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Introduction: Overview of one-particle non-Hermitian systems
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Non-Hermitian Systems

Non-Hermitian Hamiltonians and matrices often appear in many physical systems.

These include Photonics, Mechanics, Electrical Circuits, Biological Physics, Optomechanics,
Hydrodynamics, Open Quantum Systems, and Non-unitary Conformal Field Theories.

For more details on where non-Hermiticity shows up, see the review by, for example,
[Ashida=Gong=Ueda, 2006.01837].
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One-particle non-Hermitian Systems

In this lecture, I will provide a brief introduction to the topological aspects of one-particle
non-Hermitian systems. Specifically, we’ll delve into the topological nature of matrices

H = {Hσσ′(x, x′)}x,x′∈Λ,σ,σ′=1,...,N

defined over a d-dimensional lattice, Λ, with internal degrees of freedom given by σ = 1, . . . , N .
We’ll assume the hopping range is local, i.e., ||H(x, x′)|| < e−|x−x′|/ξ. (Otherwise, the concept of
”dimension” would be meaningless.)
Each physical system might possess intrinsic internal symmetries (which do not affect spatial
positions).
We may be interested in the physics robust against the disorder effect, which is compatible only
with the internal symmetry.
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Example: Wilson Dirac Operator

In lattice gauge theory, we examine the lattice Dirac operator on the Euclidean cubic lattice. The
Wilson Dirac operator is defined as:

DW [U ] = I − κ
3∑

ν=1

[(I + γν)Tν+ + (I − γν)Tν−]− κ
[
eµ(I + γ4)T4+ + e−µ(I − γ4)T4−

]
,

where:

[Tν+]x,y = Uν(x)δx+ν̂,y, [Tν−]x,y = Uν(y)
†δx−ν̂,y.

Here, Uµ(x) ∈ U(N) represents the U(N) gauge field, and µ denotes the chemical potential.

When the chemical potential µ is absent (i.e., µ = 0), DW satisfies the γ5-Hermiticity condition:

γ5DW [U ]†γ5 = DW [U ].
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Ex. Mechanical Metamaterials

Consider a mass-spring model with the equation of motion:

ü = −Du+ Γu̇,

where u = {ui(x)}x,i denotes the displacement vector components.

The matrices D and Γ are real with D being positive semi-definite for
system stability.

Without friction, Γ is skew-symmetric (i.e., ΓT = −Γ). However, this
isn’t generally the case.

Using the variable ũ = (
√
Du, iu̇)T , the dynamics follows a

Schrödinger-type equation [Kane=Lubensky 1308.0554, Süsstrunk=Huber

1604.01033.]:

i
d

dt
ũ = Hũ, H =

(
O

√
D√

D iΓ

)
.

The Hamiltonian H inherently exhibits particle-hole symmetry:

σzH
∗σz = −H.

[Figure from Yoshida=Hatsugai, PRB 100, 054109 (2019)]
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Some characteristics of Non-Hermitian Matrices

Eigenvalues can be complex.

Exceptional Points: These occur when the dimension of the Jordan block is 2 or more, making the
matrix H non-diagonalizable. Example matrices include:(

λ 1
0 λ

)
and

λ 1 0
0 λ 1
0 0 λ

 .

Non-Hermitian Skin Effect [Yao=Wang 1803.01876]: The matrix behavior is sensitive to different
boundary conditions, such as periodic boundary condition (PBC), open boundary condition
(OBC), and semi-infinite boundary condition, among others.
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PT Symmetry Breaking Bender=Boettcher physics/9712001

For matrices with PT -symmetry, represented by H∗ = H, eigenvalues either appear as an isolated
real value, E∗ = E, or as a conjugate pair, (E,E∗).

PT -symmetry breaking refers to the transition where two real eigenvalues merge to form a
complex conjugate pair (E,E∗), or vice versa. Such transitions occur at an exceptional point.
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PBC vs OBC

Here are some spectra of 1-dimensional non-Hermitian models.
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Non-Hermitian Skin effect Yao=Wang 1803.01876

PBC ̸= OBC for spectra. Extreme sensitivity against the boundary condition.
In OBC, O(L) modes are localized at an edge.
A prime example is the Hatano-Nelson model, a one-dimensional model with non-reciprocal
hopping.
Non-Hermitian Skin effect has a topological origin. [Zhang=Yang=Fang 1910.01131,

Okuma=Kawabata=KS=Sato 1910.02878] (→ Okuma-san’s lecture)

H =
∑
x∈Z

tegf†
x+1fx + te−gf†

xfx+1
PBC
=⇒ HPBC =

∑
k

f†
k(te

ge−ik + te−geik)fk,

OBC
=⇒ HOBC =

L∑
x=1

tf̃†
x+1f̃x + tf̃†

x f̃x+1, f̃†
x = egxf†

x

PBC

OBC
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Example: No symmetry
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Numerical Rounding Error is not Negligible

In computational calculation, rounding error refers to the small differences between the actual real
number and its nearest representable value in the computer.

Since O(L) skin modes are exponentially localized at an edge, these small differences can
significantly affect the results.

The “Non-Bloch band theory” is used to compute the OBC spectrum in the thermodynamic
limit.Yao=Wang 1803.01876, Yokomizo=Murakami 1902.10958
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Example: Pseudo Hermiticity

ηt†nη
† = t−n, η2 = 1, tr [η] = 0.
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Example: Inversion symmetry → the Non-Hermitian skin effect is suppressed

utnu
† = t−n, u2 = 1.

15 / 91



Introduction Gap Conditions and Topology Symmetry Classes Topological Classification Intrinsic Non-Hermitian Topology

Gap Conditions and Topology
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Equivalence Condition and Phases of Matter

Water Phase Diagram:

Temperature(℃)

P
re

ss
u

re
(k

P
s)

Ice

(solid)

Water vapor

(gas)

Water

(liquid)

Critical point

374

221

The ice and water phases are distinct: A singularity in the thermodynamic function exists between
these two phases, indicating a phase transition.
Conversely, water and vapor can be considered the same phase since there exists a continuous
path connecting them without encountering a thermodynamic singularity.
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Topological Equivalence

A torus and a sphere are considered to have distinct topologies.

By shrinking one circle of the torus, we obtain a pinched torus. By further shrinking another
circle, we ultimately transform it into a sphere.

torus
Pinched torus sphane

.

_
…

→ 心 →ーね.
.

Q… (

0

What exactly defines topology?

Topological equivalence is determined by deformations that preserve the local structure of the
Euclidean space.

→
Given a defined equivalence relation, we can identify a set of equivalence classes.
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Topology of Matrices

What does it mean to classify matrices topologically?

Consider two N ×N matrices H0 and H1.

They can be connected to each other by a continuous path defined as:

Ht = (1− t)H0 + tH1, t ∈ [0, 1].

→ no topological classification.
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Hermitian Matrices: Gap Condition

For meaningful classifications, we impose a gap condition.

For Hermitian matrices H (where H† = H), the eigenvalues E are always real E ∈ R.
A reasonable gap condition is a finite energy gap Egap > 0 around zero (or the Fermi energy EF ):

E ̸= 0.

Two Hermitian matrices H0 and H1 with no zero eigenvalues are considered equivalent if they can
be continuously connected via a homotopy Ht∈[0,1] provided that Ht also satisfies the gap
condition throughout.
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Hermitian Matrices: Gap Condition (cont.)

We may think two H0 and H1 are equivalent if the numbers of negative eigenstates are the same.
This is true. H can be flattened while keeping the gap condition.

Ht = {(1− t)En + t sgn(En)} |n⟩ ⟨n|
t→1−−−→

N∑
n=1

sgn(En) |n⟩ ⟨n| =: sgnH.

The flattened Hamiltonian sgnH is uniquely identified with a point of the complex Grassmaniann:

sgnH = U

(
1N−M

−1M

)
U†, U ∼ U

(
V

W

)
,

U ∈ U(N), V ∈ U(N −M),W ∈ U(M).

→ H ∈ GrM (CN ) = U(N)/U(N −M)× U(M).

No further classifications arise since the complex Grassmaniann is simply connected
π0[GrM (CN )] = 0. For example, Gr1(C2) ∼= S2.
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Hermitian Matrices: Example of Symmetry

Even when two matrices have an equal number of negative (and positive) eigenvalues, certain
symmetries can forbid a continuous transformation between them.

Let’s consider a Hermitian matrix H with an additional skew-symmetric constraint

HT = −H, H ∈ Mat2N×2N (C).

The Pfaffian pfH ∈ C is a well-defined. 1

Given the relationship (pfH)∗ = pf H∗ = pf HT = (−1)NpfH, the ratio of the Pfaffians of two
matrices is always real:

pfH0

pfH1
∈ R,

implying that its sign is an invariant that takes on values in Z2 = {±1}.
For example, consider these two matrices:

H0 =

(
1

−1

)
, H1 =

(
−1

1

)
.

No continuous transformation connects them while preserving the gap condition and the
symmetries H† = H and HT = −H.

1pf H :=
∑

σ∈S2N,σ(2i−1)<σ(2i),σ(1)<σ(3)<···<σ(2N−1) sgn(σ)Aσ(1)σ(2) · · ·Aσ(2N−1)σ(2N)
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Hermitian Matrices: Finite Space dimensions & Translational Invariance

We have discussed Hermitian matrices H without an extended space direction.

In a d-dimensional finite space, the legs of H extend to an infinite lattice:

H = H(x, x′), x, x′ ∈ Zd.

Translational symmetry lets us define the Hamiltonian in the Bloch-momentum torus T d:

H(x, x′) = H(x− x′) =
∑
k∈Td

H(k)eik·(x−x′).

Classification is about homotopy for matrix families H(k) over torus T d.

Gapped HamiltoniansBloch-momentum torus

With symmetry 

constraint

H0(k) is equivalent to H1(k) if a homotopy Ht∈[0,1](k) exists that bridges them while preserving
the gap condition and symmetry.
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Non-Hermitian Matrices: What is the Gap Condition

Eigenvalues of non-Hermitian matrices are complex.
What is a meaningful gap condition?
A characteristic feature of complex eigenvalues is that in a PBC, the phase of an eigenvalue
around a reference energy Eref may have a winding number

W (Eref) =
1

2πi

∮
d log det[HPBC(k)− Eref ] ∈ Z.

→ the origin of the non-Hermitian skin effect [Zhang-Yang-Fang 1910.01131,

Okuma-Kawabata-KS-Sato 1910.02878].
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Non-Hermitian Matrices: Point Gap Gong-Ashida-Kawabata-Takasan-Higashikawa-Ueda 1802.07964

The winding number W (Eref) is stable unless an eigenvalue touches the reference energy Eref .

The point gap condition

E ̸= Eref (det(H(k)− Eref) ̸= 0)

makes sense.

Eg: The following two Hamiltonians are in distinct point-gapped topological phases w.r.t. the
reference energy Eref .

Re

Im

Re

Im
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Non-Hermitian Matrices: Remnants of Hermitian edge states

Even with non-Hermiticity, the remnant of Hermitian topological phases, the boundary states,
might persist.

A minor perturbation doesn’t eliminate the edge states inherent to Hermitian topological phases.
This is because the spectrum can deform continuously smoothly when perturbed slightly.
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Non-Hermitian Matrices: Line Gap Kawabata-KS-Ueda-Sato 1812.09133

To capture such remnants of Hermitian topological edge states in a non-Hermitian system, we
introduce the concept of a line gap:

Spec(H) ∩ L = ∅, where L is a line in the complex plane C.

Hamiltonians H0(k) and H1(k) are considered to belong to the same topological phase with
respect to the line gap if there exists a homotopy Ht∈[0,1](k) that connects them while preserving
the line gap and the associated symmetry.
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Non-Hermitian Matrices: Point Gap and Line gap

It is useful to introduce two types of line gaps: real line gap and imaginary line gap. These are
consistent with symmetries associating E with −E,E∗, or −E∗ (detailed later).

P: Point-gap E − Eref ̸= 0.

Lr: Real line gap Re(E − Eref) ̸= 0.

Li: Imaginary line gap Im(E − Eref) ̸= 0.

[Figure from Kawabata=KS=Ueda=Sato 1812.09133]
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Symmetry in non-Hermitian systems
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Symmetries in Non-Hermitian Systems

What kind of symmetries exist in non-Hermitian systems?

Example:
Time-reversal symmetry (TRS) is a fundamental symmetry.

UTH∗U†
T = H.

In the mean-field approach to superconductors, the Bogoliubov–de Gennes (BdG) Hamiltonian HBdG

inherently possesses particle-hole symmetry (PHS).2

UCHT
BdGU†

C = −HBdG, HBdG =

(
h ∆
∆† −hT

)
, UC =

(
1

1

)
.

Bosonic systems with quadratic interactions are captured by the bosonic BdG Hamiltonian

Ĥ = 1
2
(a†,a)HBdG(a,a†)T . To maintain the bosonic commutation relation, HBdG must be

diagonalized using a paraunitary matrix 3, which is the same as the standard diagonalization of the

effective matrix HσBdG = σzHBdG. While HσBdG is non-Hermitian, the Hermiticity of Ĥ is
encoded in its pseudo-Hermiticity:

σzH
†
σBdGσz = HσBdG.

2Note that ∆T = −∆ due to the fermion anti-commutation relation.
3UσzU

† = σz, U
†σzU = σz .
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Symmetries in Non-Hermitian Systems (cont.)

We consider the following 8 types of symmetries :

Symmetry in non-Hermitian systems

u


H
H∗

HT

H†

u† =

{
H
−H

}
, u is a unitary matrix.

This choice is ad hoc. In quantum mechanics, Winger’s theorem tells us symmetry, a transformation that
does not change the observation, is either unitary or anti-unitary. In non-Hermitan systems without
specifying a physical system, we have no such guiding principles. We may consider different types of
symmetry such as

u


H
H∗

HT

H†

 v† = eiϕH, u ̸= v, eiϕ ∈ U(1).

For example, the symmetry type uH†v† = H was discussed to construct the symmetry indicator in
KS=Ono 2105.00677.
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Symmetries in Non-Hermitian Systems (cont.)

Let G be a group. We introduce three homomorphims 4 ϕ, η, c : G → Z2 = {±1} to specify the
type of symmetry as 

ugHu†
g (ϕg = 1, ηg = 1)

ugH
∗u†

g (ϕg = −1, ηg = 1)

ugH
Tu†

g (ϕg = −1, ηg = −1)

ugH
†u†

g (ϕg = 1, ηg = −1)

 = cgH, g ∈ G,

Comparing the transformation with two consecutive h, g transformations and the transformation
with gh, we have {

uguh (ϕg = 1)
ugu

∗
h (ϕg = −1)

}
= zg,hugh, zg,h ∈ U(1), g, h ∈ G.

The relation (gh)k = g(hk) gives the constraint relations

z
ϕg

h,kz
−1
gh,kzg,hkz

−1
g,h = 1, g, h, k ∈ G.

(This means z = (zg,h) is a two-cycle in Z2(G,U(1)ϕ).)
4Let G0 and G1 be groups. f : G0 → G1 is said to be a homomorphism if f(gh) = f(g)f(h) is met.
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8 types of symmetries (names from Kawabata-KS-Ueda-Sato 1812.09133)

ϕg ηg cg Sym. Energy constraints Name

1 1 1 ugHu†
g = H E → E Unitary

1 −1 1 ugH
†u†

g = H E → E∗ Pseudo Hermiticity (PH)

−1 1 1 ugH
∗u†

g = H E → E∗ Time-reversal symmetry (TRS)

−1 −1 1 ugH
Tu†

g = H E → E Time-reversal dagger symmetry (TRS†)

−1 1 −1 ugH
∗u†

g = −H E → −E∗ Particle-hole dagger symmetry (PHS†)

−1 −1 −1 ugH
Tu†

g = −H E → −E Particle-hole symmetry (PHS)

1 1 −1 ugHu†
g = −H E → −E Sublattice symmetry (SLS)

1 −1 −1 ugH
†u†

g = −H E → −E∗ Chiral symmetry (CS)

and finer classifications (detailed from the next slide).
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38 symmetry classes Kawabata-KS-Ueda-Sato 1812.09133

What are fundamentally different symmetry classes that govern the topological nature of matrices?
→ We eventually reach the 38 symmetry classes. (cf. 10 Altland-Zirnbauer symmetry classes in
Hermitian systems. cond-mat/9602137)

Proof

(i) The Hamiltonian H is block-diagonalized to the irreducible representations α, β, γ, . . . of the
unitary subgroup G0 = {g ∈ G|ϕg = ηg = cg = 1} ⊂ G.

H =


Hα

Hβ

Hγ

. . .


(ii) A group element g ∈ G in which either ϕg, ηg, or cg is -1, acts on each block Hα as either

g preserves the irreducible representation α. g is closed inside the block Hα.
→ g acts as a Z2 symmetry inside the block Hα. (cf. Wigner criteria)

g exchanges the irreducible representations Hα
g←→ Hβ .

→ Hβ is just a copy of Hα. The topological nature is determined only in the block Hα.
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38 symmetry classes (cont.)

(iii) The problem is recast as how different symmetry actions there are in a single block Hα.

(iv) We can assume the absence of unitary symmetry (i.e., (ϕg, ηg, cg) ̸= (1, 1, 1)).
→ The symmetry group G realized in the single block is either one of

G = Z×N
2 , N = 0, 1, 2, 3.

(Otherwise, there is a unitary group element.)

(v) For a group element g with ϕg = −1, namely antiunitary symmetry, the square is proportional to
identity (since g2 = e) but its coefficient is quantized to a sign 5

ugu
∗
g = ±1.

5The coefficient should be a sign: Set ugu
∗
g = eıϕ. Then, eiϕug = ugu

∗
gug = ug(ugu

∗
g)

∗ = uge
−iϕ. The sign ±1 is

unchanged under ug 7→ eiαug .
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38 symmetry classes (cont.)

(vi) Case of N = 0 — Unique.

(vii) Case of N = 1 — Seven patterns:

(ϕ1, η1, c1) = (−1, 1, 1), (−1,−1, 1), (−1, 1,−1), (−1,−1,−1), (1,−1, 1), (1, 1,−1), (1,−1,−1).

For ϕ1 = −1, we have 2 cases for each, resulting in 2× 4 + 3 = 11.

(viii) Case of N = 2 — When ϕg = −1 is included, there are four patterns

{(ϕ1, η1, c1), (ϕ2, η2, c2)} ={(−1, 1, 1), (−1,−1, 1)}, {(−1, 1, 1), (−1, 1,−1)},
{(−1, 1, 1), (−1,−1,−1)}, {(−1,−1, 1), (−1, 1,−1)},

and choices of the signs of u1u
∗
1 = ±1 and u2u

∗
2 = ±1 for each. When ϕg = −1 is not included,

there is only one pattern

{(ϕ1, η1, c1), (ϕ2, η2, c2)} = {(1,−1, 1), (1, 1,−1)},

with the commutation or anticommutation relation of them u1u2 = ±u2u1. As a result, we have
4× 4 + 2 = 18.
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38 symmetry classes (cont.)

(ix) Case of N = 3 — The set of three generators is unique

{(ϕ1, η1, c1), (ϕ2, η2, c2), (ϕ3, η3, c3)} = {(−1, 1, 1), (−1,−1, 1), (−1, 1,−1)}.

The choices of the signs of u1u
∗
1 = ±1, u2u

∗
2 = ±1, and u3u

∗
3 = ±1. We have 2× 2× 2 = 8.

(x) In sum,

1 + 11 + 18 + 8 = 38 classes.

Cf. This is contrasted to the 43-fold classes in the pioneered work by
Bernard-LeClair. [cond-mat/0110649] This is due to overcounting and overlooking.
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Issues in the 38 Symmetry Classes of Non-Hermitian Systems

Having fundamental symmetry classes, several fundamental issues arise:

Anderson localization problem Hatano=Nelson cond-mat/9603165, ...

Spectral statistics (Level-spacing distribution) of random matrices
Hamazaki=Kawabata=Kura=Ueda 1904.13082, ...

Topological classification w.r.t. gap conditions (point or line gap)
Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964, Kawabata=KS=Ueda=Sato
1812.09133, Zhou=Lee 1812.10490, ...

Symmetry protected exceptional points? Kawabata=Bessho=Sato 1902.08479

Existence/absence of non-Hermitian skin effect Kawabata=KS=Ueda=Sato 1812.09133,
Kawabata=Okuma=Sato 2003.07597, ...

Connection to quantum many-body physics

Experimental relevance

And more...

Note: This is far from the exhaustive reference list on the topics above, due to the lack of my knowledge of recent developments.
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38 Symmetry Classes in Finite Space Dimensions

In finite space dimensions (with d ≥ 1), how we encode the 38 fundamental symmetries depends
on the specific physical systems under consideration.

One might focus on internal symmetries, which don’t change the spatial position, as they remain
compatible with the effects of the disorder.

Here, we consider the following constraints on the hopping Hamiltonian H(x, x′):
Complex conjugation is local: H(x, x′)∗ ↔ H(x, x′).
Transpose exchanges the hopping direction: H(x, x′)T ↔ H(x′, x).

This rule can be summarized in the table below:

Symmetry Symmetry in Real Space With Translational Invariance

Unitary/SLS uH(x, x′)u† = ±H(x, x′) uH(k)u† = ±H(k)

TRS/PHS† uH(x, x′)∗u† = ±H(x, x′) uH(k)∗u† = ±H(−k)

TRS†/PHS uH(x, x′)Tu† = ±H(x′, x) uH(k)Tu† = ±H(−k)

PH/CS uH(x, x′)†u† = ±H(x′, x) uH(k)†u† = ±H(k)
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A Numerical Experiment: PBC vs OBC for 38 symmetry classes

No symmetry Pseudo Hermiticity

Sublattice symmetry Chiral symmetry
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Class AI Class AII

Class D Class C
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Class AI† Class AII†

Class D† Class C†

+ Other 28 classes → The PBC and OBC spectra are coincident if class AI† symmetry exists.
Kawabata=KS=Ueda=Sato 1812.09133, Kawabata=Okuma=Sato 2003.07597, ...
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Topological Classification
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Classification table of Hermitian topological phases “Periodic Table”
Schnyder=Ryu=Furusaki=Ludwig 0803.2786, Kitaev 0901.2686

[Figure from Chiu=Teo=Schnyder=Ryu 1505.03535]

Well-established. (The derivation is soon later. )
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Point Gap and Hermitianization Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964

The non-Hermitian skin effect is characterized by a nontrivial topological number with a point gap.

Class AII†

[Okuma=Kawabata=KS=Sato 1910.02878]

How to systematically classify such topological phases/numbers? → Use the Hermitianization trick

H̃(k) =

(
H(k)†

H(k)

)
.

A point gap of H̃(k) implies a gap of H̃(k). This is because
Spec(H̃(k)) = Spec(±

√
H(k)†H(k)).

Classifying non-Hermitian H(k) is recast as that of Hermitian Hamiltonian H̃(k), which is
well-established. → Done!
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Line Gap and Flattening Kawabata=KS=Ueda=Sato 1812.09133

With the real/imaginary line gap, non-Hermitian Hamiltonians H can be Hermite and flattened
while keeping the real/imaginary line gap. → Done!

[Figure  from Kawabata-KS-Ueda-Sato 1812.09133]
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Proof (Based on App. D in Ashida=Gong=Ueda 2006.01837)

For simplicity, from now on, we set Eref = 0.

Flattening

Let C+(C−) be a circle enclosing all the eigenvalues with Re E > 0(Re E < 0).

The projector onto the eigenspace with Re E > 0(Re E < 0) is given by

P±(k) =

∮
C±

dz

2πi

1

z −H(k)
, P±(k)

2 = P±(k).

Introduce the homotopy

Ht∈[0,1](k) = (1− t)H(k) + t[P+(k)− P−(k)],

whose eigenvalues are (1− t)En(k) + t sgn[Re En(k)], which have a real line gap for t ∈ [0, 1].

H1(k) = P+(k)− P−(k) has eigenvalues ±1.
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Hermitianization

Decompose H1(k) into real and imaginary parts as

H1(k) = h1(k) + ih2(k) =
H1(k) +H1(k)

†

2
+ i

H1(k)−H1(k)
†

2i
.

H1(k)
2 = P+(k) + P−(k) = 1 implies that

h1(k)
2 − h2(k)

2 = 1, {h1(k), h2(k)} = 0.

Introduce the homotopy

H̃s∈[0,1](k) = (1− s)H1(k) + sh1(k) = h1(k) + i(1− s)h2(k),

whose square is

H̃s(k)
2 = h1(k)

2 − (1− s)2h2(k)
2 = 1 + (1− (1− s)2)h2(k)

2 ≥ 1.

Thus, H̃s(k) keeps the real line gap and H1(k) is Hermitianized to h1(k).

h1(k) is not flat. We take the flattening to h1(k) again.

(Remark) These flattening and Hermitianization methods are compatible with 38 symmetries.
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Topological Classification of Hermitian Systems

For both point and line gaps, the classification problem is recast as that for Hermitian systems,
which is well-established.

H(k)† = H(k), H(k)2 = 1 (after flattening)

So, in the remainder of this section, I review the classification of Hermitian topological phases.

Strategy: Classify 0-dimensional Hamiltonians and extend to finite space dimensions.

(Remark) The classification of non-Hermitian topological phases here is for PBC. Due to the
non-Hermitian skin effect, quantitative (and possibly qualitative) properties such as edge states
must be discussed using the bulk Hamiltonian in OBC. The bulk-boundary correspondence is true
between the bulk OBC Hamiltonian and the edge state. Yao=Wang 1803.01876, Yao=Song=Wang

1804.04672
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Altland=Zirnbauer symmetry classes

The fundamental internal symmetries are classified into 10-fold Altland-Zirnbauer (AZ) symmetry
classes. Altland=Zirnbauer cond-mat/9602137

There are three types of symmetries: 6

TRS: uTH(x, x′)∗u†
T = H(x, x′) uTu

∗
T = ±1,

PHS: uCH(x, x′)∗u†
C = −H(x, x′) uCu

∗
C = ±1,

Chiral: uΓH(x, x′)u†
Γ = −H(x, x′) u2

Γ = 1, tr [uΓ] = 0.

AZ class TRS PHS Chiral
A 0 0 0
AIII 0 0 1

AI 1 0 0
BDI 1 1 1
D 0 1 0
DIII −1 1 1
AII −1 0 0
CII −1 −1 1
C 0 −1 0
CI 1 −1 1

6tr [uΓ] = 0 is needed. Otherwise, H has zero modes.
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Classifying Space

We start with the classification of zero-dimensional Hamiltonian.

H† = H, H2 = 1 (⇔ E = ±1) + AZ symmetry.

What is the “space” of such matrices?

With “stable equivalence”, such “spaces” become the classifying spaces in the K-theory. Kitaev

0901.2686
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Example: 2× 2 Hermitian matrix with H2 = 1

2× 2 Hermitian matrix H can be expanded as

H = d0 + dxσx + dyσy + dzσz = d0 + d · σ.

Eigenvalues:

E = d0 ± |d|.

Thus, flattening implies either one of the following.
d0 = 1 and d = 0,
d0 = −1 and d = 0,
d0 = 0 and |d| = 1.

Thus, there is a one-to-one correspondence

{H ∈ Mat2×2(C)|H† = H,H2 = 1} = {d0 = 1}︸ ︷︷ ︸
pt

∪{d ∈ S2}︸ ︷︷ ︸
Sphere

∪{d0 = −1}︸ ︷︷ ︸
pt

.
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Stable equivalence Kitaev 0901.2686

Practically, the homotopy classification of Hamiltonians whose target space is a finite and fixed
dimension is not realistic.

Even the classification is not a group.

Example: class A 2× 2 Hamiltonian in 3-space dimensions (“Hopf insulator Moore=Ran=Wen

0804.4527”):

[T 3, S2] =

{
(i) Three Chern numbers (nx, ny, nz) ∈ Z×3

(ii) Hopf invariant is classified by Z2·GCD(nx,ny,nz)

The “stable equivalence condition” was introduced: Two Hamiltonians H0(k) and H1(k) are said
stably equivalent H0(k) ∼ H1(k) if H0(k)⊕H ′(k) and H1(k)⊕H ′(k) are homotopically
equivalent. 7

Physical motivation: stable against hybridization of higher- and lower-energy bands and the band
folding by breaking translational symmetry.

Mathematical motivation: (relatively) easy to compute.
7We further introduce the equivalence relation to pairs of Hamiltonians with the same size (H0(k), H1(k)). Two pairs

(H0(k), H1(k)) and (H′
0(k), H

′
1(k)) are equivalent if H0(k) ⊕ H′

1(k) ∼ H′
0(k) ⊕ H1(k). The equivalence classes form the

K-theory.
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Class A: Classifying Space C0

Let H be an N ×N Hermitian matrix H with H2 = 1.

H is diagonalized by a unitary matrix

H = U

(
1N−M

−1M

)
U†,

where M(0 ≤ M ≤ N) is the number of negative eigenvalues.

U is not unique:

U 7→ U

(
V

W

)
, V ∈ U(N −M), W ∈ U(M).

Thus, H is characterized by Grassmann manifolds

N⋃
M=0

U(N)

U(N −M)× U(M)
.

With the stable equivalence [Kitaev 0901.2686], the Hamiltonian is eventually characterized by the
classifying space C0,

C0 =
⋃
k∈Z

lim
n→∞

U(2n)

U(n+ k)× U(n− k)
.
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Class AIII: Classifying Space C1

Let H be an 2N × 2N Hermitian matrix H with H2 = 1 and chiral symmetry

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0.

WLOG, we can set uΓ = σz =

(
1

−1

)
. Then,

H =

(
q†

q

)
, q ∈ U(N).

Thus, H is characterized by the unitary group U(N).

With the stable equivalence [Kitaev, 0901.2686], the Hamiltonian is eventually characterized by the
classifying space C1,

C1 = lim
n→∞

U(n).
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Class AIII: Classifying Space C1 (alternative)

There is another perspective on C1.

Start with the diagonalization H = UσzU
†.

Set uΓ = σx. The symmetry σxHσx = −H implies that one can choose σxU = Uσx. Namely,

U = u+P+ + u−P− =
1

2

(
u+ + u− u+ − u−
u+ − u− u+ + u−

)
, u+, u− ∈ U(N).

where P± = 1±σx
2

is the projection onto σx = ±1.

The redundancy of U is U 7→ UV with V σzV
† = σz and σxV = V σx. Thus, V is a form

V = σy ⊗ Ṽ , Ṽ ∈ U(N).

We got

C1 = lim
n→∞

[U(n)× U(n)]/U(n).
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Class AI: Classifying Space R0

Let H be an N ×N Hermitian matrix H with H2 = 1 and class AI TRS

uTH
∗u†

T = H, uTu
∗
T = 1.

WLOG, we can set uT = 1 8, meaning that H is diagonalized by an orthogonal matrix

H = O

(
1N−M

−1M

)
OT .

The same logic as class A leads the classifying space R0,

R0 =
⋃
k∈Z

lim
n→∞

O(2n)

O(n+ k)×O(n− k)
.

8Every symmetric matrix uT
T = uT can be uT = QΛQT with Λ ≥ 0 and Q a unitary (Autonne–Takagi factorization).

When uT is unitary, Λ = 1.
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Class BDI: Classifying Space R1

Let H be an N ×N Hermitian matrix H with H2 = 1 and class BDI symmetry

uTH
∗u†

T = H, uTu
∗
T = 1,

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0,

uTu
∗
Γ = uΓuT .

We can set uΓ = σz and uT = 1, meaning that q is an orthogonal matrix

H =

(
q†

q

)
, q ∈ O(N).

We get the classifying space R1,

R1 = lim
n→∞

O(n).

The Z2 invariant is given by det q ∈ {±1}.
As for C1, it can also be obtained as R1 = limn→∞[O(n)×O(n)]/O(n).
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Class D: Classifying Space R2

Let H be an 2N × 2N Hermitian matrix H with H2 = 1 and class D PHS

uCH
∗u†

C = −H, uCu
∗
C = 1.

We can set uC = 1, meaning that iH is a real skew-symmetric matrix, which is diagonalized as

iH = O

[
1N ⊗

(
1

−1

)]
OT , O ∈ O(2n).

O is not unique:

O 7→ O

(
Re U Im U
−Im U Re U

)
, Re U =

U + U∗

2
, Im U =

U − U∗

2i
, U ∈ U(n).

→ R2 = lim
n→∞

O(2n)

U(n)
.

The Z2 invariant is given by pf [iH] = detO ∈ {±1}.
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Class D: Classifying Space R2 (alternative)

Start with the diagonalization H = UσzU
†.

Set uC = 1. Then, the symmetry constraint H∗ = −H implies that U can be chosen as

U∗ = Uσx, which is the same as V = Ue
iπ
4

(σx−1) is real V ∗ = V .

Then, H = V (−σy)V
†.

The redundancy of V is V 7→ V Q with Q∗ = Q and QσyQ
† = σy, which means Q ∈ U(N) as

before.

We get

R2 = lim
n→∞

O(2n)

U(n)
.
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Class DIII: Classifying Space R3

Let H be an 4N × 4N Hermitian matrix H with H2 = 1 and class CI symmetry

uTH
∗u†

T = H, uTu
∗
T = 1,

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0,

uTu
∗
Γ = −uΓuT .

We can set uΓ = σz and uT = σxτy. Then, the symmetry constraint is recast as follows.

H =

(
q†

q

)
, τyq

T τy = q.

The matrix τyq is a complex skew-symmetric and unitary, meaning that it can be a form
τyq = Q(iσy)Q

T with Q ∈ U(2N).

The redundancy of Q is Q 7→ QV with V V † = 1 and V (iσy)V
T = iσy. Namely, V ∈ Sp(N).

We get

R3 = lim
n→∞

U(2n)

Sp(n)
.
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Class AII: Classifying Space R4

Let H be an 2N × 2N Hermitian matrix H with H2 = 1 and class AII TRS

uTH
∗u†

T = H, uTu
∗
T = −1.

We can set uT = iσy =

(
1

−1

)
9. The eigenvectors come in Kramers pairs

(u2i−1, u2i) = (u2i−1, iσyu
∗
2i−1),

meaning that H is diagonalized by a compact symplectic matrix

H = S

(
1N−M

−1M

)
S†, S ∈ Sp(N) = Sp(2N ;C) ∩ U(2N) = {S ∈ U(2N)|ST iσyS = iσy}.

→ R4 =
⋃
k∈Z

lim
n→∞

Sp(2n)

Sp(n+ k)× Sp(k − n)
.

9Every skew-symmetric matrix uT
T = −uT can be uT = QΛQT with Λ =

⊕
i

(
λi

−λi

)
QT with Q a unitary. When

uT is unitary, λis can be λi ≡ 1.
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Class CII: Classifying Space R5

Let H be an N ×N Hermitian matrix H with H2 = 1 and class CII symmetry

uTH
∗u†

T = H, uTu
∗
T = −1,

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0,

uTu
∗
Γ = uΓuT .

We can set uΓ = σz and uT = τy. Then, the symmetry constraint is recast as follows.

H =

(
q†

q

)
, τyq

∗τy = q ⇔ qτyq
T = τy.

We get

R5 = lim
n→∞

Sp(n).

As for C1, it can be obtained as R5 = limn→∞[Sp(n)× Sp(n)]/Sp(n).
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Class C: Classifying Space R6

Start with the diagonalization H = UσzU
†.

Set uC = σy. Then, the symmetry constraint σyH
∗ = −Hσy implies that U can be chosen as

σyU
∗ = Uσy. Namely, U ∈ Sp(N).

The redundancy of U is U 7→ UV with V σyV
T = σy and V σzV

† = σz, which means

V =

(
v

v∗

)
with v ∈ U(N).

We get

R6 = lim
n→∞

Sp(n)

U(n)
.
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Class CI: Classifying Space R7

Let H be an 2N × 2N Hermitian matrix H with H2 = 1 and class CI symmetry

uTH
∗u†

T = H, uTu
∗
T = 1,

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0,

uTu
∗
Γ = −uΓuT .

We can set uΓ = σz and uT = σx. Then, the symmetry constraint is recast as follows.

H =

(
q†

q

)
, qT = q.

The complex symmetric and unitary matrix can be a form q = QQT with Q ∈ U(N).

The redundancy of Q is Q 7→ QV with V V † = 1 and V V T = 1. Namely, V ∈ O(N).

We get

R7 = lim
n→∞

U(n)

O(n)
.
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Classifying Space

Eventually, we get the 10 classifying spaces and their disconnected parts. 10

AZ class TRS PHS Chiral Classifying Space π0 Top. invariant

A 0 0 0 C0 = ∪k∈Z limn→∞
U(2n)

U(n+k)×U(n−k)
Z k ∈ Z

AIII 0 0 1 C1 = limn→∞ U(n) 0

AI 1 0 0 R0 = ∪k∈Z limn→∞
O(2n)

O(n+k)×O(n−k)
Z k ∈ Z

BDI 1 1 1 R1 = limn→∞ O(n) Z2 det q ∈ ±1

D 0 1 0 R2 = limn→∞
O(2n)
U(n)

Z2 pf [iH] ∈ ±1

DIII −1 1 1 R3 = limn→∞
U(2n)
Sp(n)

0

AII −1 0 0 R4 = ∪k∈Z limn→∞
Sp(2n)

Sp(n+k)×Sp(n−k)
2Z k ∈ Z

CII −1 −1 1 R5 = limn→∞ Sp(n) 0

C 0 −1 0 R6 = limn→∞
Sp(n)
U(n)

0

CI 1 −1 1 R7 = limn→∞
U(n)
O(n)

0

10Sp(N) = Sp(2N ;C) ∩ U(2N) = {S ∈ U(2N)|ST iσyS = iσy}
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Finite Space Dimensions (i) from torus to sphere

Thanks to the stable equivalence, the topological structure from “different origins” can be
discussed independently.

For d-spatial dimensions, the Bloch-momentum space is a d-dimensional torus T d, however, with
stable equivalence, the topological classification is decomposed into that of sub-spheres Sp,
0 ≤ p ≤ d, like

“H(Skyrmion + Vortex)” → “H(Skyrmion)⊕H(Vortex)”.

We can assume the Bloch-momentum space is a d-sphere.
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Finite Space Dimensions (ii) Dirac Hamiltonians

Moreover, it is found that the representative Hamiltonian can be a form of the Dirac Hamiltonian

H(k) =
d∑

i=1

kiγi +M, {γi, γj} = 2δij , {γi,M} = 0, M2 = 1.

The topological classification of H(k) is recast as the classification of the mass term M subject to
the constraint by γis and AZ symmetry.

Adding space dimensions d = 1, 2, . . . is the same as adding gamma matrices γ1, γ2, . . . .

The gamma matrices γis behave as chiral symmetries.
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Dimensional isomorphism

We will show that adding gamma matrices is nothing but a shift of AZ symmetry class.

· · · → A → AIII → A → · · · (without TRS and PHS),

· · ·AI → CI → C → CII → AII → DIII → D → BDI → AI → · · · .

The key observation is that two chiral symmetries can be “solved” trivially:

{σx,M} = {σy,M} = 0 ⇒ M = σz ⊗ M̃.
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A → AIII → A

Let us consider a d = 1 class A Dirac Hamiltonian

H(k1) = k1γ1 +M, {γ1,M} = 0.

γ1 behaves as chiral symmetry, thus,

(d = 1, class A) = (d = 0, class AIII).

Next, let us consider a d = 1 class AIII Dirac Hamiltonian

H(k1) = k1γ2 +M, {γ2,M} = 0,

γ1H(k1)γ
†
1 = −H(k1).

We can set γ1 = σx and γ2 = σz. Then,

M = σy ⊗ M̃.

No constraints on M̃ exist, meaning that

(d = 1, class AIII) = (d = 0, class A).
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Dimensional isomorphism with TRS or PHS

With antiunitary symmetry, we chase the change of AZ symmetry for M̃ .

The symmetry constraint

uTH(k)∗u†
T = H(−k),

uTH(k)∗u†
T = −H(−k)

implies that

uT γ
∗
i u

†
T = −γi, uTM

∗u†
T = M,

uCγ
∗
i u

†
C = γi, uCM

∗u†
C = −M.
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AI → CI

Let us consider a d = 1 class AI Dirac Hamiltonian

H(k1) = k1γ1 +M, {γ1,M} = 0.

The symmetry algebra

uT γ
∗
1u

†
T = −γ1, uTu

∗
T = 1,

is solved by

uT = σx, γ1 = σz.

Introducing PHS uC = iγ1uT = σy, the constraint on the matrix M is the same as class CI:

uTM
∗u†

T = M, uTu
∗
T = 1,

uCM
∗u†

C = −M, uCu
∗
C = −1.

Thus,

(d = 1, class AI) = (d = 0, class CI).
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CI → C

Let us consider a d = 1 class CI Dirac Hamiltonian

H(k1) = k1γ1 +M,

uCγ
∗
1u

†
C = γ1, uCM

∗u†
C = −M, uCu

∗
C = −1,

uΓγ1u
†
Γ = −γ1, uΓMu†

Γ = −M, u2
Γ = 1,

uCu
∗
Γ = −uΓuC .

We can set uΓ, γ1, and M as

uΓ = σx, γ1 = σz, M = σy ⊗ M̃.

The only remaining symmetry is uc, which should be a form

uC = σz ⊗ ũC , ũC ũ
∗
C = −1,

and constrain the mass term M̃ as

ũCM̃
∗ũ†

C = −M̃.

Thus,

(d = 1, class CI) = (d = 0, class C).
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Dimensional isomorphism

In this way, we have the shift of AZ symmetry classes by adding space dimensions

· · · → A → AIII → A → · · · (without TRS and PHS),

· · ·AI → CI → C → CII → AII → DIII → D → BDI → AI → · · · .

These also show the Bott periodicity

Cn−2 = Cn, Rn−8 = Rn.

Eventually, the topological classification of d-dimensional Hamiltonian H(k) with AZ symmetry
Cn or Rn is given by

π0[Cn−d] and π0[Rn−d].

→ periodic table.
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Identify Mapped Symmetry

The remaining task is to identify how 38 non-Hermitian symmetry classes are mapped to 10 AZ
Hermitian symmetry classes for each gap condition.

For the point gap, the Hermitianized doubled Hamiltonian

H̃(k) =

(
H(k)†

H(k)

)
has additional chiral symmetry

σzH̃(k)σz = −H̃(k).

Other internal symmetries are mapped for a symmetry constraint of H̃(k) and
commutation/anticommutation relation with σz.

For the real (imaginary) line gap, H(k) can be (anti-)Hermite H(k)† = H(k) (H(k)† = −H(k)).
The (anti-)Hermitian condition of H(k) is the same as imposing an additional chiral symmetry on
H̃(k):

σyH̃(k)σy = −H̃(k) for real line gap,

σxH̃(k)σx = −H̃(k) for imaginary line gap.

Other internal symmetries have definite commutation/anticommutation relations with σy (σx).
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Classification tables of non-Hermitian topological phases Kawabata=KS=Ueda=Sato arXiv:1812.09133,

cf. Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964, Zhou=Lee 1812.10490

+ 30 other symmetry classes. (See Kawabata=KS=Ueda=Sato arXiv:1812.09133 for the details.)
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Intrinsic Non-Hermitian Topology
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Edge Majorana zero mode

?
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Motivating example: 1d class D non-Hermitian superconductor

Class D PHS symmetry:

τxH(kx)
T τx = −H(−kx), E → −E.

Both the point gap and line gap show the Z2 classification.
Non-Hermitian Z2 invariant:

(−1)ν = sgn

{
Pf[H(π)τx]

Pf[H(0)τx]
× exp

[
−1

2

∫ π

0

d log det[H(k)τx]

]}
If (−1)ν = −1, there is a Majorana zero mode at each edge Kawabata=KS=Ueda=Sato 1812.09133.

[Figure from Okuma=Sato 1904.06355]

Unique to non-Hermitian systems?
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Topological phenomena unique to non-Hermitian systems

Sometimes, we encounter topological phases which are realized only in non-Hermitian systems.

On the other hand, there are topological phases that are remnant in non-Hermitian systems. For
instance, the Chern insulator with a small non-Hermite perturbation is still characterized by the
Chern number of the Bloch wave function.

Is there any good approach to extracting topological phases realized only in the presence of
non-Hermiticity?

Our proposal [Sec.IX in Supplemental Material of Okuma=Kawabata=KS=Sato 1910.02878]:
Take the cokernel of the following map

Line-gapped topological phases −→ Point-gapped topological phases
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Line gap ⇒ point gap

If a line gap is open, the point gap is also open.

[Figure from Kawabata=KS=Ueda=Sato 1812.09133]

This implies that there exist homomorphisms fr and fi from the real and imaginary line-gapped
topological phases to the point-gapped topological phases!

fr : (Real line-gapped topological phases) → (Point-gapped topological phases),

fi : (Imaginary line-gapped topological phases) → (Point-gapped topological phases).
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Intrinsic non-Hermitian Topology

The point-gapped topological phases that are in the image

Im fr + Im fi ⊂ (Point-gapped topological phases)

can be deformed into a real or imaginary line-gapped topological phase while keeping the point
gap.

Such point-gapped topological phases are also realized in Hermitian or anti-Hermitian systems.

Importantly, their physics such as the bulk-boundary correspondence can be understood in
Hermitian or anti-Hermitian systems.

On the other hand, the quotient

(Point-gapped topological phases)/(Im fr + Im fi)

represents topological phases intrinsic to non-Hermitian systems.

Thanks to the dimensional isomorphism introduced before, it suffices to calculate the
homomorphisms fr, fi from line-gapped to point-gapped topological phases only for d = 0.
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Results: AZ class

Tables from Okuma=Kawabata=KS=Sato 1910.02878.

AZ class d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A 0 Z 0 Z 0 Z 0 Z
AIII 0 0 0 0 0 0 0 0
AI 0 Z 0 0 0 2Z 0 0
BDI 0 0 0 0 0 0 0 0
D 0 0 0 Z 0 0 0 2Z

DIII 0 0 0 0 Z2 0 0 0
AII 0 2Z 0 0 0 Z 0 0
CII 0 0 0 0 0 0 0 0
C 0 0 0 2Z 0 0 0 Z
CI Z2 0 0 0 0 0 0 0

d = 1, class A: non-Hermitian skin effect.

d = 3, class A: non-Hermitian skin effect induced by a magnetic field. Bessho=Sato 2006.04204,

Kawabata=Shiozaki=Ryu 2011.11449
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AZ† class

AZ† class d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

AI† 0 0 0 2Z 0 Z2 Z2 Z
BDI† 0 0 0 0 0 0 0 0

D† 0 Z 0 0 0 2Z 0 0

DIII† 0 Z2 Z2 0 0 0 0 0

AII† 0 Z2 Z2 Z 0 0 0 2Z
CII† 0 0 0 0 0 0 0 0

C† 0 2Z 0 0 0 Z 0 0

CI† 0 0 0 0 0 Z2 Z2 0

d = 1, 2, class AII†: Z2 non-Hermitian skin effect. Okuma=Kawabata=KS=Sato 1910.02878
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AZ class with sublattice symmetry or pseudo-Hermiticity

AZ class Add. symm. d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A η 0 0 0 0 0 0 0 0
AIII S+, η+ 0 0 0 0 0 0 0 0

A S 0 Z 0 Z 0 Z 0 Z
AIII S−, η− Z2 0 Z2 0 Z2 0 Z2 0

AI η+ 0 0 0 0 0 0 0 0
BDI S++, η++ 0 0 0 0 0 0 0 0
D η+ 0 0 0 0 0 0 0 0

DIII S−−, η++ 0 0 0 0 0 0 0 0
AII η+ 0 0 0 0 0 0 0 0
CII S++, η++ 0 0 0 0 0 0 0 0
C η+ 0 0 0 0 0 0 0 0
CI S−−, η++ 0 0 0 0 0 0 0 0

d = 2, class AII+S−: Edge exceptional point Denner=Neupert=Schindler 2304.13743
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(cont.)

AZ class Add. symm. d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

AI S− 0 Z 0 0 0 Z 0 0
BDI S−+, η+− 0 0 0 0 Z2 0 Z2 0
D S+ 0 0 0 Z 0 Z2 0 Z

DIII S−+, η−+ 0 0 0 0 Z2 0 Z2 0
AII S− 0 Z 0 0 0 Z 0 0
CII S−+, η+− Z2 0 Z2 0 0 0 0 0
C S+ 0 Z2 0 Z 0 0 0 Z
CI S−+, η−+ Z2 0 Z2 0 0 0 0 0

AI η− 0 Z2 Z2 0 0 0 0 0
BDI S−−, η−− 0 0 0 0 0 0 0 0
D η− 0 0 0 0 Z2 0 0 0

DIII S++, η−− 0 0 0 0 Z2 Z2 0 0
AII η− 0 0 0 0 0 Z2 Z2 0
CII S−−, η−− 0 0 0 0 0 0 0 0
C η− Z2 0 0 0 0 0 0 0
CI S++, η−− Z2 Z2 0 0 0 0 0 0
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(cont.)

AZ class Add. symm. d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

AI S+ Z2 Z2 0 0 0 Z2 0 Z2

BDI S+−, η−+ Z2 Z2 Z2 0 0 0 Z2 0
D S− 0 Z2 Z2 Z 0 0 0 Z

DIII S+−, η+− Z2 0 Z2 Z2 Z2 0 0 0
AII S+ 0 Z2 0 Z2 Z2 Z2 0 0
CII S+−, η−+ 0 0 Z2 0 Z2 Z2 Z2 0
C S− 0 0 0 Z 0 Z2 Z2 Z
CI S+−, η+− Z2 0 0 0 Z2 0 Z2 Z2

Note: I’m not familiar with the current status of the studies of intrinsic non-Hermitian topological phases. The reference list
above may be very limited.
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Example: Class AIII+S− (sublattice symmetry anti-commuting with chiral symmetry)

Symmetry:{
σzH(k)σz = −H(k),

σyH(k)†σy = −H(k).
⇒ H(k) =

(
h1(k)

h2(k)

)
, hj(k)

† = hj(k) (j = 1, 2).

d = 0: (Point-gapped topological phases)/(Im fr ∪ Im fi) = Z2.
→ is understood as the existence of the PT -symmetry breaking accompanied with an exceptional
point at E = 0:
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Example: Class AIII+S− (cont.)

d = 2: (Point-gapped topological phases)/(Im fr ∪ Im fi) = Z2.

There exists an intrinsic non-Hermitian topological phase.

A model:

H(kx, ky) =

(
hChern(kx, ky)

12×2

)
,

hChern(kx, ky) = sin kxσx + sin kyσy + (m− t cos kx − t cos ky)σz.

H =

(
ϵ

1

)
⇒

{
E = ±

√
ϵ (ϵ > 0)

E = ±i
√
−ϵ (ϵ < 0)
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Example: Class AIII+S− (cont.)

The Chern insulator hChern(kx, ky) has a chiral edge state localized at each edge.

Therefore, the non-Hermitian Hamiltonian H(kx, ky) has an exceptional point, the trajectory of
the “PT -symmetry breaking”, at each edge. Denner=Neupert=Schindler 2304.13743
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Summary

In this lecture, I gave

1. Introduction
— One-particle non-Hermitian systems
— Exceptional point
— Non-Hermitian skin effect

2. Gap condition and topology
— Point gap
— Real and imaginary line gaps

3. Symmetry classes
— 38 classes in non-Hermitian systems

4. Topological classification
— Point gap → doubled Hermitian Hamiltonian → Hermitian topological phases
— Line gap → Hermitianization → Hermitian topological phases
— Classifying spaces
— Dimensional isomorphism

5. Intrinsic non-Hermitian topology
— Line gap implies point gap
— Intrinsic non-Hermitian topological phases should be interesting!
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Skin effect is topological Zhang-Yang-Fang 19, Okuma-Kawabata-KS-Sato 19

W (H(k)) := 1
2πi

∮
d log det[HPBC(k)] ̸= 0 ⇒ skin effect.

(Our proof)

Let σ(HPBC), σ(HOBC) and σ(HSIBC) be the spectrum for PBC, OBC and the semi-infinite bdy
condition, respectively. It holds that

σ(HOBC) ⊂ σ(HSIBC).

The spectrum for OBC is invariant under the similarity transformation

Vgf
†
xV

†
g = egf†

x, g ∈ (0,∞).

Therefore,

σ(HOBC) ⊂
⋂

g∈(−∞,∞)

σ(V −1
g HSIBCVg).
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Skin effect is topological (cont.) Zhang-Yang-Fang 19, Okuma-Kawabata-KS-Sato 19

Toeplitz index theorem:

σ(HSIBC) = σ(HPBC) ∪ {E ∈ C|W (H(k)− E) ̸= 0}︸ ︷︷ ︸
dense spectrum

.

This is because the bulk-boundary correspondence for the class AIII doubled Hamiltonian

H̃(k) =

(
H(k)− E

H(k)† − E∗

)
.

If W (H(k)− E) < 0, there exists a zero mode (0, |E⟩)T of H̃, i.e., the right eigenstate of H(k)
with eigenvalue E.
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Skin effect is topological (cont.) Zhang-Yang-Fang 19, Okuma-Kawabata-KS-Sato 19

Suppose that HPBC(k) has a nonzero winding number.

Take an arbitrary complex energy E with W (HPBC(k)− E) ̸= 0. |E⟩ represents an right or left
eigenstate localized at the boundary.

There exists g ∈ (0,∞) s.t. |E⟩ such that |E⟩ is a delocalized plane wave of V −1
g HSIBCVg, i.e.

E ∈ σ(V −1
g HPBCVg).

The intersection of σ(HSIBC) and σ(V −1
g HPBCVg) is strictly smaller than σ(HSIBC). This proves

that σ(HPBC) ̸= σ(HOBC).

Furthermore,
⋂

g∈(−∞,∞) σ(V
−1
g HSIBCVg) reaches a topological trivial area or curves, otherwise a

contradiction arises.
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Ex: 1d class A with sublattice symmetry

Sublattice symmetry (non-Hermitian SSH chain)

σzH(kx)σz = −H(kx) ⇒ H(kx) =

(
h1(kx)

h2(kx)

)
.

Two Z topological invariants defined by

Nj =
1

2πi

∮
d log dethj(kx) ∈ Z (j = 1, 2).

The classification of point-gap topological phases is KP = Z⊕ Z characterized by (N1, N2).

With the real-line gap condition, H(kx) can be Hermite, i.e. h2(kx) = h1(kx)
†. The classification

of real-line gap topological phases is KLr = Z characterized by N1 = −N2.

With the imaginary-line gap condition, H(kx) can be anti-Hermite, i.e. h2(kx) = −h1(kx)
†. The

classification of real-line gap topological phases is KLi = Z characterized by N1 = −N2.

Line-gap topology to point-gap topology

fr : KLr → KP, n 7→ (n,−n). fi : KLi → KP, n 7→ (n,−n).

Note that the union of images Im fr ∪ Im fi = Z[1,−1] ⊂ KP does not show the skin effect, since
the total phase winding N1 +N2 is zero.

95 / 91



Examples

1d class A

KL → KP : 0→ Z.
Skin effect.

1d class D

KL → KP : Z2 → Z2, 1 7→ 1 ⇒ KP/Im f = 0.
No new phenomena unique to non-Hermitian systems.

1d class AII†

Symmetry: σyH(kx)T σy = H(−kx).
KL → KP : 0→ Z2.
Z2 skin effect protected by class AII† TRS! Okuma-Kawabata-KS-Sato
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1d class AII†

H(k)− E is also invariant under TRS†, σy[H(k)− E]Tσy = H(−k)− E.

The non-Hermite Z2 number

(−1)ν(E) = sgn

{
Pf[(H(π)− E)σy]

Pf[(H(0)− E)σy]
× exp

[
−1

2

∫ π

0

d log det[(H(k)− E)σy]

]}
Toeplitz index theorem:

#[right zero mode of H − E] = ν(E) mod 2.

Kramers pair: localized right-state .

We have the dense spectrum protected by the TRS.
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