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Laser Fusion
Laser Astrophysics
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Plasma Processes

Laser Plasma

Astrophysical Plasma Laser Experiment
Numerical Simulation

Collisionless Shock
Turbulence
Magnetic Reconnection etc.



High Intensity Laser (Relativisitic Intensity Laser)

• Equation of Motion for Electrons in Electromagntic Fields

• Relativistic Intensity: a0 > 1
• For a Typical Laser Case (Wavelength = 1 micron)

Normalized

Typical Energy

                                       



• Laser Parameter (Characteristic)

Laser Plasma Parameters (1)
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Normalized



Laser Plasma Parameters (2)

fs Laser
J-KAREN-P @ QST
Duration 10 τ0

ps Laser
LFEX @ Osaka U
Duration 103 τ0

ns Laser
GEKKO @ Osaka U
Duration 106 τ0

Kinetic
PIC

Fluid
MHD

Iwata et al. (2019)



GOAL of Laser Plasma Physics: 
Efficient Plasma Heating by Laser (EM Wave)

• Laser-plasma interaction is the most essential process.

• Understand Energy Transport Processes
• Laser (Electro-Magnetic Wave)
• Electron (Hot, Bulk) 
• Ion

Courtesy of Y. Sentoku

Solid TargetIntense Laser
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Electromagntic Wave along a Magnetic Field

w/o B



Electromagntic Wave along a Magnetic Field

w/o B
w/ B
Righ-hand Circularly Polarized
(Electron Cyclotron Mode)

Whistler Mode



Why Whistler Wave?

Great Advantages for Plasma Heating
• No Cut-off Density: Direct Interaction with Dense Plasma
• Right-hand Circlarly Polarized: Cyclotroron Resonance with 
Electrons
→ Energy Conversion from EM Waves to Ions and Electrons

Strong External B Field

Large Amplitude EM Wave
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Plasma Conditions: "Strong" Magnetic Field and 
"Relativistic-amplitude" Laser (Electromagnetic Wave)

• External Magnetic Field

• Laser Amplitude

Strong Field

Relativistic
Intensity
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Generation of kilo-Tesla magnetic fields has been 
achieved by high-power lasers.
• Strong B Field Available in Laser Exp.
• Method (Using GEKKO Laser in Osaka)

• Coil + Compression 
• Capacitor Coil

cf.) 1 kT = 10 MG, Permanent Magnet 〜1 T

Yoneda+ 2012

Fujioka+ 2013

Korneev+ 2015 Mega Tesla?
(1010 G)

Shokov+ 2022

Motivation：
To Control Electron Dynamics
by Strong Magnetic Fields



Santos+ 2018 (LULI2000)
Daido+ 1986, Fujioka+ 2013, Law+ 2016 (GEKKO)

Capacitor Coil Target for B Generation



Magnetosphere of neutron star has similar plasma 
parameters to laser experiments.
• Fast Radio Burst (FRB)
• Emission mechanism is still unclear.
• At least one FRB is associated with a 

magnetar.
• Key Question: Can a strong radio 

wave escape the magnetosphere of 
magnetar?

• Alfven Wave in Magnetosphere of 
Magnetar

Kumar+ (2020)

Wave Excitation
by Starquake

High Density

Strong Field

Relativistic 
AmplitudeBeloborodov (2021; 2022)

Qu+ (2022)
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Short Summary

• Standing whistler waves can 
accelerate either electrons or ions 
depending on the external 
magnetic field strength.

• If magnetic fields in excess of 10 
kT become available, this could be 
the subject of new laser 
astrophysics experiments.

Magnetic Field Strength

Electron Acceleration

Ion Heating
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Electron Acceleration
in Standing Whistler Waves

Sano et al. PRE (2017)
Isayama et al. ApJ (2023)

Sano et al. PRE submitted



Electron acceleration in standing whistler wave is 
examined by1D PIC simulation 

• Target: 
• Thin Carbon Foil 

(Diamond)
• Thickness = 1 um + 

Preplasma （Scale Length 
= 1 um）

• External Magnetic Field: 
• Parallel to Laser Injection

• Laser: 
• Right-hand Circularly 

Polarized
• Wavelength = 1 um 
• Pulse Duration = 30 fs Standing Wave Formation

by Injected and Reflected Waves

External
Magnetic
Field

Solid Target

Intense Laser



Applying magnetic field enhances the energy and 
number fraction of relativistic electron.
• Enhancement of Hot Electron Energy
• Clear Dichotomization with Bulk Component (Double Peak in the Spectrum)

Electron Energy Spectrum Momentum Diagram for the w/ B Case

Hot

Bulk

Bulk Component

Hot
Component

w/ B

w/o B

100MeV10keV

Isotropic

Anisotropic



Acceleration occurs in standing whistler wave at the 
target surface without exception.
• Acceleration point is just outside of the front surface.
• Acceleration takes place at the same location from non-relativistic velocity to 

relativistic at once.
• Standing wave is essential. Color denotes the 

initial position of 
each electron.
Blue: Preplasma
Red: Solid TargetTrajectories of Accelerated Electrons

Laser

Laser

Magnetic Field

E Field （Solid）
B Field （Dashed
）
e Energy
（Colored Dots）



Acceleration always takes place at the trough of 
magnetic field in standing wave.

E Field (Solid）
B Field（Dashed）

Sano et al. PRE submitted



Phase Transition in Electron Trajectory: Free from the 
"Injection Problem"
• Momentum Equation at the 

Acceleration Point

EM Field of Standing Wave

Constant with Time

Matsukiyo & Hada (2009）



Phase Transition in Electron Trajectory: Free from the 
"Injection Problem"
• Momentum Equation at the 

Acceleration Point

Small Amplitude Wave
• Non-relativistic and 

relativistic orbits are 
separated.

Electron Trajectory 
in Momentum-Phase Diagram

EM Field of Standing Wave

Constant with Time

Obtained as countour line 
of Hamiltonian

Matsukiyo & Hada (2009）

Isayama et al. (2023)



Phase Transition in Electron Trajectory: Free from the 
"Injection Problem"
• Momentum Equation at the 

Acceleration Point

Small Amplitude Wave
• Non-relativistic and 

relativistic orbits are 
separated.

Electron Trajectory 
in Momentum-Phase Diagram

EM Field of Standing Wave

Constant with Time

Obtained as countour line 
of Hamiltonian

Matsukiyo & Hada (2009）

Large Amplitude Wave
• All electrons can gain 

relativistic velocities
• Two-wave resonance

Isayama et al. (2023)



Requirement for phase transition is that wave amplitude 
is larger than the external field.
• Condition for Phase Transition

PIC Results for Dependence
on Laser Intensity

Sano et al. PRE submitted
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Requirement for phase transition is that wave amplitude 
is larger than the external field.
• Condition for Phase Transition
• The maximum energy can also be derived analytically.

Electron energy is predictable
from the initial condition

PIC Results for Dependence
on Laser Intensity

Sano et al. PRE submitted



Hot electrons are generated by the same mechanism 
evne in 2D PIC simulations.

Electric Field Distribution Electron Energy Density

External B Field
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Summary

• Laser-plasma interaction in a strong magnetic field is an important process not 
only in laser plasmas but also in astrophysical phenomena.

• Efficient plasma heating occurs in standing waves created by opposing whistler 
(Alfven) waves.

• Depending on the strength of the magnetic field, the laser energy is transported 
to electrons or ions.

• If magnetic fields in excess of 10 kT become available, this could be the subject 
of new laser astrophysics experiments.

Key parameters are "plasma density", "B field strength", "wave amplitude".
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