cdot Q_{s-2}, s \in \mathbb{N}
$$

Os "Conformal primaries" of $\Delta=3, J=S$ at $u=0$. $\left[\bar{Q}_{S}-\right.$ another tower $]$
$-\left\{\begin{array}{l}Q_{s=0} \\ Q_{s=1} \\ Q_{s}=2\end{array}\right\} \quad O\left(\frac{1}{r}\right)$ components of gun, quA, g $A B$
$Q_{s \geqslant 3}$ from $O\left(\frac{1}{r^{s-1}}\right)$ components of $g A B$

- $\lim _{n \rightarrow-\infty} Q_{s}=\infty$ for $S \geqslant 1$; regularize \rightarrow $q_{s}(z, \bar{z})$; towers at J^{+}and J^{-}matched across $i^{\circ} \leadsto$
- conservation law :

Lout $\left.\left|q_{s}^{+}(z, \bar{z}) S_{\hat{U}}-S q_{s}^{-}(z, \bar{z})\right| i n\right\rangle=\left.0\right|_{\text {quads }}$

$$
\begin{aligned}
& \text { soft insertion } \\
& -\left\{q_{s}(z), q_{s^{\prime}}\left(z^{\prime}\right)\right\}^{(1)}=(s+1) \underbrace{\operatorname{sz}_{z^{\prime}}}_{q+s^{\prime}-1} \delta(z) \quad z_{1} z^{\prime})-\left(s^{\prime}+1\right) \underbrace{}_{q_{s}+s^{\prime}-1} D_{z} \delta\left(z_{1}, z^{\prime}\right)
\end{aligned}
$$

II) e) Conformal primary basis

Observables in 4D AFS constructed from S-matrix elements I amplitudes for a collection of particles in the for past to evolve into one in the far future.

Interactions assumed to be localized in space and time \Rightarrow particles freely moving as $t \rightarrow \pm \infty$.

$$
(-+t+)
$$

Free scalar states \leftrightarrow solutions to $K G$ com: $\left(\square+m^{2}\right) \Phi=0$

More generally, for spinning particles

$$
D \cdot \Phi=0 \quad\left[\text { eg. } s=1 / 2 \quad \mathcal{N}=\gamma^{\rho} \partial_{\mu}+m I\right]
$$

Time translation invariance $<$ Poincaré \Rightarrow
$S=S_{p} \oplus \bar{S}_{p}$ where $S_{p}>\bar{S}_{p}$ are space of solutions positive \& neg. freq. subspaces. to (x)

completely specified by $\left(\Phi, \partial_{t} \Phi\right)$ on any equal time I Cauchy slice Σ_{t} and the split into $\omega \geqslant 0$ follows from the
time-independent "inner" product on \sum_{t} (conserved)

$$
\begin{aligned}
& (\alpha, \beta) \equiv\langle\alpha, \beta\rangle_{N G}=\int_{\Sigma t} d^{3} x \xlongequal{n}_{n^{a}}^{j_{a}}(\alpha, \beta) \quad(*) \\
& j_{a}\left(\phi_{1}, \phi_{2}\right)=-i\left(\phi_{1}^{*} \partial_{a} \phi_{2}-\phi_{2} \partial_{a} \phi_{1}^{*}\right) \\
& (\alpha, \beta)=-\left(\beta^{*}, \alpha^{*}\right) \Rightarrow(*) \text { is not positive }
\end{aligned}
$$ definite; S_{p}, \bar{S}_{p} are the definite frequency subspaces: $\Phi_{+} \in S_{p}, \Phi-\in \bar{S}_{p}$

$$
\text { (*) } \partial x \phi_{ \pm}=\mp i \omega \phi_{ \pm}, \omega>0
$$

Solutions to $K G$ eq are superpositions of pos/ negative freq modes :

$$
\begin{aligned}
& \Phi_{ \pm}\left(x_{i} p\right)=e^{ \pm i p \cdot x} \quad \text { and } \\
& \Phi(x)=\int d_{p}^{3}\left(a_{p}^{+} \phi_{p}+a_{p} \phi_{p}^{\ddagger}\right)
\end{aligned}
$$

The choice of ($*$) is motivated by global translation invariance \Rightarrow ass. states $=$ reps. of Poincare We learned that asy. symm. group $>$ Poincare so we may want to organize in reps of asy. symm. group.

Reps. of ext. BMS4 not fully classified yet ...
Virasoro ${ }^{2} \operatorname{CeBMSy} \Rightarrow$ organize asy. States in reps. of Virasoro ${ }^{2}$! [cf. conf.primary © cut...] T symmetry group of CFT2 so may be able to exploit $2 D$ CFT methods to understand LID physical observables...

Replace plane wave basis above by conformal primacy basis [Pasterski, shoo, Strominger '16]
Def. Scalar conf. prim. wave functions are solutions to the wave equation:

$$
\left(\square+m^{2}\right) \Psi=0
$$

which are "heighest weight" writ the Lorentz group.

$$
S O(1,3) \approx S L(2, \mathbb{C}): M_{\mu v} \equiv-\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)(4)
$$

Lorentz generators organize into

$$
K_{i} \equiv M_{0 i} \text { (boosts), Jj } \equiv \varepsilon_{i j k} M_{j k}(r o t)
$$

obeying the Lorentz algebra

$$
\begin{aligned}
{\left[J_{i}, J_{j}\right]=} & \epsilon i j k J_{k},\left[K_{i}, K_{j}\right]=-\varepsilon_{i j k} J_{k} \\
& {\left[J_{i}, K_{j}\right]=\epsilon_{i j k} K_{k} }
\end{aligned}
$$

\rightarrow reorganize into $S L(2, C)$ algebra by taking linear combinations

$$
\begin{aligned}
& -L_{0}+L_{0} \equiv K_{3} \\
& L_{0}-L_{0} \equiv J_{3}=J_{1}+i K_{1}+i\left(J_{2}+i K_{2}\right. \\
& \\
& \\
&
\end{aligned} \quad \begin{aligned}
& L_{-1}=J_{1}+i K_{1}-i\left(J_{2}+i K_{2}\right) \\
& \\
&
\end{aligned}
$$

Then $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}$ \& similarily for $\left[\Sigma_{m}, \Sigma_{n}\right]$ check

Def: highest weight states of $S L(2, \mathbb{C})$ are defined by

$$
\begin{array}{ll}
\left(L_{0}+L_{0}\right) \Psi_{\Delta}=\Delta \Psi_{\Delta} & \text { (boost eigenstate) } \\
\left(L_{0}-L_{0}\right) \Psi_{\Delta}=0 & \text { (for scalars) } \\
L_{\Lambda} \Psi_{\Delta}=I_{1} \Psi_{\Delta}=0 &
\end{array}
$$

Using the rep. (t) \Rightarrow

$$
\Psi_{\Delta} \propto \frac{1}{\left(x^{0}+x^{3}\right)^{\Delta}}
$$

(diagonalize boast, towards $(1,0,0,-1)$

Can generalize to solutions that diagonalize boosts towards an arbitrary point on the sphere

$$
\hat{q}=(1+z \bar{z}, z+\bar{z},-i(z-\bar{z}), 1-z \bar{z})
$$

with associated Lorentz gens. obtained from - via a rotation

$$
J_{i}^{\prime}=R_{i j}(\hat{q}) J_{j}, K_{i}^{\prime}=R_{i j} K_{j}
$$

Exercise: Show that highest weight wavefunctions wot. D take the form

$$
\Psi_{\Delta}\left(\hat{q}_{i} x\right)=\frac{f\left(x^{2}\right)}{(-\hat{q} \cdot x)^{\Delta}} \quad(*)
$$

Note: $f\left(x^{2}\right)$ is Lorentz invariant \& does not affect the highest weight conditions. It is fixed by requiring that (x) obeys the com:

$$
4 x^{2} f^{\prime \prime}\left(x^{2}\right)-4(\Delta-2) f^{\prime}\left(x^{2}\right)-m^{2} f\left(x^{2}\right)=0
$$

(exercise: derive this eq. by substituting (x) into the KGeqn)

Solutions are Bessel fut ${ }^{n} s$ boy. conditions $\left(\Psi \rightarrow 0\right.$ as $\left.x^{2} \rightarrow \infty\right) \Rightarrow$

$$
f\left(x^{2}\right) \propto\left(\sqrt{-x^{2}}\right)^{\Delta-1} K_{\Delta-1}\left(i m \sqrt{-x^{2}}\right)
$$

Can check that $\mathbb{I}_{\Delta}(x \hat{i})$ transforms like a 20 conformal primary under Lore. transf.

$$
\Psi_{\Delta}\left(\Lambda_{v}^{\mu} x^{\nu} ; \vec{z}^{\prime}(\vec{z})\right)=\left|\frac{\partial \vec{z}^{\prime}}{\partial \vec{z}}\right|^{-\Delta / 2} \Psi_{\Delta}(x ; \vec{z})
$$

* Massless wavefunctions obtained by taking the limit $m \rightarrow 0$ of CPW.

$$
\Rightarrow \varphi_{\Delta}(\hat{q} ; x) \alpha \frac{1}{(\hat{q}-x)^{\Delta}} \equiv \int_{0}^{\infty} d \omega \omega^{\Delta-1} e^{i \omega \hat{q} \mid x}
$$

* Spinning wave functions obtained by dressing (massless)
CA with polarization tensors:
eg.

$$
\begin{array}{ll}
A_{\Delta_{1} J=+1}=m \varphi_{\Delta} \\
h_{D_{1} J=+2}=m m \varphi_{\Delta}, & A_{D_{1} J=-1}=\bar{m} \varphi_{\Delta} J=-2
\end{array}
$$

where m, \bar{m} were introduced before:

$$
m_{\mu}=\varepsilon_{\mu}^{+}+\# \hat{q} \mu . \quad \frac{\epsilon \cdot x}{(-\hat{q} \cdot x)}
$$

Think of $\Psi_{\Delta}^{ \pm}(\hat{q} ; x)$ os replacing $e^{ \pm i \omega \hat{q} \cdot x}$
/// \imath needs regulator
$\Psi_{\Delta}\left(\hat{q} ; x_{ \pm}\right)$tor branch cut at

$$
x_{ \pm}=x \neq i \in n \quad \hat{q} x=0
$$

Basis for $\Delta=1+i \lambda$ [Pasterski, Sheol 17] Bulk scalar field admits expansion in cp. modes

$$
\begin{aligned}
& \phi(x)=\int_{-\infty}^{\infty} d \lambda \int d^{2} z\left[0_{\lambda} \quad \varphi_{1+i \lambda}\left(\hat{q}_{i x}\right)+0_{\lambda} t_{x}\right. \\
& Q_{\lambda}^{\text {celestial operator }} \quad \varphi_{1-i \lambda}^{*}(\hat{q}) \equiv\left\langle\Phi(x), \varphi_{1+i \lambda}(\hat{q} ; x)\right\rangle_{\Sigma_{t}} \underset{\substack{\text { same }}}{ }
\end{aligned}
$$

Note : $\left\langle\varphi_{1+i \lambda_{1}}, \varphi_{1+i \lambda_{2}}\right\rangle=8 \pi^{4} \delta\left(\lambda_{1}-\lambda_{2}\right)$ $\delta^{2}\left(z_{1}, z_{2}\right)$.
b) Celestial amplitudes

Massless scattering:

$$
\tilde{A}\left(\Delta i, z_{i}\right) \equiv\langle\text { out }| ऽ|\tilde{i n}\rangle=\prod_{i=1}^{n}\left(\int_{0}^{\infty} d w_{i} \omega_{i}^{\Delta i-1}\right. \text { cout|Slin }
$$

where linlout) are boost eigenstates
Massive scattering:

$$
\widetilde{A}_{m}\left(\Delta_{i}, z_{i}\right) \equiv \prod_{i=1}^{n} \int_{H_{s}} d^{3} \hat{p}_{i} \underbrace{G_{\Delta_{i}}\left(\hat{p}_{i} ; \hat{q}\right)}\left\langle p_{\text {out }}\right| S\left|p_{i n}\right\rangle
$$

- Fourier transform of massive CPW
- Bulk to bdry- propagator on Euclidean $\mathrm{AdS}_{3}\left(\mathrm{H}_{3}\right)$ (de Boer, Solodukhin 2002)
can be understood
by resolving time like infinity w . H_{3} slices recalling that $\hat{p}_{i}^{2}=-1 \leftrightarrow$ point in in Hs .

Exercise: Compute the 3-pt cell. amplitude with 2 massless \& 1 massive particles.
c) Celestial amplitudes from limit of AdS witter diagrams [skip?]

Lorentzian AdS d+1 defined as a max. symm. space of rad. ℓ inside Mink doz with ($-++\ldots+$)

$$
\begin{equation*}
-\left(x^{0}\right)^{2}+\sum_{i=1}^{d}\left(x^{i}\right)^{2}-\left(x^{d+1}\right)^{2}=-l^{2} \tag{check}
\end{equation*}
$$

Parameterize points in AdS $_{d+1}$ as

$$
\begin{aligned}
& x^{0}=\ell \sin 6 / \cos \rho \\
& x^{d+1}=\ell \cos 6 / \cos \rho \\
& x^{i}=\ell \tan \rho \Omega_{i}, \quad \Omega_{i}^{2}=1 .
\end{aligned}
$$

points on boundary :

$$
P=\lim _{\rho \rightarrow \infty} \frac{\cos \rho}{l} X\left(\gamma, \rho, \Omega_{i}\right)
$$

cf. CFTd in embedding space

$$
\text { Witten diagrams : } \pi\left(\int_{\substack{\text { bul } \\ \text { pts. } \\ \alpha}} d^{d+1} S_{d+1}\right) \underset{\substack{\text { dry } \\ p_{i}^{+s}}}{\pi} K_{\Delta_{i}}\left(P_{i} ; x_{\alpha}\right)
$$

$K_{\Delta}(P, x)$ is a bulk-to-bdry propagator $\frac{C_{\Delta}}{(-P \cdot x)^{\Delta}} \quad$ while B is a product of solves sourced wave eq. in AdS d_{t})

Observations: (1) for boundary points $\vec{b}_{i}= \pm \frac{\pi}{2}$ $\underset{p+s}{b l k}\left\{\begin{array}{l}r=l \cdot \rho \\ t=l \cdot ъ\end{array}\right\},\left\{\begin{array}{l}l \rightarrow \infty \\ \text { fixed }(r, i t)\end{array}\right\}$ the bulk - to - bdry prop becomes a massless CPW in (d+1)-flat space with $\Delta=\Delta_{i}$ inherited from $C F T_{d}$ operator.
(2) for $b_{i}= \pm \frac{\pi}{2}+\frac{u_{i}}{l}, l \rightarrow \infty$

$$
\int_{-\infty}^{\infty} d u_{i} u_{i}^{-\lambda_{i}} K_{\Delta i}\left(P_{i} ; x_{i}\right) \underset{l \rightarrow \infty}{=} \varphi_{\Delta i+\lambda_{i}-1}
$$

EXERCISE
Suggests that for this kinematic configuration AdS dot mitten diagrams \rightarrow celestial amplit.

$$
\text { in }(d-1)-\operatorname{dim} .
$$

* in finitesimal time bands around $\pm \frac{\pi}{2}$ $\Leftrightarrow \mathrm{J} \pm$; compactification \Rightarrow celestial amplitudes ; otherwise Carrollian correlators *

Refs : w/de Gioia
III) Holographic aspects of gauge \& gravity thys. in 4 dim. (massless scattering)
a) Celestial symmetries :

- Lorentz $S L(2, C)$ symmetries

$$
\sum_{n=1}^{N} \mathcal{L}_{i}^{(n)} \tilde{\mathcal{A}}\left(\Delta_{i}, z_{i}\right)=0, \quad i=-1,0,1
$$

and similarly $\mathscr{F}_{0} \bar{L}_{i}$. $\mathcal{L}_{i}, \overline{\mathcal{L}}_{i}$ admit a 20 representation (cf. global conformal generators in $2 D$ CT)

- Poincare symmetries

$$
\begin{aligned}
& \sum_{n=1}^{N} \hat{P}^{(n)} \tilde{A}\left(\Delta_{i}, z_{i}\right)=0, \\
& \hat{P}^{(n)}=\hat{g}\left(z_{n}\right) \underbrace{e^{\partial \Delta n}}
\end{aligned}
$$

- weight shifting operator
- conformal primacy basis rep.

In momentum basis $p=\omega \hat{q}$ aud

$$
\begin{aligned}
p(j) \tilde{A}\left(\Delta i, z_{i}\right) & =\ldots \int_{0}^{\infty} d \omega \omega^{\Delta j_{1}-\ldots} \omega \hat{q}_{j} A\left(\omega, z_{i}\right) \\
& =\hat{q} \dot{i} \tilde{A}\left(\ldots, \Delta j+1, z_{j}, \ldots\right) \text { with all }
\end{aligned}
$$ $i^{\text {th }}$ external other Δ fixed.

Example : 4-point functions

$$
\tilde{A}_{4}=K_{n i}, \bar{h}_{i}\left(z_{i}, \bar{z}_{i}\right) \delta(r-\bar{r}) f^{h_{i}, \bar{h}_{i}}(r, \bar{r})
$$

conformally covariant / transl. invar. cross-ratio

$$
K_{h_{i}, \bar{h}_{i}}=\prod_{i<j=1}^{4} z_{i j} h_{3}-h_{i}-h_{j} \bar{z}_{i j} \bar{\hbar} /\left(3-\bar{h}_{i}-\bar{h}_{j}, \quad h \equiv \sum_{i=1}^{4} h_{i}\right.
$$

$r=\frac{z_{13} z_{24}}{z_{12} z_{34}}, \bar{r}=r^{*}$ are conf. invariant cross ration

$$
(r=-t / s)_{p_{1}}^{p_{0} x_{i}+i+}
$$

$\delta(r-\bar{r})$ dee to momentum conservation
$f^{h_{i}, \bar{h}_{i}}(r, \bar{r})$ in 2D CFT is not fixed by symm, but instead other constraints (eg. Crossing).
Here, translation invariance imposes an additional constraint on f :

Exercise
Since $\sum_{j=1}^{4} K_{h j+\frac{1}{2}}, \hbar_{j+\frac{1}{2}}=0$, Poincaré invar \Rightarrow

$$
f^{h i+\frac{1}{2}, h_{i}+\frac{1}{2}}=f^{h_{j}+\frac{1}{2}, h_{j}+\frac{1}{2}},+i, j
$$

By induction $\Rightarrow f_{4}^{h_{i} \hbar_{i}}=f^{\beta, J_{i}}$ where

$$
\phi \equiv \sum_{i=1}^{4}\left(h_{i}+\bar{h}_{i}\right)=\sum_{i=1}^{4} \Delta i
$$

Poincare invariance cav be used to constrain the form of 3-point col amplitudes.
Ex: 2 massless, 1 massive obey

$$
\left(P_{1}+P_{2}+P_{3}^{(m)}\right) \widetilde{A}_{3}\left(1,2,3^{(m)}\right)=0
$$

Lorentz: $\widetilde{\mathcal{A}}\left(1,2,3^{(m)}\right)=\frac{C\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)}{\left|z_{12}\right|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left|z_{23}\right|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}\left|z_{13}\right|^{\Delta_{1}+\Delta_{3}-\Delta_{2}}}$
and $C\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ is subject to recursion relations that are sobered by

$$
C\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)=B\left(\frac{\Delta_{12}+\Delta_{3}}{2}, \frac{\Delta_{21}+\Delta_{3}}{2}\right) \times \text { const. }
$$

- Conformally soft symmetries
are $2 D$ repres. of hDasy. symmetries discussed in the first lecture.

Recall soft this:
Soft photon the. in 4D

$$
\begin{align*}
& \left\langle J_{z} O_{1}\left(\omega_{1}, z_{1}, \bar{z}_{1}\right) \ldots G_{n}\left(\omega_{n}, z_{n}, \bar{z}_{n}\right)\right\rangle \\
& \equiv \lim _{\omega_{n} \rightarrow 0} \omega\left\langle O^{+}\left(\omega_{1}, \bar{z}\right) \theta_{1} \ldots \theta_{n}\right\rangle \tag{*}\\
& =\sum_{k=1}^{n} \underbrace{P_{k} \cdot q}_{S_{a \in D}^{(0)+}=\sum_{k=1}^{n} \frac{Q_{k}}{z-z_{k}}\left\langle O_{1} \cdot \varepsilon_{n}^{+}\right.} \text {where } P_{k}, q
\end{align*}
$$

are null momenta \& $\varepsilon^{t} \equiv \partial z q$.
(*) Wand identity of $U(1)$ current in 2D CFT

$$
(h, \bar{h})=(1,0) \text { or }(0,1) .
$$

expect the dim. of a positive-helicity \& spin
conf. soft gluon are $\Delta=1, S=1$. Can see that holed, insertions of $\Delta=1$ ops in 2D $=D$ leading soft ops. in $4 D$:

$$
\begin{aligned}
& Q_{\Delta}^{+}(z, \bar{z})=\int_{0}^{\infty} d \omega \omega^{\Delta^{-1}} \theta^{+}(\omega, z, \bar{z}) \\
& \begin{aligned}
\lim _{\Delta \rightarrow 1}(\Delta-1) O_{\Delta}^{+}(z, \bar{z}) & =\lim _{\Delta \rightarrow 1} \int_{0}^{\infty} d \omega(\Delta-1) \omega^{\Delta-1} O^{+}(\omega, z) \\
& =2 \int_{0}^{\infty} d \omega \delta(\omega) \omega O^{+}(\omega, z \bar{z}) \\
& =\lim _{\omega \rightarrow 0} \omega O^{+}(\omega, z, \bar{z}) .
\end{aligned}
\end{aligned}
$$

We used the identity

$$
\lim _{\epsilon \rightarrow 0} \frac{\epsilon}{2}|x|^{\epsilon-1}=\delta(x)
$$

More generally:
split into bo \& \downarrow high en.

$$
\lim _{\Delta \rightarrow-n}(\Delta+n) O^{+}\left(z_{i} \bar{z}\right)=\lim _{\Delta \rightarrow-n}(\Delta+n) \int_{0}^{\omega x} d \omega \omega^{-1} \Delta^{+}
$$

$$
\begin{aligned}
& =\lim _{\Delta \rightarrow-n}(\Delta+n) \sum_{k} \int_{0}^{\omega x} d \omega \omega^{\Delta+k-1} O_{k}^{+}(z, \bar{z}) \\
& =O_{n}^{+}(z, \bar{z})
\end{aligned}
$$

where $\left(\theta^{+}(\omega, z, \bar{z})=\sum_{k} \omega^{k} \ddots_{k}^{+}(z, \bar{z})\right.$
Inced to choose $\omega *$ small enough \& note that $\int_{\omega_{x}}^{\infty} d \omega$ will not have poles at negative integer Δ].
(Sub) ${ }^{n}$-subleading soft photons correspond to Residues at $\Delta=1-n$, $n \in \mathbb{N}$.
b) Celestial operator products \& symm. algebras nd collinear limits of amplitudes
 id operator product expansions

$$
z_{12} \equiv z_{1}-z_{2} \rightarrow 0
$$

Example: Positive helicity Glum ODE
from Lorentz invariance

$$
\Delta=1, J=1
$$

* useful to work in bulk 2-2 signature, in which case z, \bar{z} real independent variables

$$
S L(2, C) \rightarrow S L(2, \mathbb{R}) \times S L(2, \mathbb{R})
$$

* can take $z_{12} \rightarrow 0$ while keeping \bar{z}_{12} fixed $*$
* use subleading soft gluon the. to fix the $C\left(\Delta_{1}, \Delta_{2}\right)$ OPE coefficient :

$$
\bar{\delta}_{b} G_{\Delta}^{ \pm a}=-(\Delta-1 \mp 1+\bar{z} \partial \bar{z}) i f^{a b c} G_{\Delta-1}^{ \pm c}
$$

negative \Rightarrow recursion relation (EXERCISE)
telicity $\left(\Delta_{1}-2\right) C\left(\Delta_{1}-1, \Delta_{2}\right)=\left(\Delta_{1}+\Delta_{2}-3\right) C\left(\Delta_{1}, \Delta_{2}\right)$
Ref: Rate, R_{1}
strominger, y uan'19]
with the unique solution

$$
C\left(\Delta_{1}, \Delta_{2}\right)=B\left(\Delta_{1},-1, \Delta_{2}-1\right) . ; B(x, y)=
$$

b') Holographic symmetry algebras

- include $S L(2, \mathbb{R})$ descendants in (t)

$$
\begin{aligned}
O_{\Delta 1}^{+a}\left(z_{1}\right) O_{\Delta 2}^{+b}\left(z_{2}\right) \sim & \frac{-i f^{a b c}}{z_{12}}
\end{aligned} \sum_{n=0}^{\infty} B\left(\Delta_{1}-1+n_{1} \Delta_{2}-1\right) x .
$$

(conf. Soft limit discussed before) \Leftrightarrow algebra
of (sub) ${ }^{3}$ - leading soft modes (from Ld pt. of ven * note that the algebra closes because $\Delta_{1}+\Delta_{2}-1 \in\left\{1_{1}, 0,-1, \ldots\right\}$ as well.

* note that taking the residue at $\Delta \perp=1-k$ only finite $\#$ of terms in ope survive Since $B(x, y)$ only has poles at $x, y \in \mathbb{Z}$ (∞ upper limit in sum replaced by k)
* defining $R^{k_{1} a}=\lim _{\epsilon \rightarrow 0} G_{k+\epsilon}^{+a}$

$$
\Rightarrow \bar{\partial}^{k+1} R^{k_{1} a}(z, \bar{z})=0 \text { so } R^{k_{1} a}(\bar{z}, \bar{z})
$$

are polynomials in $\bar{z} \leftrightarrow$ finite dm.
reps. of $S L(2, \mathbb{R})_{R}$.

* further taking residue at $\Delta_{2}=1-l$

$$
\begin{aligned}
& l \in \mathbb{N} \Rightarrow \\
& R^{k, a}\left(z_{1}, \bar{z}_{1}\right) R^{l, b}\left(z_{2}, \bar{z}_{2}\right) \sim \frac{-i f^{a b c}}{z_{12}} x \\
& \quad \sum_{n=0}^{k}\binom{1+k-l-n}{l} \frac{\bar{z}_{12}^{n}}{n!} \overline{2}^{n} R^{k+l-1}\left(z_{2}, \bar{z}_{2}\right)
\end{aligned}
$$

from which one can compute algebra
of soft modes (wit \bar{z} expansion) :

$$
\begin{aligned}
{\left[R_{n}^{k_{1} a}(z), R_{n^{\prime}}^{l b}\left(z^{\prime}\right)\right] } & =-i f^{a^{b} c}\binom{\frac{k}{2}-n+\frac{l}{2}-n^{\prime}}{\frac{k}{2}-n} \\
& \binom{\frac{k}{2}+n+\frac{l}{2}+n^{\prime}}{\frac{k}{2}+n} R^{k+l-1, c} \begin{array}{l}
n+n^{\prime}
\end{array}
\end{aligned}
$$

or rescaling $\hat{R}^{k, a}=\left(\frac{k}{2}-n\right)!\left(\frac{k}{2}+n!!R_{n}^{k_{1} a}\right.$

$$
\left[\hat{R}_{n}^{k, a}, \hat{R}^{l, b} n^{\prime}\right]=-i f^{a b c} \hat{R}^{k+l-1, c} n+n^{\prime}
$$

Same analysis in gravity $\Rightarrow W_{\infty}$ algebra that we saw before from $\varepsilon \varepsilon$. Relation can be made precise
[Ref./AR, Freidel, Pranzetio' '21]

