Particle acceleration and plasma heating in magnetized plasmas by large-amplitude electromagnetic waves

Takayoshi Sano (Institute of Laser Engineering, Osaka University) Collaborators: S. Isayama, S. Matsukiyo (Kyushu U), M. Hata (QST), K. Sugimoto (Kyoto U), Y. Sentoku (Osaka U)

Keihan Astrophysics Meeting 2024 fall 2024/10/2 (YITP, Kyoto U)

Laser Fusion Laser Astrophysics

GEKKO(激光) & LFEX

1 kJ

100 um $I_L = \frac{E_L}{\tau_L A} \sim 10^{20} \; [\mathrm{W/cm^2}] \; ,$ ns laser ↔ ps laser $P = \frac{I_L}{I} \sim 10 \text{ [PPa]}$ $10 GPa \leftrightarrow 10 PPa$ High Energy Density (High Pressure) State

High Intensity Laser (Relativisitic Intensity Laser)

• Equation of Motion for Electrons in Electromagntic Fields

$$
\begin{aligned}\n\frac{d\boldsymbol{p}}{dt} &= -e\boldsymbol{E} &\text{Normalized} &\frac{d\widetilde{\boldsymbol{p}}}{d\widetilde{t}} &= -\boldsymbol{a}_0 \\
\widetilde{\boldsymbol{p}} &= \frac{\boldsymbol{p}}{m_e c} &\widetilde{t} &= \omega_0 t &\boldsymbol{a}_0 &= \frac{e\boldsymbol{E}}{m_e c \omega_0} &\frac{\text{Typical}}{\widetilde{p}}\n\end{aligned}
$$

Typical Energy
$\widetilde{p} \sim a_0$
$\gamma - 1 \sim \sqrt{1 + \widetilde{p}^2} - 1 \sim a_0$

- Relativistic Intensity: $a_0 > 1$
- For a Typical Laser Case (Wavelength = 1 micron)

$$
I > 10^{18} \text{ [W/cm2]}
$$

$$
P \sim 10 \left(\frac{I}{10^{20}}\right) \text{ [PPa]}
$$

Laser Plasma Parameters (1)

• Laser Parameter (Characteristic)

$$
\omega_0 = 1 \mu m
$$
 $\omega_0 = 2\pi c/\lambda_0$ $\tau_0 = 3$ fs

Laser Plasma Parameters (1)

• Laser Parameter (Characteristic)

$$
\lambda_0 = 1 \text{ }\mu\text{m} \qquad \omega_0 = 2\pi c/\lambda_0 \qquad \tau_0 = 3 \text{ fs}
$$
\nLaser Amplitude

\n
$$
a_0 = \frac{eE_0}{mc\omega_0}
$$
\nNumber of the mass of the mass, we have:

\n
$$
\widetilde{n}_e = \frac{n_e}{n_c} = \frac{\omega_{pe}^2}{\omega_0^2}
$$
\n
$$
\frac{dp}{dt} = -eE \qquad \text{Normalized} \qquad \frac{d\widetilde{p}}{d\widetilde{t}} = -a_0 \qquad \text{for } n_c \sim 10^{21} \left(\frac{\lambda_0}{1 \text{ }\mu\text{m}}\right)^{-1} \text{ [cm}^{-3]}
$$

Laser Plasma Parameters (2)

GOAL of Laser Plasma Physics: Efficient Plasma Heating by Laser (EM Wave)

• Laser-plasma interaction is the most essential process.

Courtesy of Y. Sentoku

• Understand Energy Transport Processes

- Laser (Electro-Magnetic Wave)
- Electron (Hot, Bulk)
- Ion

GOAL of Laser Plasma Physics: Efficient Plasma Heating by Laser (EM Wave)

• Laser-plasma interaction is the most essential process.

Courtesy of Y. Sentoku

• Understand Energy Transport Processes

- Laser (Electro-Magnetic Wave)
- Electron (Hot, Bulk)
- Ion

Relativistic wave-particle interaction under a strong magnetic field

Electromagntic Wave along a Magnetic Field

Electromagntic Wave along a Magnetic Field

Great Advantages for Plasma Heating

- No Cut-off Density: Direct Interaction with Dense Plasma
- Right-hand Circlarly Polarized: Cyclotroron Resonance with Electrons
- → Energy Conversion from EM Waves to Ions and Electrons

Strong External B Field

\n
$$
\widetilde{B} = \frac{B_{\text{ext}}}{B_c} = \frac{\omega_{ce}}{\omega_0} \gg 1
$$
\nLarge Amplitude EM Wave

\n
$$
a_0 = \frac{eE_0}{m_e c \omega_0} \gg 1
$$

Plasma Conditions: "Strong" Magnetic Field and "Relativistic-amplitude" Laser (Electromagnetic Wave)

• External Magnetic Field

Strong Fie

$$
\qquad \textrm{eld} \quad \ \ \widetilde{B} = \frac{B_{\textrm{ext}}}{B_c} = \frac{\omega_{c\epsilon}}{\omega_0}
$$

$$
B_c \equiv \frac{m_e \omega_0}{e}
$$

$$
B_c \sim 10 \left(\frac{\lambda_0}{1 \text{ }\mu\text{m}}\right)^{-1} \text{[kT]}
$$

• Laser Amplitude

100 MG

Relativistic Intensity

$$
a_0=\frac{eE_0}{m_ec\omega_0}
$$

Generation of kilo-Tesla magnetic fields has been achieved by high-power lasers.

- Strong B Field Available in Laser Exp.
- Method (Using GEKKO Laser in Osaka)
	- Coil + Compression
	- Capacitor Coil

```
Motivation:
To Control Electron Dynamics
by Strong Magnetic Fields
```


Capacitor Coil Target for B Generation

Magnetosphere of neutron star has similar plasma parameters to laser experiments.

- Fast Radio Burst (FRB)
- Emission mechanism is still unclear.
- At least one FRB is associated with a magnetar.
- Key Question: Can a strong radio wave escape the magnetosphere of magnetar?

Qu+ (2022)

• Alfven Wave in Magnetosphere of Magnetar

7

Short Summary

• Standing whistler waves can accelerate either electrons or ions depending on the external magnetic field strength.

$$
\widetilde{B}=\frac{B_{\rm ext}}{B_c}=\frac{\omega_{ce}}{\omega_0}
$$

• If magnetic fields in excess of 10 kT become available, this could be the subject of new laser astrophysics experiments.

Electron Acceleration in Standing Whistler Waves

Sano et al. PRE (2017) Isayama et al. ApJ (2023) Sano et al. PRE submitted

Electron acceleration in standing whistler wave is examined by1D PIC simulation

- Target:
	- Thin Carbon Foil (Diamond)
	- Thickness $= 1$ um $+$ Preplasma (Scale Length $= 1$ um)
- External Magnetic Field:
	- Parallel to Laser Injection
- Laser:
	- Right-hand Circularly Polarized
	- Wavelength $= 1$ um
	-

Applying magnetic field enhances the energy and number fraction of relativistic electron.

- Enhancement of Hot Electron Energy
- Clear Dichotomization with Bulk Component (Double Peak in the Spectrum)

 $\widetilde{n} = 600 \widetilde{B} = 30 \ a_0 = 30$

Acceleration occurs in standing whistler wave at the target surface without exception.

- Acceleration point is just outside of the front surface.
- Acceleration takes place at the same location from non-relativistic velocity to relativistic at once. 10^{3}

Acceleration always takes place at the trough of magnetic field in standing wave.

Sano et al. PRE submitted

Phase Transition in Electron Trajectory: Free from the "Injection Problem"

• Momentum Equation at the Acceleration Point

Phase Transition in Electron Trajectory: Free from the "Injection Problem"

Phase Transition in Electron Trajectory: Free from the "Injection Problem"

Requirement for phase transition is that wave amplitude is larger than the external field.

• Condition for Phase Transition

$$
2a_0 \gtrsim (\widetilde{B}^{2/3} - 1)^{3/2}
$$

Sano et al. PRE submitted

Requirement for phase transition is that wave amplitude is larger than the external field.

• Condition for Phase Transition

$$
2a_0 \gtrsim (\tilde{B}^{2/3} - 1)^{3/2}
$$

$$
\xrightarrow{\text{Text}} 1 \lesssim \frac{B_{\text{ext}}}{B_c} \lesssim a_0
$$

Sano et al. PRE submitted

Requirement for phase transition is that wave amplitude is larger than the external field.

- Condition for Phase Transition $2a_0 \gtrsim (\widetilde{B}^{2/3} 1)^{3/2}$
- The maximum energy can also be derived analytically.

$$
\widetilde{p}_{\max} \approx 4a_0 + 2[\widetilde{B}(\widetilde{B} - 1)]^{1/2}
$$

Hot electrons are generated by the same mechanism evne in 2D PIC simulations.

17

Summary

- Laser-plasma interaction in a strong magnetic field is an important process not only in laser plasmas but also in astrophysical phenomena.
- Efficient plasma heating occurs in standing waves created by opposing whistler (Alfven) waves.
- Depending on the strength of the magnetic field, the laser energy is transported to electrons or ions.
- If magnetic fields in excess of 10 kT become available, this could be the subject of new laser astrophysics experiments.

$$
\widetilde{n}=\frac{n_e}{n_c}=\frac{\omega_{pe}^2}{\omega_0^2} \qquad \widetilde{B}=\frac{B_{\rm ext}}{B_c}=\frac{\omega_{ce}}{\omega_0} \qquad a_0=\frac{eE_0}{m_ec\omega_0}
$$

Key parameters are "plasma density", "B field strength", "wave amplitude".