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The binary system in the universe
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There are many phenomena driven by close binary systems.
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Big question: How to make close binary?
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— too long to merge within the Hubble time

There must be the mechanism
to reduce the separation dramatically.
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Common Envelope: pathway to make close binar
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Paczynski 1976, lvanova et al. 2013, Répka & De Marco 2023

time scale ~ several orbits

e

Common Envelope :

In which a giant star swallows its companion star close binary
The orbital energy is transferred to the envelope
of the giant, efficiently reducing the separation. 3 /5




Common Envelope: pathway to make close binar
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Open Questions In the Common Enveloge Phase

Paczynski 1976, Ivanova et al. 2013, Répka & De Marco 2023

1 Which system/ How the systems enters CE?

Macleod et al. 2018, Zhang et al. 2024

J How much orbital energy (AE .y, ) IS l0St? e marco et al 2011
It is not necessarily equal to the binding energy of the envelope.

J What structure does the stripped envelope take?

» Interaction with pre-existing Circum Binary Disk? wetzger and pejcha 2017
* A ssignificant role of magnetic fields?  Ondratschek et al. 2022
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Observations about Common Envelope phase

Luminous Red Novae Bipolar planetary nebulae
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Luminous Red Novae (LRNe) "} /i -

Optical transients

Rapid brightening followed by peak
and (long-lasting) plateau
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Luminous Red Novae: possible mechanism

Cooling Envelope Emission

How to make plateau
* Higher luminosity LRN
Shock interaction between ejecta and CBD
Metzger and Pejcha 2017, Anthony et al. 2025

Shock-
Powered
Emission

f§ : 1 * Lower luminosity LRN

4 E B sovorancon Recombination of Hydrogen

= ° "’ Matsumoto and Metzger 2022
ié’ % Chen and Ivanova 2024

CBD is made via L2 mass loss before CEE

Metzger and Pejcha 2017
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Bipolar planetary nebulae (bipolar PNe)

* Bipolar-shaped object observed in optical
» Possible origin: magnetic field amplified via CEE

Bipolar planetary nebula

close binar
Y The Calabash nebula




Observations of biQoIar PNe: The Presence of Jets
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A jet exists along a single axis; binary origin?
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C

E and polar outflows: Past MHD simulation

t= 3200 d

radial velocity
(perpendicular plane)

During the CE phase,
the magnetic field amplifies

and polar outflow are driven.
Ondratschek et al. 2022, Vetter et al. 2025

Method characteristics:

Utilizes Adaptive Mesh Refinement

— Excellent resolution in high-density regions
Employs the Powell method for magnetic fields
— Leaves finite V-B residuals

The companion is initially

placed on the surface of the primary
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Connection between Observation and Simulation
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Pre-CE mass loss via L2

should be included for CBD. Magnetic field is needed?
Radiative transfer is needed. \_ J

Credit: ESA; NASA
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The Purpose of This Study

Investigate the influence of magnetic fields
on the ejecta during the CE phase in massive binary systems

Characteristics of the method:

Starting calculations from the Roche lobe overflow
— Enabling tracking of evolution preceding the CE

Utilizing open-source MHD codes Athena++ Stone et al. 2022
— Employing Static Mesh Refinement

— Employing Constrained Transport method
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Setup for 3D magnetohydrodynamic calculations

Target system : RSG (82.1 M) and companion (35.0 M)
Ricker et al. 2019
Z
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Construction of the initial stellar structure

1. Solve hydrostatic equi. assuming a gravitational acceleration profile
2. Introduce a dipole magnetic field as initial condition

A=—F Zhu et al. 2024

:8 — pgas/pmag = 1000
at surface of main star

As for the main star’s structure, magnetic field is negligible.
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Overview of calculation setup

Target system : RSG (82.1 M) + companion (35.0 M) Ricker et al. 2019
Z

Radius of Y
main star

e 7 Uk : to be circular orbit (e = 0)

& -

— separation: a; = 30.0 au
|

Core: point particle ~ Companion:
Envelope: fluid point particle

Perform calculations with and

without a magnetic field
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Non-inertial frame Macleod et al. 2018




Result : 3D simulation with MHD

Target system : RSG (82.1 My) + companion (35.0 M)
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Result: Time evolution of separation (MHD)

Number of orbits
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Result: Comparison of anqular momentum distributions

t =441.75 (X ty = 0.87 yrs)
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Result: Time evolution of magnetic field line

+ 6 oribits

Magnetic pressure concentrates the field lines
toward the polar regions ,,




Result: Verification of outflow drive
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What is the driving mechanism of an outflow? .




Discussion: The Drive Mechanism of Outflow

t =450.00 6 =15.0°

- 10%
Candidate acceleration mechanisms |
* Magnetic pressure gradient force
*  Magnetic centrifugal force

» Gas pressure gradient force
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In most polar regions,
maghnetic pressure < gas pressure

~5.0 Define region v, = v,

as the outflow region
.

—-7.5

Ieyl 22 /25




Discussion: The Drive Mechanism of Outflow

Gas gradient force / Gravity
: |

Gas gradient forces are dominant
,/\/ throughout the entire region.

— The outflow is driven by gas grad.
— What is the role of the B-field?

o 2 4 6 8 10 (X R; = 12.4 au)
Height from mid-plane
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Discussion: The role of magnetic field

Plot of magnetic field lines at the
same time
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Ensuring the outflow's passage
via a magnetic field?




Summary and future work

1 We performed 3D MHD sim. targeting the CE of massive binaries

1 Confirmation of outflow driven by gas pressure gradient forces

1 Other analysis about ejecta which interact with circumbinary disk

Gas gradient force / Gravity
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