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Non-Hermitian Systems

@ Non-Hermitian Hamiltonians and matrices often appear in many physical systems.

@ These include Photonics, Mechanics, Electrical Circuits, Biological Physics, Optomechanics,
Hydrodynamics, Open Quantum Systems, and Non-unitary Conformal Field Theories.

@ For more details on where non-Hermiticity shows up, see the review by, for example,
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One-particle non-Hermitian Systems

@ In this lecture, | will provide a brief introduction to the topological aspects of one-particle
non-Hermitian systems. Specifically, we'll delve into the topological nature of matrices

H = {HO'O" (1"7 xl)}z,z/GA,o’,a’:l,.“,N

defined over a d-dimensional lattice, A, with internal degrees of freedom given by 0 =1,..., N.

o We'll assume the hopping range is local, i.e., ||H(z,z")|| < e~ le=al/E (Otherwise, the concept of
"dimension” would be meaningless.)

@ Each physical system might possess intrinsic internal symmetries (which do not affect spatial
positions).

@ We may be interested in the physics robust against the disorder effect, which is compatible only
with the internal symmetry.

e o o o o o
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Example: Wilson Dirac Operator
o In lattice gauge theory, we examine the lattice Dirac operator on the Euclidean cubic lattice. The
Wilson Dirac operator is defined as:

Dw[Ul=T—r> [T +%)Tv + (I —7)T-] — 5 ["(I +72)Tas + e (I —ya)Ta-] ,

v=1

where:
[Tot)ew = U (@)dat,ys  [To-ay = Un(y) 0asy-

Here, U, (z) € U(N) represents the U () gauge field, and p denotes the chemical potential.
@ When the chemical potential p is absent (i.e., u = 0), Dw satisfies the y5-Hermiticity condition:

'YSDW[U]T’}% = Dw|[U].

=L+ %)U, ()

[ J
€T —s(1-— '\,"1/)U,,(Jlf>f
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Ex. Mechanical Metamaterials
o Consider a mass-spring model with the equation of motion:
4 = —Du + I'u,

where u = {u;(z)}+,; denotes the displacement vector components.

@ The matrices D and I are real with D being positive semi-definite for

system stability. 7 o % .

e Without friction, T is skew-symmetric (i.e., I'7 = —T'). However, this 3 5 v =
isn't generally the case. . ('12\°/1'1 "’é“ e
S Q) o)

o Using the variable @ = (v/Du, )", the dynamics follows a © %
Schrédinger-type equation

[Figure from Yoshida=Hatsugai, PRB 100, 054109 (2019)]

ida = ma, H:(

7 B )

VD il
@ The Hamiltonian H inherently exhibits particle-hole symmetry:

oc.Hoc, = —H.
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Some characteristics of Non-Hermitian Matrices

o Eigenvalues can be complex.
@ Exceptional Points: These occur when the dimension of the Jordan block is 2 or more, making the
matrix H non-diagonalizable. Example matrices include:

A1 0
(3 i) and 0 X 1
0 0 X
@ Non-Hermitian Skin Effect : The matrix behavior is sensitive to different

boundary conditions, such as periodic boundary condition (PBC), open boundary condition
(OBC), and semi-infinite boundary condition, among others.
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PT Symmetry Breaking Bender=Boettcher physics/9712001

o For matrices with PT-symmetry, represented by H* = H, eigenvalues either appear as an isolated
real value, E* = FE, or as a conjugate pair, (E, E*).

@ PT-symmetry breaking refers to the transition where two real eigenvalues merge to form a
complex conjugate pair (E, E*), or vice versa. Such transitions occur at an exceptional point.

O M+ia
A—a Ata A
. ~— = ® =)
'/\72‘(1
A a A a A a
a=[o 5] a=[5 5] a=] %3]
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PBC vs OBC

Here are some spectra of 1-dimensional non-Hermitian models.

Lx=100,n=1

® 0BC
" e PBC
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Non-Hermitian Skin effect Yao=Wang 1803.01876

PBC # OBC for spectra. Extreme sensitivity against the boundary condition.

In OBC, O(L) modes are localized at an edge.

A prime example is the Hatano-Nelson model, a one-dimensional model with non-reciprocal
hopping.

@ Non-Hermitian Skin effect has a topological origin. [Zhang=Yang=Fang 1910.01131,
Okuma=Kawabata=KS=Sato 1910.02878] (— Okuma-san’s lecture)

_ PBC —i —qg i
H=Y te'fl  fotte fifors = Heso=)» fl(te’e " +te %e™)fy,
x€EL k
OBC L
5 [ ~
EE Hoso =Y tfl fo+tflferr, Jl=etl
=1
PBC
xr
xr
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Example: No symmetry

Gap Conditions and Topology
0000000000000

Symmetry Classes
0000000000000

Topological Classification

o OBC
e PBC
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Numerical Rounding Error is not Negligible

@ In computational calculation, rounding error refers to the small differences between the actual real
number and its nearest representable value in the computer.

@ Since O(L) skin modes are exponentially localized at an edge, these small differences can
significantly affect the results.

I T o oBC o o e o8C

@ The “Non-Bloch band theory” is used to compute the OBC spectrum in the thermodynamic
limit.
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Example: Pseudo Hermiticity

7 2 _ —
ntpn' =t—n, n° =1, tr[n]=0.
Lx=100,n=2
@ OBC
L 4 = ® PBC
$5.. 25
1 2 4 5
WP vxlP Ivx P wxl? xi?
: . - 018 0018)
’ 010 * oo
008 . 0.005

x § ;. x
20 40 60 380 100 20 40 &0 0 100 14 /91
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Example: Inversion symmetry — the Non-Hermitian skin effect is suppressed
2
utnuT =t_pn, u =1
Lx=100,n=2
Im
10
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Gap Conditions and Topology
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Equivalence Condition and Phases of Matter

@ Water Phase Diagram:

221

Critical point

Pressure(kPs)

Ice
(solid)

Water vapor
(gas)

Temperature(°C)

374

@ The ice and water phases are distinct: A singularity in the thermodynamic function exists between
these two phases, indicating a phase transition.

o Conversely, water and vapor can be considered the same phase since there exists a continuous
path connecting them without encountering a thermodynamic singularity.
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Topological Equivalence

@ A torus and a sphere are considered to have distinct topologies.

@ By shrinking one circle of the torus, we obtain a pinched torus. By further shrinking another
circle, we ultimately transform it into a sphere.

'?Mck?l Aows ?PLW“’Q‘

‘o=

@ Topological equivalence is determined by deformations that preserve the local structure of the

Euclidean space. \ 3 E

@ Given a defined equivalence relation, we can identify a set of equivalence classes.

@ What exactly defines topology?
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Topology of Matrices

@ What does it mean to classify matrices topologically?

o Consider two N x N matrices Ho and Hi.

@ They can be connected to each other by a continuous path defined as:

H,=(1—t)Ho+tH,, te]0,1].

— no topological classification.
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Hermitian Matrices: Gap Condition

@ For meaningful classifications, we impose a gap condition.

o For Hermitian matrices H (where H' = H), the eigenvalues E are always real F € R.
@ A reasonable gap condition is a finite energy gap Egap > 0 around zero (or the Fermi energy Er):
E#0.
Egap
—
0 E

o Two Hermitian matrices Hp and H; with no zero eigenvalues are considered equivalent if they can
be continuously connected via a homotopy Hic[o,1] provided that H; also satisfies the gap
condition throughout.
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Hermitian Matrices: Gap Condition (cont.)

o We may think two Hy and H; are equivalent if the numbers of negative eigenstates are the same.

o This is true. H can be flattened while keeping the gap condition.

Hy ={(1—-t)E, +tsgn(E,)} |n)(n] =, sgn(Ey) |n) (n| =: sgnH.

E
——

1"
H sgnH

@ The flattened Hamiltonian sgnH is uniquely identified with a point of the complex Grassmaniann:

sgnH = U (1N*M _1M) U, U~U (V W) :

UeU(N),VeU(N-M),WeUM).
— H € Gry(CY) = U(N)/U(N — M) x U(M).

@ No further classifications arise since the complex Grassmaniann is simply connected
70[Grar (CN)] = 0. For example, Gry (C?) ¢ §2.
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Hermitian Matrices: Example of Symmetry

@ Even when two matrices have an equal number of negative (and positive) eigenvalues, certain
symmetries can forbid a continuous transformation between them.

o Let's consider a Hermitian matrix H with an additional skew-symmetric constraint
HTsz, H € Matanxan(C).
o The Pfaffian pf H € C is a well-defined. *

o Given the relationship (pf H)* = pf H* = pf H” = (—1)"pf H, the ratio of the Pfaffians of two
matrices is always real:
pf Ho
R
pf H; €%

implying that its sign is an invariant that takes on values in Zy = {£1}.
o For example, consider these two matrices:

() ()

No continuous transformation connects them while preserving the gap condition and the
symmetries H' = H and HX = —H.

'pf H := Lesyy o (2i-1)<o(20),0(1) <o)< <o (2N—1) S8UO) As(1)o(2) *** Ao(zN 1) (2N)
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Hermitian Matrices: Finite Space dimensions & Translational Invariance

We have discussed Hermitian matrices H without an extended space direction.
@ In a d-dimensional finite space, the legs of H extend to an infinite lattice:

H=H(z,z"), =z,2' ¢ z°.
Translational symmetry lets us define the Hamiltonian in the Bloch-momentum torus T'%:

H(z,«')=H(z—2')= > H(k)e™ .,

keTd

o Classification is about homotopy for matrix families H (k) over torus T°.

E

H(k)

With symmetry
constraint

Bloch-momentum torus Gapped Hamiltonians
e Hy(k) is equivalent to Hy (k) if a homotopy Hyc[o,1](k) exists that bridges them while preserving
the gap condition and symmetry.
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Non-Hermitian Matrices: What is the Gap Condition

o Eigenvalues of non-Hermitian matrices are complex.
e What is a meaningful gap condition?
@ A characteristic feature of complex eigenvalues is that in a PBC, the phase of an eigenvalue
around a reference energy Eyef may have a winding number
1
W(Eref) = Tm j{dlog det[Hch (k) — Eref] cZ.

— the origin of the non-Hermitian skin effect [Zhang-Yang-Fang 1910.01131,
Okuma-Kawabata-KS-Sato 1910.02878].

Lx=100,n=1
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Non-Hermitian Matrices: Point Gap Gong-Ashida-Kawabata-Takasan-Higashikawa-Ueda 1802.07964
@ The winding number W (E\f) is stable unless an eigenvalue touches the reference energy Eyct.
@ The point gap condition

E # Eret (det(H(k) — Erer) # 0)

makes sense.

o Eg: The following two Hamiltonians are in distinct point-gapped topological phases w.r.t. the
reference energy FElef.

Im Im

i -

Re Re
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Non-Hermitian Matrices: Remnants of Hermitian edge states

@ Even with non-Hermiticity, the remnant of Hermitian topological phases, the boundary states,
might persist.

@ A minor perturbation doesn’t eliminate the edge states inherent to Hermitian topological phases.
This is because the spectrum can deform continuously smoothly when perturbed slightly.

Lx=100,n=2
Im

_ edge state ~ edge state
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Non Hermitian Matrices: Line Gap Kawabata-KS-Ueda-Sato 1812.09133

@ To capture such remnants of Hermitian topological edge states in a non-Hermitian system, we
introduce the concept of a line gap:

Spec(H)NL =0, where L is a line in the complex plane C.

e Hamiltonians Ho(k) and H;(k) are considered to belong to the same topological phase with
respect to the line gap if there exists a homotopy Hyc[o,1(k) that connects them while preserving
the line gap and the associated symmetry.

Lx=100,n=2
I

. ~ edge state ~ edge state
/;?' e 0BC M , Wy

, e PBC
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Non Herm|t|an Matrices: Point Gap and Llne gap

o It is useful to introduce two types of line gaps: real line gap and imaginary line gap. These are

consistent with symmetries associating E with —F, E*,

e P: Point-gap E — E.s #0.
o L,: Real line gap
o Li: Imaginary line gap

ImE

-

®
' Er ’ReE

(4

RG(E — Eref) ;ﬁ 0.

Im(E — Eret) # 0.

or —E* (detailed later).

ImE ImE
Real gap

Re E Imaginary gap ReE

[Figure from Kawabata=KS=Ueda=Sato 1812.09133]

fication Intrinsic Non-Hermitian To
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Symmetries in Non-Hermitian Systems

@ What kind of symmetries exist in non-Hermitian systems?
@ Example:
o Time-reversal symmetry (TRS) is a fundamental symmetry.
UrH*Ul = H.
o In the mean-field approach to superconductors, the Bogoliubov—de Gennes (BdG) Hamiltonian Hpqg

inherently possesses particle-hole symmetry (PHS).?

h A 1
UcHE4qUL = ~Hpac, Hpag = (AT 7hT>7 Uc = (1 )

o Bosonic systems with quadratic interactions are captured by the bosonic BdG Hamiltonian
H= %(aT,a)HBdg(a,aT)T. To maintain the bosonic commutation relation, Hgqg must be
diagonalized using a paraunitary matrix 3, which is the same as the standard diagonalization of the
effective matrix H,gqq = 0 Hag. While H,pqq is non-Hermitian, the Hermiticity of His
encoded in its pseudo-Hermiticity:

UijTBdGUZ = HyBaG-

2Note that AT = —A due to the fermion anti-commutation relation.
3Ue, Ut = O'Z,UTO'ZU =0,.
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Symmetries in Non-Hermitian Systems (cont.)

o We consider the following 8 types of symmetries :

Symmetry in non-Hermitian systems

H

& fi— cl is a unita atri
uy gr u' = g (i unitary matrix.

Hf

@ This choice is ad hoc. In quantum mechanics, Winger's theorem tells us symmetry, a transformation that
does not change the observation, is either unitary or anti-unitary. In non-Hermitan systems without
specifying a physical system, we have no such guiding principles. We may consider different types of
symmetry such as

H
H*
HT
Hf

ol = eH, w+#w, eiqﬁEU(l).

For example, the symmetry type uH vt = H was discussed to construct the symmetry indicator in
KS=Ono 2105.00677.
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Symmetries in Non-Hermitian Systems (cont.)

o Let G be a group. We introduce three homomorphims * ¢, 7, ¢ : G — Zs = {£1} to specify the
type of symmetry as

ugHu;T (pg =1,my=1)
ugH uy  (¢g = —1,mg =1)

4 =cgH, e G,
ugH ul  (gg = 1,7y = —1) ot g
ugHJruL (pg =1,ng =—1)

o Comparing the transformation with two consecutive h, g transformations and the transformation
with gh, we have

uguy, (g = —1)

@ The relation (gh)k = g(hk) gives the constraint relations

{ ugtn (g =1) } = Zg,nUgh, Zgn €U(1), g,h€G.

bg —1 -1 _
Zh,kzgh,kzgahkzg,h - 1, 9, hvk cG.

(This means z = (z4,3) is a two-cycle in Z2(G,U(1)4).)
*Let Go and G be groups. f : Go — G is said to be a homomorphism if f(gh) = f(g)f(h) is met.
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8 types of symmetries (names from

oy Mg cg Sym. Energy constraints

Name

1 wugHul =H E—E
1 -1 1 wuHW =H FE—E"

1 wHuwl=H E—E*

1 wH'™W =H E—E
-1 1 -1 wHu,=-H E-— —E*
-1 -1 -1 wuyH"™w}=-H E— -E
1 1 -1 wyHul=-H E-—-F
1 -1 -1 wHwul=-H E-— -E

and finer classifications (detailed from the next slide).

Unitary

Pseudo Hermiticity (PH)

Time-reversal symmetry (TRS)
Time-reversal dagger symmetry (TRST)
Particle-hole dagger symmetry (PHS')
Particle-hole symmetry (PHS)
Sublattice symmetry (SLS)

Chiral symmetry (CS)
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38 symmetry classes

@ What are fundamentally different symmetry classes that govern the topological nature of matrices?

— We eventually reach the 38 symmetry classes. (cf. 10 Altland-Zirnbauer symmetry classes in
Hermitian systems.

Proof

(i) The Hamiltonian H is block-diagonalized to the irreducible representations «, 8,7, ... of the
unitary subgroup Go = {g € G|y =ng = ¢4 =1} C G.

Ho

H = H,

(i) A group element g € G in which either ¢4, 74, or ¢g is -1, acts on each block H, as either
e g preserves the irreducible representation a. g is closed inside the block H.
— g acts as a Zg symmetry inside the block H. (cf. Wigner criteria)

o g exchanges the irreducible representations H, PN Hpg.
— Hg is just a copy of H,. The topological nature is determined only in the block H,.
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38 symmetry classes (cont.)

(iii) The problem is recast as how different symmetry actions there are in a single block H,.

(iv) We can assume the absence of unitary symmetry (i.e., (¢4,ng,cq) # (1,1,1)).
— The symmetry group G realized in the single block is either one of

G=zY, N=01,2,3.

(Otherwise, there is a unitary group element.)

(v) For a group element g with ¢, = —1, namely antiunitary symmetry, the square is proportional to
identity (since g® = ¢) but its coefficient is quantized to a sign °

uguy = £1.

The coefficient should. be a sign: Set uguy = e*®. Then, e'®u, = uguug = ug(uguy)” = uge”'®. The sign +1 is
unchanged under ug — e"“ug.
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38 symmetry classes (cont.)

(vi) Case of N =0 — Unique.
(vii) Case of N =1 — Seven patterns:
(¢17771701) = (_1717 1)3 (_13 -1, l)a (_1717_1)7 (_17_17 _1)3 (13 -1, 1)7 (17 1, _1)3 (15 -1, _1)
For ¢1 = —1, we have 2 cases for each, resulting in 2 x 4 4+ 3 = 11.
(viii) Case of N =2 — When ¢, = —1 is included, there are four patterns
{(4517771701):(¢27772a02)} :{(717151) (71 71 1)} {(715171) (7171771)}
{1, L1, (=L -1,-D}{(-1,-11),(-1,1,-1)},

and choices of the signs of uju] = £1 and uou3 = %1 for each. When ¢4 = —1 is not included,
there is only one pattern

{(¢17’I71,C1), (¢277727C2)} = {(17 -1, 1)7 (17 1, _1)}7

with the commutation or anticommutation relation of them wjus = fusui. As a result, we have
4x44+2=18.
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38 symmetry classes (cont.)

(ix) Case of N =3 — The set of three generators is unique

{(¢177]17cl)7 (¢2,772702)7 (¢3,773,C3)} = {(_17 17 1)7 (_17 _1’ 1)7 (_17 17 _1)}'

The choices of the signs of uiu] = +1, usus = +1, and uguj = 1. We have 2 x 2 x 2 =8.

(x) In sum,

1+11+ 18 +8 = 38 classes. [

o Cf. This is contrasted to the 43-fold classes in the pioneered work by
Bernard-LeClair. This is due to overcounting and overlooking.
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Issues in the 38 Symmetry Classes of Non-Hermitian Systems

@ Having fundamental symmetry classes, several fundamental issues arise:

Anderson localization problem Hatano=Nelson cond-mat/9603165, ...

Spectral statistics (Level-spacing distribution) of random matrices
Hamazaki=Kawabata=Kura=Ueda 1904.13082, ...

Topological classification w.r.t. gap conditions (point or line gap)
Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964, Kawabata=KS=Ueda=Sato
1812.09133, Zhou=Lee 1812.10490, ...

Symmetry protected exceptional points? Kawabata=Bessho=5ato 1902.08479

Existence/absence of non-Hermitian skin effect Kawabata=KS=Ueda=Sato 1812.09133,
Kawabata=Okuma=Sato 2003.07597, ...

Connection to quantum many-body physics
Experimental relevance

And more...

Note: This is far from the exhaustive reference list on the topics above, due to the lack of my knowledge of recent developments.
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38 Symmetry Classes in Finite Space Dimensions

@ In finite space dimensions (with d > 1), how we encode the 38 fundamental symmetries depends
on the specific physical systems under consideration.

@ One might focus on internal symmetries, which don't change the spatial position, as they remain
compatible with the effects of the disorder.

@ Here, we consider the following constraints on the hopping Hamiltonian H(z,z’):
o Complex conjugation is local: H(z,z’')* <> H(z,z').
o Transpose exchanges the hopping direction: H(xz,2")T < H(2',x).

This rule can be summarized in the table below:

Symmetry Symmetry in Real Space With Translational Invariance
Unitary/SLS  wH (z, 2 )u’ = +H (z, 2’ uH(k) =+H(k)
TRS/PHS' uH(:U 2 Vul =+H(z,2") wH(Ek)*u! = +H(—k)
TRS'/PHS H(z, o) ul = +H(2',z) wHk) ul = £H(-k)
PH/CS H(z,o')'ul = +H(',z) uH(k )T o =+H(k)

z,T
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A Numerical Experiment: PBC vs OBC for 38 symmetry classes

No symmetry Pseudo Hermiticity o-H(k)'o. = H(k)

® 08C @ 0BC
o PaC e o
Sublattice symmetry o.H(k)o. = —H (k) Chiral symmetry o H(k)'o, = —H(k)
Lx=100,n=4
20
® OBC ® 08¢
ze ® PBC e o e
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* —
ClassAl  o:H(k)'o. = H(—k) ClassAll  o,H(k)*o, = H(—k)
Lx=100,n=4 Lx=100,n=4

Im

® oBC
% ® PBC
ClassD  o.H(k)To, = —H(—k) Class C oyH(k) o, = —H(—k)
Lx=100,n=4 Lx=100,n=4
Im im
2t
® OBC ® oBC
re ® PBC e ® PBC
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0000000000000 0000000000000 0000000000000 0000000000000 0O000O00OOO0O0O0O000000000 0000000000000 00
Class Alf  o-H(k)'o. = H(~k) Class Allf  oyH(k) o, = H(~k)
Lx=100,n=4 Lx=100,n=4
Im Im
2]
2f
X @ OBC ® OBC
N LS i
= Re
-2 = Sl N
S
Class Dt~ 0:H(k)"o. = —H(-k)
Lx=100,n=4
Im
@ 0OBC ® 0BC
® PBC ® PBC
i
+ Other 28 classes — The PBC and OBC spectra are coincident if class Al symmetry exists.
Kawabata=KS=Ueda=Sato 1812.09133, Kawabata=Okuma=Sato 2003.07597, ...
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Classification table of Hermitian topological phases “Periodic Table"
Schnyder=Ryu=Furusaki=Ludwig 0803.2786, Kitaev 0901.2686

class\6 T ¢ S| o0 1 2 3 4 5 6 7
A 0o 0 0 2z 0 Z 0 Z 0 0
AIIT o o 1, 0 zZ O Z O Z 0 Z
Al + 0 0/ Z 0 0 0 2Z 0 Zo Z»
BDI | + 4+ 1| Z2 Z 0 0 0 2Z 0 Z2
D 0 + 0| Z2 Z2 Z O 0 0 2Z 0
bpaor | - + 1 0 Z2 Z» Z 0 0 0 2%
All - 0 0| 2Z 0 Zo Zo 0 0 0
CIL - — 11 0 2Z 0 Z2 Z2 Z O 0
C 0 — 0] 0 0 2Z 0 Z2 Zo Z O
CI + - 11 0 0 0 2Z 0 Z2 Zo Z

@ Well-established. (The derivation is soon later. )

Intrinsic Non-Hermitian Topology

0000000000000 00
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Point Gap and Hermitianization Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964

@ The non-Hermitian skin effect is characterized by a nontrivial topological number with a point gap.

ClassAllf  o,H(k) 0, = H(=k)
Lx=100,n=4

<_Uu:5w{pWH«n:gjwu

pf[(H(0) Yoyl
Re @ PBC X (‘xp% / dlogdet[(H(0) — Eyer)oy]
2Jo

[Okuma=Kawabata=KS=Sato 1910.02878]

@ How to systematically classify such topological phases/numbers? — Use the Hermitianization trick

A(k) = H(k)v .

<H (k)
® A point gap of H (k) implies a gap of H(k). This is because

Spec(H (k)) = Spec(£+/H (k)T H(k)).
o Classifying non-Hermitian H (k) is recast as that of Hermitian Hamiltonian H (k), which is

well-established. — Done!
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Line Gap and Flattening Kawabata=KS=Ueda=Sato 1812.09133

o With the real/imaginary line gap, non-Hermitian Hamiltonians H can be Hermite and flattened
while keeping the real/imaginary line gap. — Done!

ImE ImE ImE ImE
Real gap ’ I
C+ Hermitian Anti-Hermitian s
flattening flattening
. “ v N e —_— “ _—
’ R E=-1 E=+1 ReE Imaginary gap ReE ReE
E=i @

C- @

[Figure from Kawabata-KS-Ueda-Sato 1812.09133]
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Proof (Based on App. D in )

@ For simplicity, from now on, we set F,er = 0.

Flattening
e Let C'(C_) be a circle enclosing all the eigenvalues with Re £ > 0(Re E < 0).
@ The projector onto the eigenspace with Re E > 0(Re E < 0) is given by

dz 1 2
Py(k) = o omi z — H(k)’ Pi(k)” = Py(k).

@ Introduce the homotopy
Hiepoay(k) = (1 =) H (k) + t[Py (k) — P-(k)],
whose eigenvalues are (1 — t)E, (k) 4+t sgn[Re E,(k)], which have a real line gap for t € [0, 1].
o Hi(k) = P+(k) — P_(k) has eigenvalues +1.
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Hermitianization

o Decompose Hi(k) into real and imaginary parts as

Hi (k) + Hi (k)T +1H1(k) — Hy (k)

Hi(k) = h(k) + iha(k) = 5 5

o Hi(k)? = Pi(k) + P_(k) = 1 implies that

hi(k)? — ha(k)? =1, {h1(k), ha(k)} = 0.

Introduce the homotopy

Hse[071](/<3) = (1 — S)Hl(k}) + Shl(k) = h1(k) + ’i(l — S)hg(k),

whose square is

H(k)?> = hi(k)? — (1 —5)?ha(k)? =14 (1 — (1 — 5)*)ha(k)® > 1.

Thus, H, (k) keeps the real line gap and H; (k) is Hermitianized to hi (k).
h1(k) is not flat. We take the flattening to hi (k) again. O

o (Remark) These flattening and Hermitianization methods are compatible with 38 symmetries.
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Topological Classification of Hermitian Systems

o For both point and line gaps, the classification problem is recast as that for Hermitian systems,
which is well-established.

H(k)" = H(k), H(k)>=1 (after flattening)

@ So, in the remainder of this section, | review the classification of Hermitian topological phases.

o Strategy: Classify 0-dimensional Hamiltonians and extend to finite space dimensions.

@ (Remark) The classification of non-Hermitian topological phases here is for PBC. Due to the
non-Hermitian skin effect, quantitative (and possibly qualitative) properties such as edge states
must be discussed using the bulk Hamiltonian in OBC. The bulk-boundary correspondence is true
between the bulk OBC Hamiltonian and the edge state.
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Altland=Zirnbauer symmetry classes

@ The fundamental internal symmetries are classified into 10-fold Altland-Zirnbauer (AZ) symmetry

classes.
o There are three types of symmetries: °
TRS:  wrH(z,z')*ul, = H(z,z') uruwp = +1,
PHS:  ucH(z,2')*ul, = —H(z,x') ucuy = +1,
Chiral:  urH(z,z')u}. = —H(z, ') ufp =1, trlur]=0.
AZ class TRS PHS Chiral
A 0 0 0
Alll 0 0 1
Al 1 0 0
BDI 1 1 1
D 0 1 0
DIl -1 1 1
All -1 0 0
cll -1 -1 1
C 0 -1 0
Cl 1 -1 1

Str [ur] = 0 is needed. Otherwise, H has zero modes.
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Classifying Space

o We start with the classification of zero-dimensional Hamiltonian.
H'=H, H?>=1 (& E==1) + AZ symmetry.

@ What is the “space” of such matrices?

o With “stable equivalence”, such “spaces” become the classifying spaces in the K-theory.
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Example: 2 x 2 Hermitian matrix with H? =1

@ 2 x 2 Hermitian matrix H can be expanded as
H=dy+dyoy +dyoy +d.o. =do+d-o.
o Eigenvalues:
E =do £ |d].
@ Thus, flattening implies either one of the following.
e dpo=1and d=0,

e dp=—-1land d=0,
e dy=0and |d|=1.

@ Thus, there is a one-to-one correspondence

{H € Matox2(C)|H" = HH® =1} = {do = 1}U{d € S*}U{do = —1}.
N N N——

pt Sphere pt
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Stable equivalence

Practically, the homotopy classification of Hamiltonians whose target space is a finite and fixed
dimension is not realistic.

Even the classification is not a group.
Example: class A 2 x 2 Hamiltonian in 3-space dimensions ( “Hopf insulator

”:

3 2 i) Three Chern numbers (ng,n,,n.) € >3
(17,57 = ’
’ | (ii) Hopf invariant is classified by Z9.6CD(ng nyn2)

The “stable equivalence condition” was introduced: Two Hamiltonians Ho(k) and H, (k) are said
stably equivalent Ho(k) ~ Hq(k) if Ho(k) ® H'(k) and Hy(k) ® H'(k) are homotopically
equivalent. ”

Physical motivation: stable against hybridization of higher- and lower-energy bands and the band
folding by breaking translational symmetry.

Mathematical motivation: (relatively) easy to compute.

"We further introduce the equivalence relation to pairs of Hamiltonians with the same size (Ho(k), Hy(k)). Two pairs
(Ho(k), H1(k)) and (H{(k), H;(k)) are equivalent if Ho(k) ® H; (k) ~ H{ (k) ® Hi(k). The equivalence classes form the
K-theory.
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Class A: Classifying Space ()

o Let H be an N x N Hermitian matrix H with H? = 1.
o H is diagonalized by a unitary matrix

H=U (1M1 ) ut,
—1m

where M (0 < M < N) is the number of negative eigenvalues.
e U is not unique:

U*—)U(V W), VeUN - M), WeUM).

@ Thus, H is characterized by Grassmann manifolds

U(N)
UN = M) x UM)

M=0
o With the stable equivalence , the Hamiltonian is eventually characterized by the
classifying space Co,

U(2n)
U hooUn—&—k)XU(n—k)'
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Class Alll: Classifying Space Cy

o Let H be an 2N x 2N Hermitian matrix H with H? = 1 and chiral symmetry

urHult =—H, u% =1, trlur]=0.

WLOG, we can set ur = o, = (1 _1>. Then,

H= <q qT), q € U(N).

Thus, H is characterized by the unitary group U(N).

With the stable equivalence , the Hamiltonian is eventually characterized by the
classifying space (1,

Cy = lim U(n).

n— oo
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Class Alll: Classifying Space C (alternative)

@ There is another perspective on C.
Start with the diagonalization H = Uo,Ut.

o Set ur = 0. The symmetry 0, Ho, = —H implies that one can choose 0,U = Uo,. Namely,

_ _lfupytu- up —u-
U—u+P++u,P,—2(u+7u7 u++u,>’ us,u— € U(N).

where Py = li% is the projection onto o, = £1.

@ The redundancy of U is U +— UV with Vo.Vi =0, and 0,V = Vo,. Thus, V is a form
V=0,0V,VecU(N).
We got

Cr = nlLH;O[U(n) x U(n)]/U(n).
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Class Al: Classifying Space Ry

@ Let H be an N x N Hermitian matrix H with H? = 1 and class Al TRS
urH ul. = H, wurup = 1.

e WLOG, we can set ur = 1 &, meaning that H is diagonalized by an orthogonal matrix

H=0 (1N‘M > o'
—1m

@ The same logic as class A leads the classifying space Ry,

O(2n)
Fo = UnhooOn—i—k)xO(n—k)'

8Every symmetric matrix ug = ur can be ur = QAQ” with A > 0 and Q a unitary (Autonne-Takagi factorization).
When wr is unitary, A = 1.
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Class BDI: Classifying Space R;

o Let H be an N x N Hermitian matrix H with H? =1 and class BDI symmetry

urH ub, = H, uru}y =1,
urHult =—H, ui=1, tr [ur] =0,

UTUL = UPUT.

@ We can set ur = 0, and ur = 1, meaning that g is an orthogonal matrix

H= <q qT), q € O(N).

We get the classifying space Ri,
R; = lim O(n).

n— o0

@ The Zs invariant is given by det ¢ € {£1}.
As for C1, it can also be obtained as R1 = lim, 00 [0O(n) X O(n)]/O(n).
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Class D: Classifying Space Ro

o Let H be an 2N x 2N Hermitian matrix H with H? = 1 and class D PHS
ucH ul, = —H, ucu& =1.

@ We can set uc = 1, meaning that ¢H is a real skew-symmetric matrix, which is diagonalized as
iH =0 [1N ® (71 1)} 07, 0co@n).

e O is not unique:

U+U* U-U*
5 v ImU=—7%—

ReU ImU
—ImU ReU

OHO( ) Re U = UeU(n).

Ry = lim 20

oo U(n)

@ The Z; invariant is given by pf [{H] = det O € {£1}.
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Class D: Classifying Space Rs (alternative)

Start with the diagonalization H = Uo,Ut.

Set uc = 1. Then, the symmetry constraint H* = —H implies that U can be chosen as
U* = Uo,, which is the same as V = UeT @~ jsreal V¥ = V.

o Then, H =V (—a,)V'.
o The redundancy of V is V = VQ with Q* = Q and Qo, Q' = o, which means Q € U(N) as
before.
o We get
Ro = lim O(2n)
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Class DIII: Classifying Space R3

o Let H be an 4N x 4N Hermitian matrix H with H? = 1 and class Cl symmetry
urH ul, = H, urup =1,
urHul. = —H, wf =1, trlur]=0,
UTUL = —UTUT.

@ We can set ur = 0. and ur = 0,7y. Then, the symmetry constraint is recast as follows.

+
H:(q q>7 quTTyZQ~

The matrix 7,q is a complex skew-symmetric and unitary, meaning that it can be a form

Tyq = Q(ic,)QT with Q € U(2N).

o The redundancy of Q is Q — QV with VVT =1 and V(io,)VT = io,. Namely, V € Sp(N).
We get
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Class All: Classifying Space Ry

o Let H be an 2N x 2N Hermitian matrix H with H? = 1 and class All TRS
uTH*ur} =H, wurur=-—1.

. 1 . . .
e We can set ur = ioy = ( 1 9. The eigenvectors come in Kramers pairs

(u2i—1,u2:) = (U2i—1,i045us;_1),

meaning that H is diagonalized by a compact symplectic matrix

H=358 (IN*M _1M) ST, S e Sp(N)=Sp(2N;C)NU((2N) = {S € U2N)|8Ti0},S = icy}.

Sp(2n)
_>R4_Un—>ooSpn—|—k)><Sp( n)’

9Every skew-symmetric matrix ug = —ugp can be up = QAQT with A = P, (_)\, )\i) QT with Q a unitary. When
i

w7 is unitary, A;s can be A\; = 1.
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Class ClI: Classifying Space Rj

o Let H be an N x N Hermitian matrix H with H? =1 and class Cll symmetry

uTH*uTT =H, wurup=-1,
urHult =—H, ubt=1, tr [ur] =0,

UTUL = UPUT.

@ We can set ur = 0. and ur = 7,. Then, the symmetry constraint is recast as follows.

"
H = (q I ) . T Ty =q S qryg =7y
o We get

Rs = lim Sp(n).

n—o0

@ As for C1, it can be obtained as Rs = lim,,—, o [Sp(n) x Sp(n)]/Sp(n).
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Class C: Classifying Space Rg

o Start with the diagonalization H = Uo,UT.

@ Set uc = gy. Then, the symmetry constraint o, H* = —Ho, implies that U can be chosen as
oyU* = Uoy. Namely, U € Sp(N).

o The redundancy of U is U — UV with Vo,VT =5, and Vo,V = 5., which means

V= (“ U*> with v € U(N).

o We get
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Class Cl: Classifying Space Ry

o Let H be an 2N x 2N Hermitian matrix H with H2 = 1 and class Cl symmetry

urH ul, = H, urup =1,
urHquﬂ =—H, ui=1 tr [ur] =0,

UTUL = —UTUT.

@ We can set ur = 0, and ur = o,. Then, the symmetry constraint is recast as follows.

)
q T

H= , " =q

<q ) ¢ =q

@ The complex symmetric and unitary matrix can be a form ¢ = QQ with Q € U(N).
@ The redundancy of Q is @ — QV with VVT =1and VVT = 1. Namely, V € O(N).
o We get
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Classifying Space

o Eventually, we get the 10 classifying spaces and their disconnected parts.

AZ class TRS PHS Chiral Classifying Space mo  Top. invariant
A0 0 0 Co = Urez limn—oo gorriatiny % K€Z
Alll 0 0 1 C1 = lim, o0 U(n) 0
Al 1 0 0 Ro = Upezlimnoo srpyeom—y 2 K€Z
BDI 1 1 1 Ri =limp o O(n) Zo detqe +1
D 0 1 0 Ry = limy 00 220 Zo pfliH] € £1
D -1 1 1 Ry = limy, o0 S22 0
All -1 0 0 Ry = Upez iMoo ooty 22 k€L
Cll -1 -1 1 Rs = limp o0 Sp(n) 0
C 0o -1 0 R = limp o0 7525 0
a 1 -1 1 Rr = limy o0 o 0

0Sp(N) = Sp(2N;C)NU(2N) = {S € U(2N)|STio,S = ioy}
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Finite Space Dimensions (i) from torus to sphere

@ Thanks to the stable equivalence, the topological structure from “different origins” can be
discussed independently.

@ For d-spatial dimensions, the Bloch-momentum space is a d-dimensional torus T however, with
stable equivalence, the topological classification is decomposed into that of sub-spheres S,
0<p<d, like

“H (Skyrmion + Vortex)” — “H (Skyrmion) & H (Vortex)”.

@ We can assume the Bloch-momentum space is a d-sphere.
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Finite Space Dimensions (ii) Dirac Hamiltonians

@ Moreover, it is found that the representative Hamiltonian can be a form of the Dirac Hamiltonian

d
H(k) =Y koyi+ M, {v,%} =265, {v,M}=0 M =1

i=1

The topological classification of H(k) is recast as the classification of the mass term M subject to
the constraint by ;s and AZ symmetry.

Adding space dimensions d = 1,2, ... is the same as adding gamma matrices y1, 72, . ...

The gamma matrices «;s behave as chiral symmetries.
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Dimensional isomorphism

@ We will show that adding gamma matrices is nothing but a shift of AZ symmetry class.

-+ —>A— AIll - A — ---  (without TRS and PHS),

-+ Al -Cl—-C—CIl - AIl - DIIl - D —-BDI - Al — --- .

@ The key observation is that two chiral symmetries can be “solved” trivially:

{05,M} = {0, M} =0 = M=0,® M.
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A — Alll - A
@ Let us consider a d =1 class A Dirac Hamiltonian
H(kl):kl’yl+M, {’yl,M}:O
@ 1 behaves as chiral symmetry, thus,

(d=1, class A) = (d=0, class Alll).

@ Next, let us consider a d = 1 class Alll Dirac Hamiltonian
H(k1)=kiv2+ M, {v,M}=0,
nH (k)] = —H (k).
o We can set 71 = 0, and 72 = 0. Then,
M=0,®M.

o No constraints on M exist, meaning that

(d=1, class Alll) = (d=0, class A).
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Dimensional isomorphism with TRS or PHS

o With antiunitary symmetry, we chase the change of AZ symmetry for M.
@ The symmetry constraint

implies that

uryiuh = —vi, urM ul = M,

ucfyZuTC =y, ucM*uTC =—M.
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Al — CI

o Let us consider a d = 1 class Al Dirac Hamiltonian
H(k))=kimi+M, {nm,M}=0.
The symmetry algebra
uT’yfu; =-m, urup =1,
is solved by
Ur =0z, Y1 =05.

Introducing PHS uc = iyiur = oy, the constraint on the matrix M is the same as class Cl:

uTM*uTT =M, wurup=1,

ucM*ul, = —M, ucuf = —1.
Thus,

(d=1, class Al) = (d=0, class CI).
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Cl—=C

@ Let us consider a d =1 class Cl Dirac Hamiltonian
H(k1) = kam + M,
ucyiul =y, ucM*ul, = -M, wucuf = -1,
up'ylult = -1, upMult =—-M, up=1,
UCUL = —UTUC.
o We can set ur, i, and M as
Ur =0z, Y1 =0z, M:ay®M.
@ The only remaining symmetry is u., which should be a form
uc =0, Quc, Uclc=—1,
and constrain the mass term M as
GcM*al, = —M.
@ Thus,
(d=1, classCl) = (d=0, class C).
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Dimensional isomorphism

@ In this way, we have the shift of AZ symmetry classes by adding space dimensions

-+ —>A - Alll - A — --- (without TRS and PHS),

-++Al - Cl - C — CIl - AIl - DIIl - D —-BDI - Al — --- .
@ These also show the Bott periodicity
Cn72 = Cn7 Rn78 = Rn

@ Eventually, the topological classification of d-dimensional Hamiltonian H (k) with AZ symmetry
C, or R, is given by

ﬂo[cnfd] and Wo[Rnfd].

— periodic table.
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Mapped Symmetry

The remaining task is to identify how 38 non-Hermitian symmetry classes are mapped to 10 AZ
Hermitian symmetry classes for each gap condition.

For the point gap, the Hermitianized doubled Hamiltonian
H(k)T
H(k)
has additional chiral symmetry

o.H(k)o, = —H(k).

Other internal symmetries are mapped for a symmetry constraint of H (k) and
commutation/anticommutation relation with o.
For the real (imaginary) line gap, H(k) can be (anti-)Hermite H(k)! = H(k) (H(k)! = —H(k)).
The (anti-)Hermitian condition of H (k) is the same as imposing an additional chiral symmetry on
H(k):

oyH(k)o, = —H(k) for real line gap,

o.H(k)o, = —H(k) for imaginary line gap.

Other internal symmetries have definite commutation/anticommutation relations with o, (02).
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Classification tables of non-Hermitian topological phases Kawabata—KS—Ueda—Sato arXiv:1812.09133,
cf. Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964, Zhou=Lee 1812.10490

AZ class Gap Classifyingspace d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7T

P R Zs Z 0 0 0 27 0 Za

Al Le Ro z 0 0 0 27 0 Zs Zs
Li Ra Lo Lo Z 0 0 0 27 0

P Ra Z, Z, 7 0 0 0 27 0

BDI L. R1 Zo z 0 0 0 27 0 Zs
Li R2 x Ra Z:0Z2 22022 ZOZ 0 0 0 2Ze2Z 0

b P R 0 Z, Zy 7 0 0 0 27
L Ra Lo Lo Z 0 0 0 27 0

P Ra 27 0 Zy Za Z 0 0 0

DIII Le Rs 0 Zy Zy z 0 0 0 27
Li Co z 0 Z 0 Z 0 Z 0

P Rs 0 27 0 Zy Zs Z 0 0

All Le Ra 27 0 Zy Zy z 0 0 0
L Re 0 2z 0 Z, Z, Z 0

3 Re 0 0 27 0 7, 7, Z 0

cl L. Rs 0 27 0 Zy Zo z 0 0
Li Rs x Re 0 0 2202 0 23862 2:6Z Z6Z 0

c P Rr 0 0 0 27 0 Z, Z, 7
L Re 0 0 27 0 Zy Lo Z 0

P Ro Z 0 0 0 27 0 Za Zo

CI L, Rz 0 0 0 2L 0 Zy 7y z
Li Co Z 0 Z 0 Z 0 Z 0

+ 30 other symmetry classes. (See Kawabata=KS=Ueda=Sato arXiv:1812.09133 for the details.)
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AZ class Gap Classifyingspace d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7

P Ri Lo Z 0 0 0 27 0 Za
Al L. Ro L 0 0 0 2Z 0 Zo Zs
L; Ra Zo Zo Z 0 0 0 27 0
P Ra 7y s 2 ]
BDL 1, Ry Za Z :
L; RexRe L@ To®I» Z82— o 0 0 20&20 0
b P Rs 0 7. Zo Z 0 0 0 2Z
L Ra Za Za Z 0 0 0 27 0
P R4 27 0  m——Za___ % 0 0 0
DIII )
Igf ?3 ; Z;’ Edge Majorana zero mode ]
P Rs 0 27 0 Za Lo Z 0 0
All L. Ry 27 0 T Zy Z 0 0 0
L Re 0 0 27, 0 Za Za Z 0
P Re 0 0 27, 0 Za Za Z 0
CIL L. Rs 0 27, 0 Lo Za Z 0 0
L; Re x Re 0 0 2Z® 27 0 Lo®lo Zo®Zs LZDL 0
c P Ry 0 0 0 2Z 0 Za Zo Z
L Re 0 0 27 0 Za Za Z 0
P Ro 7 0 0 0 27 0 Za Za
Cl L. Rr 0 0 0 27 0 Zs Zy Z
Li Co Z 0 Z 0 7 0 Z 0
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Motivating example: 1d class D non-Hermitian superconductor
o Class D PHS symmetry:

roH (k) 1o = —H(—k,), E — —E.

@ Both the point gap and line gap show the Zs classification.
@ Non-Hermitian Zs invariant:

(1 =sen { POy [ 11" atogacirrayr] )

o If (—1)” = —1, there is a Majorana zero mode at each edge Kawabata=KS=Ueda=Sato 1812.09133.
OBC, L = 100,6h = 1072

N
9]

120.670.470.2 00 02 04 06
[Figure from Okuma=Sato 1904.06355]

@ Unique to non-Hermitian systems?
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Topological phenomena unique to non-Hermitian systems

@ Sometimes, we encounter topological phases which are realized only in non-Hermitian systems.

@ On the other hand, there are topological phases that are remnant in non-Hermitian systems. For
instance, the Chern insulator with a small non-Hermite perturbation is still characterized by the
Chern number of the Bloch wave function.

@ Is there any good approach to extracting topological phases realized only in the presence of
non-Hermiticity?

@ Our proposal [Sec.IX in Supplemental Material of I
Take the cokernel of the following map

Line-gapped topological phases —  Point-gapped topological phases
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Line gap = point gap

o If a line gap is open, the point gap is also open.

ImE ImE ImE

Real gap
- &

)\ @ I R
’ E 'ReE ReE Imaginary gap ReE

[Figure from Kawabata=KS=Ueda=Sato 1812.09133]

@ This implies that there exist homomorphisms f, and f; from the real and imaginary line-gapped
topological phases to the point-gapped topological phases!

fr : (Real line-gapped topological phases) — (Point-gapped topological phases),
fi : (Imaginary line-gapped topological phases) — (Point-gapped topological phases).
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Intrinsic non-Hermitian Topology

@ The point-gapped topological phases that are in the image
Im f. 4+ Im f; C (Point-gapped topological phases)

can be deformed into a real or imaginary line-gapped topological phase while keeping the point
gap.

@ Such point-gapped topological phases are also realized in Hermitian or anti-Hermitian systems.

@ Importantly, their physics such as the bulk-boundary correspondence can be understood in
Hermitian or anti-Hermitian systems.

@ On the other hand, the quotient
(Point-gapped topological phases)/(Im f, +Im f;)
represents topological phases intrinsic to non-Hermitian systems.

@ Thanks to the dimensional isomorphism introduced before, it suffices to calculate the
homomorphisms f., fi from line-gapped to point-gapped topological phases only for d = 0.
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Results: AZ class

Tables from

AZclass d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
A
AIIT
Al
BDI
D
DIII
All
CII
C
CI

o
o
o

coocoocococoo
[\
coccocRoocoNON
coococoocococoo
[\
ocococoNOoCOON
coocolNooooo
N
cooNococoNoN
coococoocococoo
[\]
oONcCocoNoooON

N
N

o d =1, class A: non-Hermitian skin effect.

@ d = 3, class A: non-Hermitian skin effect induced by a magnetic field.
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AZf class d=0 d=1

d=2 d=3 d=4 d=5 d=6

Intrinsic Non-Hermitian Topology
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AT 0
BDIf
DT
DIt
ATt
crrf
CT
crf

OO OO o oo

0
0
Z
Za
Zs
0
27
0

cooNoooN

0

O O O OO oo

Zo
0
27
0
0
0
7
Lo

=y
cooNoooN|I
\]

o d=1,2, class All': Zy non-Hermitian skin effect.
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AZ class with sublattice symmetry or pseudo-Hermiticity

AZ class Add. symm. d=0 d= d=2 d=3 d=4 d=5 d=6 d=
A n 0 0 0 0 0 0 0 0
AIIT S, M+ 0 0 0 0 0 0 0 0
A S 0 VA 0 / 0 Z 0 VA
ATII S_,n- ZLa 0 Zo 0 Zs 0 Zs 0
Al N+ 0 0 0 0 0 0 0 0
BDI S++7 N++ 0 0 0 0 0 0 0 0
D N4+ 0 0 0 0 0 0 0 0
DIIT S_ e+ 0 0 0 0 0 0 0 0
ATl N+ 0 0 0 0 0 0 0 0
CII S++, N++ 0 0 0 0 0 0 0 0
C N4+ 0 0 0 0 0 0 0 0
CI S N+ 0 0 0 0 0 0 0 0

@ d =2, class All4-S_: Edge exceptional point
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(cont.)

AZ class Add. symm. d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
Al S_ 0 Z 0 0 0 Z 0 0
BDI S n4— 0 0 0 0 Za 0 Zs 0
D Sy 0 0 0 Z 0 Z3 0 Z
DIII S_4,m—+ 0 0 0 0 Zs 0 Zs 0
ATl S_ 0 Z 0 0 0 Z 0 0
CII S_f, M- Zs 0 Zs 0 0 0 0 0
C Sy 0 ZLa 0 Z 0 0 0 /
CI S_1,n—+ Zs 0 Zo 0 0 0 0 0
Al - 0 Zo Zs 0 0 0 0 0
BDI S__,n—— 0 0 0 0 0 0 0 0
D = 0 0 0 0 Za 0 0 0
DIII Sig,m—— 0 0 0 0 Za Za 0 0
ATl = 0 0 0 0 0 ZLa Zio 0
CII S__,n—— 0 0 0 0 0 0 0 0
C M- Zs 0 0 0 0 0 0 0
CI St m—— Za Zs 0 0 0 0 0 0
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(cont.)

AZ class Add. symm. d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7

Al Sy Lo Zo 0 0 0 Lo 0 Zo
BDI Si -t Lo Lo In 0 0 0 Zs 0
D S_ 0 Lo Zo Z 0 0 0 VA
DIII Sioini.  Zs 0 Zo I Zs 0 0 0
ATl St 0 Zo 0 Zo Zo Zo 0 0
CII S+_,77—+ 0 0 Zo 0 Zo Zo Zo 0
C S_ 0 0 0 / 0 Zo Za Z
CI S+7, N+— Zo 0 0 0 Zo 0 Lo Lo

Note: I'm not familiar with the current status of the studies of intrinsic non-Hermitian topological phases. The reference list
above may be very limited.
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Example: Class AlllI4+S_ (sublattice symmetry anti-commuting with chiral symmetry)

o Symmetry:

o H(k)o, = —H(k),
{ oy Hk) oy = —H(k). — HE)= (hz(k)

e d=0: (Point-gapped topological phases)/(Im f. Ulm f;) = Zs.
— is understood as the existence of the PT-symmetry breaking accompanied with an exceptional
point at £ = 0:
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Example: Class AlllI4+S_ (cont.)

e d=2: (Point-gapped topological phases)/(Im f. Ulm f;) = Zo.
@ There exists an intrinsic non-Hermitian topological phase.
A model:

b
lax2

H(ky, ky) = (

hchern (kzy ky) = sinkyo, + sinkyoy + (m — tcosky — tcosky)o.

ci=(, ) = {E130= 20

hChern (kCL7 ky))
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Example: Class AlllI4+S_ (cont.)

@ The Chern insulator hchern (<, ky) has a chiral edge state localized at each edge.

@ Therefore, the non-Hermitian Hamiltonian H (k., ky) has an exceptional point, the trajectory of
the “PT-symmetry breaking”, at each edge.

\eSt =
6 gC ] c(J Q
?fa\{¢5
| L D
/‘ Bull
e KCO\H:omf Steles
Po\ut'('
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Summary

In this lecture, | gave
1. Introduction
— One-particle non-Hermitian systems
— Exceptional point
— Non-Hermitian skin effect

2. Gap condition and topology
— Point gap
— Real and imaginary line gaps

3. Symmetry classes
— 38 classes in non-Hermitian systems

4. Topological classification
— Point gap — doubled Hermitian Hamiltonian — Hermitian topological phases
— Line gap — Hermitianization — Hermitian topological phases
— Classifying spaces
— Dimensional isomorphism

5. Intrinsic non-Hermitian topology
— Line gap implies point gap

— Intrinsic non-Hermitian topological phases should be interesting!
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Skin effect is topological

o W(H(k)) := 5= § dlogdet[Hppc (k)] # 0 = skin effect.
(Our proof)

e Let o(Hpac), o(Hosc) and o(Hsisc) be the spectrum for PBC, OBC and the semi-infinite bdy
condition, respectively. It holds that

o(Hogsc) C o(Hsiso).
@ The spectrum for OBC is invariant under the similarity transformation
Vo [iVi = €11, g €(0,00).
Therefore,

o(Hogc) C m O'(Vg_lHSIBCVg).

g€(—00,00)
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Skin effect is topological (cont.) Zhang-Yang-Fang 19, Okuma-Kawabata-KS-Sato 19

@ Toeplitz index theorem:

o(Hsisc) = o(Hpec) U{E € CIW(H (k) — E) # 0} .

dense spectrum

Periodic I_ ' Semi-infinite
- |C Eg—

This is because the bulk-boundary correspondence for the class Alll doubled Hamiltonian

0= (g ")

If W(H (k) — E) < 0, there exists a zero mode (0,|E))7 of H, i.e., the right eigenstate of H (k)
with eigenvalue E.
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Skin effect is topological (cont.)

@ Suppose that Hpac(k) has a nonzero winding number.

@ Take an arbitrary complex energy E with W (Hpgc(k) — E) # 0. |E) represents an right or left
eigenstate localized at the boundary.

e There exists g € (0,00) s.t. |E) such that |E) is a delocalized plane wave of V; ' HsiscVy, i.e.
FE e O'(nglHPBch).

@ The intersection of o(Hsisc) and U(ngalBch) is strictly smaller than o(Hsigc). This proves
that O'(Hch) 7& U(HOBc).

° Furtherr_no_re, ﬂge(_mm) o
contradiction arises.

(V, ' HsiscVy) reaches a topological trivial area or curves, otherwise a
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Ex: 1d class A with sublattice symmetry
@ Sublattice symmetry (non-Hermitian SSH chain)
hi (ks
. H(k)o. = —H(k) =  H(ks) = (hQ(kz) i )) .
@ Two Z topological invariants defined by
1 .
N; = %?{dlogdethj(kx) €7 (j=1,2).

@ The classification of point-gap topological phases is Kp = Z @ Z characterized by (N1, Na2).

o With the real-line gap condition, H(k.) can be Hermite, i.e. ha(kz) = hi1(kz)'. The classification
of real-line gap topological phases is K1, = Z characterized by N1 = —Na.

@ With the imaginary-line gap condition, H(k,) can be anti-Hermite, i.e. ho(ks) = —hi(kz)". The
classification of real-line gap topological phases is K1, = Z characterized by N1 = —Na.

@ Line-gap topology to point-gap topology

fri: Ky, - Kp, nw—(n,—n). fi: Ky — Kp, nw— (n,—n).

o Note that the union of images Im f, UIm f; = Z[1,—1] C Kp does not show the skin effect, since
the total phase winding N1 4+ N2 is zero.
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Examples

@ 1d class A
° KL — Kp : 0—Z.
e Skin effect.
@ ld class D
o K1, — Kp: ZQ‘)ZQ, 1—1 = Kp/|mf=0.
o No new phenomena unique to non-Hermitian systems.
o 1d class Allf
o Symmetry: oy H(ks)Toy = H(—kg).

° KL — Kp : 0 — Zo.
o Zsg skin effect protected by class AllT TRS! Okuma-Kawabata-KS-Sato
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1d class Allf

o H(k) — E is also invariant under TRS', o, [H (k) — E|" 0, = H(—k) — E.

@ The non-Hermite Zs number

(=1)"®) = sgn {% X exp {f% /07T dlog det[(H (k) — E)ay]} }

@ Toeplitz index theorem:
#[right zero mode of H — E] = v(F) mod 2.

o Kramers pair:  localized right-state .

@ We have the dense spectrum protected by the TRS.
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