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The adiabatic self-consistent collective coordinate (ASCC) method is a practical micro-
scopic theory of large-amplitude collective motion in nuclei with superfluidity. We show that
its basic equations are invariant under transformations involving the gauge angle in particle-
number space. By virtue of this invariance, a clean separation of the large-amplitude collec-
tive motion and the pairing rotational motion can be made, and this allows us to restore the
particle-number symmetry broken by the Hartree-Fock-Bogoliubov (HFB) approximation.
We formulate the ASCC method explicitly in a gauge-invariant form. In solving the ASCC
equations, it is necessary to fix the gauge. Applying this new formulation to the multi-O(4)
model, we compare different gauge-fixing procedures and demonstrate that calculations us-
ing different gauges indeed yield the same results for gauge-invariant quantities, such as the
collective path and quantum spectra. We propose a gauge-fixing prescription that seems
most convenient in realistic calculations.

§1. Introduction

The construction of a microscopic theory of large-amplitude collective motion
is a long-standing and fundamental problem in the study of nuclear many-body
systems.1)–35) As is well known, pairing correlations play crucial roles in low-lying
states of medium and heavy nuclei, and they are taken into account in the Hartree-
Fock-Bogoliubov (HFB) mean-field theory by violating the particle number conser-
vation.36)–38) The broken particle-number symmetry can be restored, however, by
making the self-consistent quasiparticle random-phase approximation (QRPA), on
top of the HFB mean field.36)–38) It is an advantage of the QRPA that number-
conserving collective modes, such as shape-vibrational modes, are exactly decoupled
from number-fluctuation modes. The latter modes are associated with the nucleon-
number degrees of freedom and are called the ‘pairing rotational modes’. It is a
unique feature of nuclei as finite quantum systems that such rotational motion in
gauge space is actually observed in quantum spectra.39) Because the applicability of
the QRPA is limited to small-amplitude collective motion, it is highly desirable to
extend the QRPA to a general theory which has its decoupling feature. Such a the-
ory should be capable of describing the interplay between large-amplitude collective
motion and the pairing rotational modes.

The self-consistent collective coordinate (SCC) method7) is a microscopic the-
ory of large-amplitude collective motion based on the time-dependent Hartree-Fock
(TDHF) method. This method enables us to extract the collective submanifold in
a fully self-consistent manner. The SCC method was originally formulated7) for
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systems without pairing correlations, and then extended18) to systems with super-
fluidity. To extract the collective submanifold embedded in the time-dependent
Hartree-Fock-Bogoliubov (TDHFB) phase space, number and angle variables de-
scribing the pairing rotational motion are explicitly introduced,18) in addition to
the collective variables describing the large-amplitude collective motion. This ex-
tended version of the SCC method has been applied successfully to various kinds
of anharmonic vibration and high-spin rotational motion.40)–51) However, obtaining
solutions with this method requires use of a technique employing expansion with
respect to the collective coordinates and momenta around the HFB states. Thus
it is difficult to describe large-amplitude collective motion using this expansion.
Recently, the adiabatic SCC (the ASCC) method has been proposed to overcome
this difficulty.52) The ASCC method is an alternative way to solve the SCC basic
equations in the case that the large-amplitude collective motion of interest is slow
(adiabatic). Under this assumption, the basic equations of the SCC method are ex-
panded up to second order in the collective momentum, but no expansion is carried
out with respect to the collective coordinate. This method has been applied53) to
the study of shape-coexistence phenomena54)–56) in which there is large-amplitude
collective motion that appears as the transition between the oblate and prolate HFB
equilibrium shapes. However, the calculation to determine the collective degrees of
freedom often involves a numerical instability, caused by the existence of a redun-
dant degree of freedom in the ASCC equations. This problem has been treated by
imposing an additional condition by hand.57) However we now understand the origin
of this redundancy: It is due to the gauge invariance of the ASCC equations.

The main purpose of this paper is to formulate the ASCC method in a manner
that makes manifest the invariance under transformations with respect to the angle
variable in the gauge space. This invariance is necessary to realize a clean separation
of the large-amplitude collective motion and the pairing rotational motion, and to
restore the particle-number symmetry broken by the HFB approximation. This
new formulation of the ASCC method also provides justification of the prescription
adopted in our previous work.57) In the present work, we apply this method to
the multi-O(4) model57)–62) with several choices of the gauge and test the internal
consistency of the proposed scheme by carrying out a detailed numerical calculation.

This paper is organized as follows. In §2 the basic equations of the ASCC
method are presented. In §3 a gauge-invariant formulation of the ASCC method is
given. This formulation is applied to the multi-O(4) model in §4, and the results of
numerical calculations testing its validity are reported in §5. Concluding remarks
are given in §6.

§2. Basic equations of the ASCC method

2.1. Basic ideas

The time evolution of large-amplitude collective motion is described by the time-
dependent variational principle expressed as

δ 〈φ(t)| i ∂

∂t
− Ĥ |φ(t)〉 = 0, (2.1)

where |φ(t)〉 is the time-dependent HFB state vector. Assuming that the time-
dependence of the collective motion is governed by the collective coordinate q and
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the momentum p, we parameterize the time-dependent HFB state vector as

|φ(t)〉 = |φ(q, p, ϕ, n)〉 . (2.2)

Here, ϕ represents the gauge angle conjugate to the particle number n ≡ N−N0. We
measure the particle number from a reference value N0 specified below and assume,
for simplicity, that there is one collective coordinate. We define the intrinsic state
vector |φ(q, p, n)〉 in the particle-number (gauge) space by

|φ(q, p, ϕ, n)〉 = e−iϕÑ |φ(q, p, n)〉 , (2.3)

where Ñ ≡ N̂−N0. Two sets of collective variables, (q, p) and (ϕ, n), are determined
such that the canonical variable conditions

〈φ(q, p, n)| i ∂

∂q
|φ(q, p, n)〉 = p +

∂S

∂q
, 〈φ(q, p, n)| ∂

i∂p
|φ(q, p, n)〉 = −∂S

∂p
,

〈φ(q, p, n)| Ñ |φ(q, p, n)〉 = n +
∂S

∂ϕ
, 〈φ(q, p, n)| ∂

i∂n
|φ(q, p, n)〉 = −∂S

∂n
(2.4)

are satisfied. Here, the generating function S is an arbitrary function of q, p, ϕ, and n.
We choose S = 0, because it is appropriate for the adiabatic approximation.15),16), 20)

The collective Hamiltonian is defined by

H(q, p, n) = 〈φ(q, p, ϕ, n)| Ĥ |φ(q, p, ϕ, n)〉 = 〈φ(q, p, n)| Ĥ |φ(q, p, n)〉 . (2.5)

Note that this collective Hamiltonian is independent of the gauge angle ϕ, because
the original Hamiltonian commutes with the particle number operator N̂ .

The equation of collective path is obtained by replacing the time derivative term
in Eq. (2.1) with derivatives with respect to the four collective variables:

δ 〈φ(q, p, n)| Ĥ − i

(
∂H
∂p

∂

∂q
− ∂H

∂q

∂

∂p
+

1
i

∂H
∂n

Ñ

)
|φ(q, p, n)〉 = 0. (2.6)

Here, the canonical equations of motion for the collective variables (q, p) and (ϕ, n)
are used in order to eliminate the time derivative of the collective variables. Equa-
tions (2.4), (2.5) and (2.6) constitute the basic equations of the SCC method.7),18)

2.2. Basic equations of the ASCC method

Assuming that the large-amplitude collective motion is slow, i.e., that p is small,
let us write the TDHFB state vector |φ(q, p, n)〉 in the following form:

|φ(q, p, n)〉 = eipQ̂(q)+inΘ̂(q) |φ(q)〉 . (2.7)

Here Q̂(q) and Θ̂(q) are Hermitian one-body operators, which may be written as

Q̂(q) =
∑

αβ

(
Qαβ(q)a†αa†β + Qαβ(q)∗aβaα

)
, (2.8)

Θ̂(q) = i
∑

αβ

(
Θαβ(q)a†αa†β − Θαβ(q)∗aβaα

)
, (2.9)

where a†α and aα are the quasiparticle creation and annihilation operators associated
with the time-even state vector |φ(q)〉, which satisfy aα |φ(q)〉 = 0, and n = N −N0,
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N0 being the expectation value of the particle number with respect to |φ(q)〉. In §3,
we show that it is also possible to adopt a slightly different representation for Q̂(q).

Substituting (2.7) into (2.4) and comparing the coefficients of zeroth-order and
first-order terms in p and n, we obtain the canonical variable conditions in the
adiabatic limit:

〈φ(q)| P̂ (q) |φ(q)〉 = 0, (2.10)

〈φ(q)| Q̂(q) |φ(q)〉 = 0, (2.11)

〈φ(q)| Ñ |φ(q)〉 = 0, (2.12)

〈φ(q)| Θ̂(q) |φ(q)〉 = 0, (2.13)

〈φ(q)| [Θ̂(q), Ñ ] |φ(q)〉 = i, (2.14)

〈φ(q)| [Q̂(q), Θ̂(q)] |φ(q)〉 = 0, (2.15)

〈φ(q)| ∂Q̂

∂q
|φ(q)〉 = −1, (2.16)

where P̂ (q) is the local shift operator defined by

P̂ (q) |φ(q)〉 = i
∂

∂q
|φ(q)〉 . (2.17)

Differentiating (2.11) and (2.12) with respect to q and using (2.16), we obtain

〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i, (2.18)

〈φ(q)| [Ñ , P̂ (q)] |φ(q)〉 = 0. (2.19)

The collective Hamiltonian (2.5) is also expanded up to second order in p and
first order in n, and we write

H(q, p, n) =V (q) +
1
2
B(q)p2 + λ(q)n, (2.20)

where the collective potential V (q), the inverse mass parameter B(q), and the chem-
ical potential λ(q) are defined by

V (q) = H(q, p, n)


p=n=0
= 〈φ(q)| Ĥ |φ(q)〉 , (2.21)

B(q) =
1
2

∂2H
∂p2


p=n=0

= 〈φ(q)| [[Ĥ, iQ̂(q)], iQ̂(q)] |φ(q)〉 , (2.22)

λ(q) =
∂H
∂n


p=n=0

= 〈φ(q)| [Ĥ, iΘ̂(q)] |φ(q)〉 . (2.23)

We obtain the ASCC equations by expanding the equation of collective path
(2.6) with respect to p and n, and requiring that the variations vanish at each order
in p and n. At zeroth order, we obtain the moving-frame HFB equation

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (2.24)

where

ĤM (q) = Ĥ − λ(q)Ñ − ∂V

∂q
Q̂(q) (2.25)
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is the moving-frame Hamiltonian. At first and second orders, we obtain the moving-
frame QRPA equations (also called the local harmonic equations),

δ 〈φ(q)| [ĤM (q), iQ̂(q)] − B(q)P̂ (q) |φ(q)〉 = 0, (2.26)

δ 〈φ(q)| [ĤM (q), P̂ (q)] − iC(q)Q̂(q)

− 1
2B(q)

[[ĤM (q),
∂V

∂q
Q̂(q)], iQ̂(q)] − i

∂λ

∂q
Ñ |φ(q)〉 = 0, (2.27)

where

C(q) =
∂2V

∂q2
+

1
2B(q)

∂B

∂q

∂V

∂q
. (2.28)

Note that in Ref. 52) the curvature term 1/2B(q)[[ĤM (q), ∂V/∂qQ̂(q)], iQ̂(q)] is
linearized with respect to Q̂(q) using the relation

(Ĥ − λ(q)N̂)A =
∂V

∂q
Q̂(q), (2.29)

where the superscript A in Eq. (2.29) denotes the two-quasiparticle creation (a†a†)
and annihilation (aa) part of the operator in the parentheses. Hereafter, we call
this part the “A-part” and the a†a terms the “B-part”. The collective variables
(q, p) and the collective Hamiltonian H(q, p, n) are determined by solving the ASCC
equations, (2.24), (2.26), and (2.27), under the canonical variable conditions. Note
that we can carry out a scale transformation of the collective coordinate q such
that B(q) = 1. We adopt this choice. Then, C(q) represents the curvature of the
collective potential:

C(q) =
∂2V (q)

∂q2
. (2.30)

§3. Gauge invariance of the ASCC equations with respect
to the pairing rotational degree of freedom

3.1. Gauge invariance at the HFB equilibrium point

As mentioned in the preceding section, the first step to solve the ASCC equa-
tions is to find a solution at one of the HFB equilibrium points, denoted q = q0,
which corresponds to the local minimum of the collective potential V (q), satisfying
∂V/∂q = 0. The moving-frame HFB equation reduces to the conventional HFB
equation at the equilibrium point:

δ 〈φ(q0)| Ĥ − λ(q0)Ñ |φ(q0)〉 = 0. (3.1)

The moving-frame QRPA equations at the equilibrium point are given by

δ 〈φ(q0)| [Ĥ − λ(q0)Ñ , iQ̂(q0)] − B(q0)P̂ (q0) |φ(q0)〉 = 0, (3.2)

δ 〈φ(q0)| [Ĥ − λ(q0)Ñ , P̂ (q0)] − iC(q0)Q̂(q0) − i
∂λ

∂q
Ñ |φ(q0)〉 = 0. (3.3)

These equations reduce to the QRPA equations if the quantity ∂λ/∂q vanishes. In
other words, the QRPA solution corresponds to the special solution of the moving-
frame QRPA equations with ∂λ/∂q = 0.
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Let us consider the following transformations:

Q̂(q0) → Q̂(q0) + αN̂A(q0), (3.4a)

Θ̂(q0) → Θ̂(q0) + αP̂ (q0), (3.4b)
∂λ

∂q
(q0) →

∂λ

∂q
(q0) − αC(q0). (3.4c)

Here, α is an arbitrary number and N̂A denotes the A-part of the number operator
N̂ . This is a kind of gauge transformation with respect to the pairing rotational
degree of freedom. We can easily confirm that the moving-frame QRPA equations
at the HFB equilibrium point, (3.2)–(3.3), and the canonical variable conditions,
(2.10)–(2.15) and (2.18)–(2.19), are invariant under this transformation. Due to
this invariance, the solution of the moving-frame QRPA equations is not uniquely
determined at the HFB equilibrium point. If we choose a value of α such that the
relation ∂λ/∂q = 0 holds, the moving-frame QRPA equations coincide with the
conventional QRPA equations. We can choose other values of α, however, if they
are more convenient.

3.2. Gauge invariance at non-equilibrium points

At non-equilibrium points, ∂V/∂q is non-zero, and the moving-frame Hamilto-
nian (2.25) depends on the collective coordinate operator Q̂(q). However, we can
generalize the above considerations applying to the HFB equilibrium point to a gen-
eral non-equilibrium point q on the collective path. Indeed, it is straightforward to
confirm that all the basic equations of the ASCC method [i.e., the collective Hamil-
tonian H(q, p, n), (2.20), the inverse mass parameter B(q), (2.22), the moving-frame
HFB equation, (2.24), the moving-frame QRPA equations, (2.26)–(2.27), and the
canonical variable conditions, (2.10)–(2.15) and (2.18)–(2.19)] are invariant under
the transformations with respect to the pairing rotational degree of freedom

Q̂(q) → Q̂(q) + αÑ, (3.5a)

Θ̂(q) → Θ̂(q) + αP̂ (q), (3.5b)

λ(q) → λ(q) − α
∂V

∂q
(q), (3.5c)

∂λ

∂q
(q) → ∂λ

∂q
(q) − αC(q) (3.5d)

if the collective coordinate operator Q̂(q) is constructed such that it exactly com-
mutes with the number operator N̂ , i.e.

[Q̂(q), N̂ ] = 0. (3.6)

In association with the above transformations of Q̂(q) and Θ̂(q), the original
TDHFB state vector,

|φ(q, p, ϕ, n)〉 = e−iϕÑeipQ̂(q)einΘ̂(q) |φ(q)〉 , (3.7)

is transformed as

|φ(q, p, ϕ, n)〉 →e−iϕÑeip(Q̂(q)+αÑ)ein(Θ̂(q)+αP̂ (q)) |φ(q)〉

=e−i(ϕ−αp)ÑeipQ̂(q)einΘ̂(q) |φ(q − αn)〉 . (3.8)
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Here, the relation

|φ(q + δq)〉 = e−iδqP̂ (q) |φ(q)〉 (3.9)

is used, and it is assumed that the operators Θ̂(q) and P̂ (q) commute under the
adiabatic approximation. We also note that the expression (3.7) is slightly different
from (2.7). However, the difference between eipQ̂(q)+inΘ̂(q) and eipQ̂(q)einΘ̂(q) gives rise
to only higher-order contributions, which are ignored in the adiabatic approximation
under consideration. We see that the gauge angle ϕ changes to ϕ − αp under the
transformation (3.5). Thus, hereafter, we refer to the transformations (3.5) as “gauge
transformations”, the lack of dependence on the choice of α as “gauge invariance”,
and the choice of the value of α as “gauge fixing.”

The commutation relation (3.6) implies that Q̂(q) is a normal one-body operator
written in terms of the nucleon creation and annihilation operators (c†, c) in the
following form:

Q̂(q) =
∑

ij

Qij(q) : c†icj : ≡ Q̂A(q) + Q̂B(q). (3.10)

Here, the symbol : : denotes the normal product part when Q̂(q) is written in terms
of the quasiparticle operators (a†, a) defined at |φ(q)〉, and the coefficients satisfy
the relation Qij(q) = Qji(q)∗, because Q̂(q) is assumed to be Hermitian. Note that
this Q̂(q) operator contains the B-part, Q̂B(q) =

∑
kl Q

B
kla

†
kal, as well as the A-part,

Q̂A(q) =
∑

kl Q
A
kla

†
ka

†
l + h.c. Accordingly, the relation (2.29) does not hold for this

Q̂(q) operator.
In this way, we arrive at a new formulation of the ASCC method in which the

gauge invariance (3.5) is manifest. The gauge-invariant ASCC method consists of
the basic equations, which are the same as those in the original ASCC method,52)

except for the use of Eq. (2.27), and the Q̂(q) operator given in the form of (3.10).

3.3. Gauge fixing and the numerical algorithm

The fact that the ASCC equations are invariant under the gauge transforma-
tions (3.5) suggests the necessity of choosing a particular gauge for the numerical
computation: If the gauge is not fixed, an instability with respect to the gauge degree
of freedom might arise during the course of numerical calculation. Let us outline
the procedure for the gauge fixing and the numerical algorithm for solving the gauge
invariant ASCC equations. We start the calculation by solving the moving-frame
QRPA equations at one of the HFB equilibrium points. A solution of the moving-
frame QRPA equations at the HFB equilibrium point can be obtained, as discussed
in §3.1, by choosing the gauge ∂λ/∂q = 0. Hereafter we call this gauge the “QRPA
gauge”, because under this gauge, the moving-frame QRPA equations at the HFB
equilibrium reduce to the conventional QRPA equations. As we see below, numerical
calculations using the QRPA gauge encounters a difficulty at inflection points of the
collective potential V (q). It is possible, however, to choose another gauge that is
free from this difficulty. With the use of the multi-O(4) model, we explicitly show
in §5 how this is done.

Since the moving-frame HFB equation at non-equilibrium points contains Q̂(q)
that should be determined by the local harmonic equations, we have to resort to
an iterative procedure. We proceed in the direction of the lowest energy solution of
the moving-frame QRPA equations and successively derive solutions in the following
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manner. Suppose that we have already obtained the solution at q′ = q − δq, where
δq is the numerical mesh size in the computation. The moving-frame HFB equation
at q for the n-th iteration,

δ
〈
φ(n)(q)

∣∣∣ Ĥ
(n)
M (q)

∣∣∣φ(n)(q)
〉

= 0, (3.11)

Ĥ
(n)
M (q) = Ĥ − λ(n)(q)N̂ − ∂V

∂q

(n)

(q)Q̂(n−1)(q), (3.12)

is solved under the constraints
〈
φ(n)(q)

∣∣∣ N̂
∣∣∣φ(n)(q)

〉
= N0, (3.13)

〈
φ(n)(q)

∣∣∣ Q̂(q − δq)
∣∣∣φ(n)(q)

〉
= δq, (3.14)

which are derived from the canonical variable conditions (2.12) and (2.16), respec-
tively. In starting this iterative procedure at q, the neighboring solution Q̂(q − δq)
(or a linear combination of the moving-frame QRPA modes at q − δq) may be used
as an initial trial for the operator Q̂(q)(0). The moving-frame QRPA equations for
the n-th iteration are written

δ
〈
φ(n)(q)

∣∣∣ [Ĥ(n)
M (q), iQ̂(n)(q)] − B(n)(q)P̂ (n)(q)

∣∣∣φ(n)(q)
〉

= 0, (3.15)

δ
〈
φ(n)(q)

∣∣∣ [Ĥ(n)
M (q), P̂ (n)(q)] − 1

2B(n)(q)
[[Ĥ(n)

M (q),
∂V

∂q
Q̂(q)], iQ̂(q)]

− iC(n)(q)Q̂(n)(q) − i
∂λ

∂q

(n)

(q)N̂
∣∣∣φ(n)(q)

〉
= 0. (3.16)

As the curvature term is nonlinear with respect to Q̂(q), we replace one of the
operators Q̂(q) with that of the previous iteration step, Q̂(n−1)(q). This procedure
is discussed in detail for the multi-O(4) model in §4.5. Thus, the moving-frame
QRPA equations are linearized with respect to Q̂(n)(q) and P̂ (n)(q). Its A-part,
Q̂A(n)(q), can be determined in a manner similar to that employed in solving the
conventional QRPA equations. After obtaining Q̂A(n)(q), its B-part, Q̂B(n)(q), is
determined with the requirement Eq. (3.6). This iterative procedure is repeated
until we obtain convergence for λ(n)(q), Q̂(n)(q), and

∣∣φ(n)(q)
〉
.

§4. Application of the gauge-invariant ASCC method
to the multi-O(4) model

In the following sections, we apply the scheme formulated above to the multi-
O(4) model and discuss the gauge-fixing conditions suitable for solving the gauge-
invariant ASCC equations. We study excitation spectra and transition strengths in
systems with definite particle number N = N0, and for this reason, we set n = 0 in
the following sections.

4.1. The multi-O(4) model

The multi-O(4) model Hamiltonian has been used to test the validity of micro-
scopic theories of nuclear collective motion.57)–62) In this work, we employ the model
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Hamiltonian used in Ref. 57). The model is constructed in terms of the generators
of the O(4) symmetry,

Â†
j =

∑

m>0

c†jmc†j−m, B̂†
j =

∑

m>0

σjmc†jmc†j−m, (4.1)

N̂j =
∑

m

c†jmcjm, D̂j =
∑

m

σjmc†jmcjm, (4.2)

where the nucleon creation and annihilation operators (c†jm, cjm) are used, and the
quantity σjm is given by

σjm =
{

1 |m| < Ωj/2,
−1 |m| > Ωj/2.

(4.3)

These four operators represent the monopole pair, the (simplified) quadrupole pair,
the particle number, and the (simplified) quadrupole operators for each j-shell,
respectively. The model Hamiltonian is written in the form

Ĥ = ĥ0 −
1
2
G0(Â†Â + ÂÂ†) − 1

2
G2(B̂†B̂ + B̂B̂†) − 1

2
χD̂2, (4.4)

ĥ0 =
∑

j

e0
jN̂j ,

where

Â† =
∑

j

Â†
j , B̂† =

∑

j

djB̂
†
j , N̂ =

∑

j

N̂j , D̂ =
∑

j

djD̂j , (4.5)

and dj represents the quadrupole matrix element. The first term on the right-
hand side of Eq. (4.4) is the single-particle Hamiltonian, giving a spherical single-
particle energy e0

j for each j-shell, which possesses (2Ωj)-fold degeneracy (2Ωj =
2j+1). The other terms represent the residual two-body interactions: the monopole-
pairing interaction, the quadrupole-type pairing interaction, and the quadrupole-
type particle-hole interaction. Their interaction strengths are denoted G0, G2, and
χ, respectively. Here, the operators Â and N̂ are the monopole-pair and the number
operators, while B̂ and D̂ represent the simplified quadrupole-pair and quadrupole
particle-hole operators, respectively.

The residual interactions of this model are separable, and we can always write
such a separable Hamiltonian in the form

Ĥ = ĥ0 −
1
2

∑

s

κsF̂
(+)
s F̂ (+)

s +
1
2

∑

s

κsF̂
(−)
s F̂ (−)

s , (4.6)

where

F̂ (±)
s ≡ (F̂s ± F̂ †

s )/2 = ±F̂ (±)†
s . (4.7)

Here, the superscript (+) indicates that the bilinear operator F̂ is Hermitian and (−)
indicates that it is anti-Hermitian. The multi-O(4) model Hamiltonian under con-
sideration contains three kinds of residual interactions. The subscripts s =1, 2, and
3 on the operators F̂ and the interaction strengths κs indicate the monopole-pairing,
the quadrupole-pairing and the quadrupole particle-hole interactions, respectively:
F̂s=1 = A, F̂s=2 = B, F̂s=3 = D̂, κ1 = 2G0, κ2 = 2G2 and κ3 = χ.
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4.2. Quasiparticle representation

To solve the ASCC equations, it is convenient to use the quasiparticle basis
defined locally with respect to the state |φ(q)〉 on the collective path. For the multi-
O(4) model, the Bogoliubov transformation to the quasiparticle creation and anni-
hilation operators, a†i (q) and ai(q), satisfying the vacuum condition ai(q) |φ(q)〉 = 0
is written

(
a†i (q)
a−i(q)

)
≡

(
ui(q) −vi(q)
vi(q) ui(q)

)(
c†i
c−i

)
. (4.8)

Here, the indices ±i represent the set of angular momentum quantum numbers
(j,±m). The Bogoliubov transformation is locally determined on the collective
path by the moving-frame HFB equation for a given collective coordinate operator
Q̂(q).

Using the quasiparticle bilinear operators

A†
i (q) = a†i (q)a

†
−i(q), (4.9)

N i(q) = a†i (q)ai(q) + a†−i(q)a−i(q), (4.10)

the nucleon bilinear operators Â†
i and N̂i can be rewritten as

Â†
i = ui(q)vi(q) + u2

i (q)A
†
i (q) − v2

i (q)Ai(q) − ui(q)vi(q)N i(q), (4.11)

N̂i = 2v2
i (q) + 2ui(q)vi(q)(A

†
i (q) + Ai(q)) + (u2

i (q) − v2
i (q))N i(q). (4.12)

The quasiparticle bilinear operators A†
i (q), Ai(q), and N i(q) satisfy the following

commutation relations: [
Ai(q),A

†
i′(q)

]
= δii′(1 − N i(q)), (4.13)

[
N i(q),A

†
i′(q)

]
= 2δii′A

†
i′(q). (4.14)

The particle number N0, the quadrupole deformation D(q), the monopole-pairing
gap ∆0(q), and the quadrupole-pairing gap ∆2(q) are given by the expectation values
of the corresponding operators with respect to the mean-field state vector |φ(q)〉:

N0 = 〈φ(q)| N̂ |φ(q)〉 = 2
∑

i>0

v2
i (q), (4.15)

D(q) = 〈φ(q)| D̂ |φ(q)〉 = 2
∑

i>0

diσiv
2
i (q), (4.16)

∆0(q) = G0 〈φ(q)| Â† |φ(q)〉 = G0

∑

i>0

ui(q)vi(q), (4.17)

∆2(q) = G2 〈φ(q)| B̂† |φ(q)〉 = G2

∑

i>0

diσiui(q)vi(q). (4.18)

Below, we often omit q as the argument of such functions, for example, writing
Ai(q) as Ai. It should be kept in mind, however, that these quantities are locally
defined with respect to the quasiparticle vacuum |φ(q)〉 and depend on q.

4.3. The ASCC equations for separable interactions

The ASCC equations for the separable Hamiltonian are given by

δ 〈φ(q)| ĥM (q) |φ(q)〉 = 0, (4.19)
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δ 〈φ(q)| [ĥM (q), Q̂(q)] −
∑

s

f
(−)
Q,s F̂ (−)

s − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (4.20)

δ 〈φ(q)|
[
ĥM (q),

1
i
B(q)P̂ (q)

]
−

∑

s

f
(+)
P,s (q)F̂ (+)

s − B(q)C(q)Q̂(q) −
∑

s

f
(+)
R,s (q)F̂ (+)

s

− 1
2
[[ĥM (q),

∂V

∂q
Q̂(q)], Q̂(q)]

+
∑

s

[
F̂ (−)

s ,
∂V

∂q
Q̂(q)

]
f

(−)
Q,s − fN (q)Ñ |φ(q)〉 = 0,

(4.21)

where ĥM (q) denotes the self-consistent mean-field Hamiltonian in the moving frame,
defined by

ĥM (q) = ĥ(q) − λ(q)Ñ − ∂V

∂q
Q̂(q), (4.22)

with

ĥ(q) = ĥ0 −
∑

s

κsF̂
(+)
s 〈φ(q)| F̂ (+)

s |φ(q)〉 . (4.23)

We also define the following quantities:

f
(−)
Q,s (q) = −κs 〈φ(q)| [F̂ (−)

s , Q̂(q)] |φ(q)〉 , (4.24)

f
(+)
P,s (q) = κs 〈φ(q)| [F̂ (+)

s ,
1
i
B(q)P̂ (q)] |φ(q)〉 , (4.25)

f
(+)
R,s (q) = −1

2
κs 〈φ(q)|

[[
F̂ (+)

s ,
∂V

∂q
Q̂(q)

]
, Q̂(q)

]
|φ(q)〉 , (4.26)

fN (q) = B(q)
∂λ

∂q
. (4.27)

Note that all matrix elements are real, and then 〈φ(q)| F̂ (−)
s |φ(q)〉 = 0. The fifth

term in Eq.(4.21) appears only in the gauge-invariant formulation of the ASCC
equations, because there is a contribution from this term only if Q̂(q) contains the
B-part.

4.4. The moving-frame HFB equation

The moving-frame HFB equation (4.19) at a given q determines the time-even
TDHB state vector |φ(q)〉. The variation of Eq. (4.19) is taken with respect to two
arbitrary quasiparticle states:

δ |φ(q)〉 = a†i (q)a
†
j(q) |φ(q)〉 . (4.28)

If we know the operator Q̂(q), we can solve this equation using the gradient method
so as to eliminate the two-quasiparticle terms proportional to A†

i and Ai. The quan-
tities λ(q) and ∂V/∂q can be regarded as Lagrange multipliers, which are determined
by the following two constraints. The first is the particle number constraint given by
(4.15). This constraint specifies the location in particle-number space. The second
constraint is written as (3.14). For the Q̂ operator defined by (3.10), this equation
yields

〈φ(q)| Q̂(q − δq) |φ(q)〉 = 2
∑

i>0

Qi(q − δq)(vi(q)2 − vi(q − δq)2) = δq. (4.29)
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4.5. The moving-frame QRPA equations

We solve the moving-frame QRPA equations to obtain the operators Q̂(q) and
P̂ (q). The collective coordinate operator Q̂(q) is written

Q̂(q) =
∑

i

Qi(q) : N̂i :=
∑

i>0

{
QA

i (q)(A†
i + Ai) + QB

i (q)N i

}
, (4.30)

while the collective momentum operator P̂ (q) is expressed as

P̂ (q) = i
∑

i>0

Pi(q)(A
†
i − Ai). (4.31)

As mentioned in the preceding section, the B-part of the operator P̂ (q) is unneces-
sary in second order with respect to the collective momentum p.

We solve the moving-frame QRPA equations in the following way. First, we
assume that the solution Q̂(n−1)(q) (obtained in the previous iteration step) of the
moving-frame QRPA equations and the solutions, such as |φ(q)〉 and V (q), of the
moving-frame HFB equation are known. [The superscript n is omitted, except on
Q̂(q).] In solving the moving-frame QRPA equations, we note that the moving-
frame Hamiltonian ĥM (q) and the operators F̂

(±)
s can be expressed in terms of the

quasiparticle bilinear operators A†
i , Ai, and N i as

ĥM (q) = V (q) +
∑

i>0

Ei(q)N i, (4.32)

F̂ (+)
s = 〈φ(q)| F̂ (+)

s |φ(q)〉 + F̂
(+)
A,s + F̂

(+)
B,s

= 〈φ(q)| F̂ (+)
s |φ(q)〉 +

∑

i>0

F
(+)
A,s (i)(A†

i + Ai) +
∑

i>0

F
(+)
B,s (i)N i, (4.33)

F̂ (−)
s =

∑

i>0

F
(−)
A,s (i)(A†

i − Ai). (4.34)

Here, we have

F
(+)
A,1 (i) =

1
2
(u2

i − v2
i ), F

(+)
A,2 (i) =

1
2
diσi(u2

i − v2
i ), F

(+)
A,3 (i) = 2diσiuivi, (4.35)

F
(−)
A,1 (i) = −1

2
, F

(−)
A,2 (i) = −1

2
diσi, F

(−)
A,3 (i) = 0, (4.36)

F
(+)
B,1 (i) = −uivi, F

(+)
B,2 (i) = −diσiuivi, F

(+)
B,3 (i) = diσi(u2

i − v2
i ),
(4.37)

Ei(q) = (u2
i − v2

i )
(

ei − χdiσiD(q) − λ(q) − ∂V

∂q
Q

(n−1)
i (q)

)

− 2(∆0(q) + diσi∆2(q))uivi. (4.38)

These quantities are determined by solving the moving-frame HFB equation (4.19).
For later convenience, we define the following quasiparticle bilinear operators:

R̂(±)
s ≡

[
F̂ (±)

s ,
∂V

∂q
Q̂(n−1)(q)

]
= 2

∑

i>0

R
(±)
A,s(i)(A

†
i ∓ Ai), (4.39)
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with

R
(+)
A,s(i) =

∂V

∂q

(
F

(+)
B,s (i)QA(n−1)

i (q) − F
(+)
A,s (i)QB(n−1)

i (q)
)

, (4.40)

R
(−)
A,s(i) = −∂V

∂q
F

(−)
A,s (i)QB(n−1)

i (q). (4.41)

We can express the matrix elements Q
A(n)
i and Pi in terms of f

(−)
Q,s , f

(+)
P,s , f

(+)
R,s and

fN by substituting Eqs. (4.30) and (4.31) into Eqs. (4.20) and (4.21). This yields

Q
A(n)
i =

1

(2Ei)2 − ω2 + 2∂V
∂q EiQ

B(n−1)
i{

2Ei

∑

s

F
(−)
A,s (i)f (−)

Q,s +
∑

s

(
F

(+)
A,s (i)f (+)

PR,s − 2R
(−)
A,s(i)f

(−)
Q,s

)
+ NifN

}
,

(4.42)

Pi =
2Ei

(2Ei)2 − ω2 + 2∂V
∂q EiQ

B(n−1)
i

{∑

s

(
F

(+)
A,s (i)f (+)

PR,s − 2R
(−)
A,s(i)f

(−)
Q,s

)
+ NifN

}

+
ω2 − 2∂V

∂q EiQ
B(n−1)
i

(2Ei)2 − ω2 + 2∂V
∂q EiQ

B(n−1)
i

∑

s

F
(−)
A,s (i)f (−)

Q,s , (4.43)

where

Ni = 2ui(q)vi(q), (4.44)

f
(+)
PR,s = f

(+)
P,s (q) + f

(+)
R,s (q), (4.45)

ω =
√

B(q)C(q). (4.46)

Substituting Eqs. (4.30), (4.31) and (4.39) into Eqs. (4.24), (4.25) and (4.26), we
obtain

f
(−)
Q,s = 2κs

∑

i>0

F
(−)
A,s (i)QA(n)

i , (4.47)

f
(+)
PR,s = 2κs

∑

i>0

{
F

(+)
A,s (i)Pi + R

(+)
A,s(i)Q

A(n)
i

}
. (4.48)

Note that f
(−)
Q,3 = 0. From the canonical variable condition, the orthogonality of the

collective and number fluctuation modes is required, i.e.

〈φ(q)|[Ñ , P̂ (q)]|φ(q)〉 = 2i
∑

i>0

NiPi = 0. (4.49)

Eliminating Q
A(n)
i and Pi from Eqs. (4.47), (4.48), and (4.49) with use of Eqs. (4.42)

and (4.43), we finally obtain the dispersion equation

S(ω2) · f = 0, (4.50)
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for the quantity f = f(q) = {f (−)
Q,1 , f

(−)
Q,2 , f

(+)
PR,1, f

(+)
PR,2, f

(+)
PR,3, fN}. Here S = {Sij} is

a 6 × 6 matrix whose elements are given by

S11 = 2κ1

{
S(1)(F (−)

A,1 , F
(−)
A,1 ) − 2S(2)(F (−)

A,1 , R
(−)
A,1)

}
− 1, (4.51a)

S12 = 2κ1

{
S(1)(F (−)

A,1 , F
(−)
A,2 ) − 2S(2)(F (−)

A,1 , R
(−)
A,2)

}
, (4.51b)

S13 = 2κ1S
(2)(F (−)

A,1 , F
(+)
A,1 ), (4.51c)

S14 = 2κ1S
(2)(F (−)

A,1 , F
(+)
A,2 ), (4.51d)

S15 = 2κ1S
(2)(F (−)

A,1 , F
(+)
A,3 ), (4.51e)

S16 = 2κ1S
(2)(F (−)

A,1 , N), (4.51f)

S21 = 2κ2

{
S(1)(F (−)

A,2 , F
(−)
A,1 ) − 2S(2)(F (−)

A,2 , R
(−)
A,1)

}
, (4.52a)

S22 = 2κ2

{
S(1)(F (−)

A,2 , F
(−)
A,2 ) − 2S(2)(F (−)

A,2 , R
(−)
A,2)

}
− 1, (4.52b)

S23 = 2κ2S
(2)(F (−)

A,2 , F
(+)
A,1 ), (4.52c)

S24 = 2κ2S
(2)(F (−)

A,2 , F
(+)
A,2 ), (4.52d)

S25 = 2κ2S
(2)(F (−)

A,2 , F
(+)
A,3 ), (4.52e)

S26 = 2κ2S
(2)(F (−)

A,2 , N), (4.52f)

S31 = 2κ1

{
ω2S(2)(F (+)

A,1 , F
(−)
A,1 ) − S(1)(F (+)

A,1 , R
(−)
A,1)

+S(1)(R(+)
A,1, F

(−)
A,1 ) − 2S(2)(R(+)

A,1, R
(−)
A,1)

}
, (4.53a)

S32 = 2κ1

{
ω2S(2)(F (+)

A,1 , F
(−)
A,2 ) − S(1)(F (+)

A,1 , R
(−)
A,2)

+S(1)(R(+)
A,1, F

(−)
A,2 ) − 2S(2)(R(+)

A,1, R
(−)
A,2)

}
, (4.53b)

S33 = 2κ1

{
S(1)(F (+)

A,1 , F
(+)
A,1 ) + S(2)(R(+)

A,1, F
(+)
A,1 )

}
− 1, (4.53c)

S34 = 2κ1

{
S(1)(F (+)

A,1 , F
(+)
A,2 ) + S(2)(R(+)

A,1, F
(+)
A,2 )

}
, (4.53d)

S35 = 2κ1

{
S(1)(F (+)

A,1 , F
(+)
A,3 ) + S(2)(R(+)

A,1, F
(+)
A,3 )

}
, (4.53e)

S36 = 2κ1

{
S(1)(F (+)

A,1 , N) + S(2)(R(+)
A,1, N)

}
, (4.53f)

S41 = 2κ2

{
ω2S(2)(F (+)

A,2 , F
(−)
A,1 ) − S(1)(F (+)

A,2 , R
(−)
A,1)

+S(1)(R(+)
A,2, F

(−)
A,1 ) − 2S(2)(R(+)

A,2, R
(−)
A,1)

}
, (4.54a)

S42 = 2κ2

{
ω2S(2)(F (+)

A,2 , F
(−)
A,2 ) − S(1)(F (+)

A,2 , R
(−)
A,2)

+S(1)(R(+)
A,2, F

(−)
A,2 ) − 2S(2)(R(+)

A,2, R
(−)
A,2)

}
, (4.54b)
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S43 = 2κ2

{
S(1)(F (+)

A,2 , F
(+)
A,1 ) + S(2)(R(+)

A,2, F
(+)
A,1 )

}
, (4.54c)

S44 = 2κ2

{
S(1)(F (+)

A,2 , F
(+)
A,2 ) + S(2)(R(+)

A,2, F
(+)
A,2 )

}
− 1, (4.54d)

S45 = 2κ2

{
S(1)(F (+)

A,2 , F
(+)
A,3 ) + S(2)(R(+)

A,2, F
(+)
A,3 )

}
, (4.54e)

S46 = 2κ2

{
S(1)(F (+)

A,2 , N) + S(2)(R(+)
A,2, N)

}
, (4.54f)

S51 = 2κ3

{
ω2S(2)(F (+)

A,3 , F
(−)
A,1 ) − S(1)(F (+)

A,3 , R
(−)
A,1)

+S(1)(R(+)
A,3, F

(−)
A,1 ) − 2S(2)(R(+)

A,3, R
(−)
A,1)

}
, (4.55a)

S52 = 2κ3

{
ω2S(2)(F (+)

A,3 , F
(−)
A,2 ) − S(1)(F (+)

A,3 , R
(−)
A,2)

+S(1)(R(+)
A,3, F

(−)
A,2 ) − 2S(2)(R(+)

A,3, R
(−)
A,2)

}
, (4.55b)

S53 = 2κ3

{
S(1)(F (+)

A,3 , F
(+)
A,1 ) + S(2)(R(+)

A,3, F
(+)
A,1 )

}
, (4.55c)

S54 = 2κ3

{
S(1)(F (+)

A,3 , F
(+)
A,2 ) + S(2)(R(+)

A,3, F
(+)
A,2 )

}
, (4.55d)

S55 = 2κ3

{
S(1)(F (+)

A,3 , F
(+)
A,3 ) + S(2)(R(+)

A,3, F
(+)
A,3 )

}
− 1, (4.55e)

S56 = 2κ3

{
S(1)(F (+)

A,3 , N) + S(2)(R(+)
A,3, N)

}
, (4.55f)

S61 = ω2S(2)(N, F
(−)
A,1 ) − S(1)(N,R

(−)
A,1), S62 = ω2S(2)(N, F

(−)
A,2 ) − S(1)(N,R

(−)
A,2),

(4.56a)

S63 = S(1)(N, F
(+)
A,1 ), S64 = S(1)(N,F

(+)
A,2 ), (4.56b)

S65 = S(1)(N, F
(+)
A,3 ), S66 = S(1)(N,N). (4.56c)

Here, the quantities S(1) and S(2) are defined by

S(1)(X, Y ) =
∑

i>0

2Ei(q)

(2Ei(q))2 − ω2(q) + 2∂V
∂q EiQ

(B(n−1))
i

XiYi, (4.57)

S(2)(X, Y ) =
∑

i>0

1

(2Ei(q))2 − ω2(q) + 2∂V
∂q EiQ

(B(n−1))
i

XiYi. (4.58)

The unknown quantities in the dispersion equation (4.50) are f(q) and ω2(q). The
squared frequency ω2(q) can be determined by the condition that the matrix S(ω2(q))
has no inverse:

detS(ω2(q)) = 0. (4.59)

In the case that there are many solutions ω2(q) satisfying this equation, we choose
the smallest of these (including negative values) as the collective mode. Once the
value of ω2(q) and, consequently, the matrix S(q) is specified, the direction of the
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vector f(q) is known. Then, its absolute value is fixed by the normalization condition
for the collective mode,

〈φ(q)| [Q̂(n)(q), P̂ (q)] |φ(q)〉 = 2i
∑

i>0

Q
A(n)
i (q)Pi(q) = i. (4.60)

The choice of the signs of Q̂(n)(q) and P̂ (q) are still arbitrary. This choice specifies
the “rear” and “front” of the one-dimensional collective path.

The B-part of Q̂(q) is automatically determined in terms of its A-part according
to its definition (4.30):

Q
B(n)
i (q) =

u2
i − v2

i

2uivi
Q

A(n)
i (q). (4.61)

4.6. Gauge fixing

Under the gauge transformation (3.5), the quantities, f
(−)
Q,1 (q), f (−)

Q,2 (q), and fN (q)
appearing in the dispersion equation (4.50) transform as

f
(−)
Q,1 (q) →f

(−)
Q,1 (q) − 4α∆0(q), (4.62)

f
(−)
Q,2 (q) →f

(−)
Q,2 (q) − 4α∆2(q), (4.63)

fN (q) →fN (q) − αω2(q). (4.64)

These properties clearly indicate that one of the above three quantities can be elim-
inated: By choosing an appropriate value for α (gauge fixing), we can reduce the
dispersion equation (4.50) to a 5 × 5 matrix equation. In other words, Eq. (4.50)
is redundant, and the gauge fixing is equivalent to the reduction of its dimension.
The QRPA gauge corresponds to setting fN (q) = 0. In Ref. 57), we set f

(−)
Q,1 (q) = 0,

which corresponds to another gauge. Because the quantity f
(−)
Q,1 (q) represents the

contribution from the time-odd component of the monopole-pairing interaction, let
us call this gauge the “ETOP (eliminating time-odd pairing) gauge”

4.7. Requantization

The solution of the ASCC equations yields the classical collective Hamiltonian:

H(q, p) =
1
2
p2 + V (q). (4.65)

We can thus obtain the quantum collective Hamiltonian by carrying out the canoni-

cal quantization H(q, p) → H
(

q,
1
i

∂

∂q

)
. Note that, in this quantization step, there

is no ambiguity associated with the ordering of q and p, because the coordinate scale
is chosen such that the inverse mass function is unity, i.e., B(q) = 1.

§5. Numerical test of the internal consistency of the proposed scheme

5.1. Details of numerical calculation

We numerically solved the gauge-invariant ASCC equations for the multi-O(4)
model with the same parameters as in Refs. 57) and 62). The system consists of 28
particles (one kind of fermion). The model space consists of three j-shells, labeled
j1, j2 and j3, with the pair degeneracies Ωji = 14, Ωj2 = 10 and Ωj3 = 4, single-
particle energies ej1 = 0, ej2 = 1.0 and ej3 = 3.5, and the single-particle quadrupole
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moments dj1 = 2 and dj2 = dj3 = 1. Within this model space, the deformation
D = 〈φ(q)| D̂ |φ(q)〉 ranges from Dmin = −42 to Dmax = 42. The calculation was
done with the quadrupole-interaction strength χ = 0.04 and the monopole-pairing-
interaction strengths G0 = 0.14, 0.16 and 0.20. The nature of the system changes
from a double-well (G0 = 0.14) to a spherical vibrator (G0 = 0.20) as the value of G0

is changed. The effect of the quadrupole pairing is studied by comparing the results
for G2 = 0.00, 0.02 and 0.04. As pointed out in Ref. 57), the quadrupole pairing
has a strong effect on the collective mass. However, it need not be considered for
investigation of the gauge-fixing condition. Therefore, we present the results for
G2 = 0 in the next subsection and show its effect in the final subsection only. The
calculation starts from one of the HFB equilibrium states, labeled by q = 0 (see
Fig. 2). For the deformed cases (G0 = 0.14 and 0.16), the HFB equilibrium state
with positive (prolate) deformation is chosen as the starting point.

5.2. Comparison of the two gauge fixing conditions

Let us examine whether or not we can find a gauge independent solution of the
ASCC equations. The existence of the collective path that simultaneously satisfies
all equations of the ASCC method is not self-evident. The aim of the numerical
calculation here is to check the internal consistency of the equations presented in
the preceding section. We solve the gauge-invariant ASCC equations with two dif-
ferent gauge fixing conditions: the QRPA gauge [fN (q) = 0] and the ETOP gauge
[f (−)

Q,1 (q) = 0]. In the QRPA gauge, the chemical potential λ(q) along the collective
path is set to a constant, while in the ETOP gauge, the time-odd contribution of
the monopole pairing interaction is fully eliminated from the ASCC equations.

Figure 1 displays the collective potential V (q) and the monopole pairing gap
∆0(q) as functions of the quadrupole deformation D(q). Figure 2 displays the rela-
tion between the collective variables q and the quadrupole deformation D, as well as
the squared frequency ω2(q) obtained by solving the local-harmonic equations. The
collective mass M(D(q)) = (dq/dD)2, which is derived by transforming the collec-
tive kinetic energy as a function of the velocity Ḋ under the condition B(q) = 1,57)

is plotted as a function of D in Fig. 3. We find that the calculation using the ETOP
gauge encounters no difficulties, and the collective path connecting the two local
(oblate and prolate) minima with different signs of the deformation are successfully
obtained. By contrast, the calculation using the QRPA gauge encounters a point be-
yond which we cannot proceed. In the region where the solutions have been found
for both gauges, they are consistent. This should be the case, because these are
gauge invariant quantities. The cause of the difficulty encountered in the QRPA
gauge can be understood as follows.

Figures 4 and 5 display the chemical potential λ(q) and the quantities f
(−)
Q,1 (q)

and fN (q), respectively. Their values depend on the gauge adopted. If the QRPA
gauge is used, λ(q) should be constant along the path, because of the condition
fN (q) = B(q)∂λ/∂q = 0. We find, however, that λ(q) diverges near the inflection
point of the collective potential, where ω(q)2 = ∂2V/∂q2 = 0. This divergence oc-
curs because the inflection point is a singularity for the gauge transformation (4.64),
where an arbitrary α gives the same fN (q). Thus, the calculation using the QRPA
gauge stops at the inflection point. Contrastingly, we can go over the inflection
point using the ETOP gauge, because the gauge transformation for f

(−)
Q,1 (q), (4.62),

involves only the monopole pairing gap ∆0(q), which always takes finite values along
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the collective path (except at the limit of the model space). In these figures, we also
present the results that obtained with the following procedure. After determining
the collective paths employing the ETOP gauge, we calculate the gauge-dependent
quantities λ(q), f (−)

Q,1 (q) and fN (q) by switching to the QRPA gauge using the rela-
tions

f
(−)
Q,1(QRPA) = −

4fN (q)(ETOP)∆0(q)
ω2(q)

, (5.1a)

λ(q)(QRPA) =λ(q)(ETOP) −
4fN (q)(ETOP)

ω2(q)
∂V

∂q
. (5.1b)

We see in Figs. 4 and 5 that the results obtained by this procedure are consistent with
those calculated using the QRPA gauge [fN (q) = 0] from the beginning [in the region
of deformation D(q), where the collective path can be obtained using the QRPA
gauge]. This agreement demonstrates that the collective paths determined by using
different gauge fixing conditions are the same, as should be the case. Nevertheless,
there is a particularly suitable gauge fixing condition for finding solutions of the
ASCC equations and constructing the collective path. For the multi-O(4) model
with superfluidity, we find that the ETOP gauge is more useful than the QRPA
gauge, because the gauge transformation (4.62) is well-defined as long as the pairing
gap ∆0(q) is non-zero.

5.3. Comparison with the previous calculation

In a previous paper,57) we employed the ETOP gauge condition [f (−)
Q,1 (q) =

0], but the B-part of Q̂(q) was ignored. Let us evaluate the error caused by this
approximation. The results of these calculations are also presented in Figs. 1-4 and
compared with those of the full calculations. We see that they differ little, which
indicates that the approximation made by ignoring the B-part is rather good.

In Fig. 5, we present the quantity

f
(−)
Q,1 (q) = −κ1 〈φ(q)| [F̂ (−)

1 , Q̂(q)] |φ(q)〉 = −κ1

∑

i>0

QA
i (q), (5.2)

evaluated using the Q̂(q) operator that is obtained by ignoring the B-part in the
process of solving the ASCC equations. This quantity should be zero if the Q̂(q)
operator determined by the gauge-invariant ASCC equations is used. We see that
the deviation from zero is negligible (except near the limit of the model space), again
indicating that the approximation is good.

The quantum spectra and transition strengths are displayed in Fig. 6. These
were obtained by solving the Schrödinger equation for the quantized collective Hamil-
tonian. In this figure, the effects of the quadrupole pairing interaction are also shown.
We see that the results of the previous calculation [in which the B-part of Q̂(q) is
ignored] are quite similar to those of the full calculation (including the B-part),
and both results accurately reproduce the trend of the excitation spectra obtained
through the exact diagonalization of the microscopic Hamiltonian (Fig. 7). The nu-
merical calculation discussed above thus suggests that the approximation of ignoring
the B-part of Q̂(q), adopted in Ref. 57), is valid, and it may serve as an economical
way of determining the collective path.
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§6. Concluding remarks

We have shown that the basic equations of the ASCC method are invariant under
transformations involving the angle in the gauge space conjugate to the particle
number. By virtue of this invariance, a clean separation of the large-amplitude
collective motion and the pairing rotational motion can be realized. This allows us
to restore the particle-number symmetry broken by the HFB approximation. We
have formulated the ASCC method explicitly in a gauge-invariant form. Then, we
applied it to the multi-O(4) model using different gauge-fixing procedures. The
calculations using different gauges indeed yield the same results for gauge-invariant
quantities, such as the collective path, the collective mass parameter, and the spectra
obtained by requantizing the collective Hamiltonian. We suggested a gauge-fixing
prescription that can be used in realistic calculations.

The explicit gauge invariance requires the B-part (a†a part) of the collective
coordinate operator Q̂(q). Actually, it is stated in Ref. 27) that the separation of
the Nambu-Goldstone modes in the local harmonic formulation requires higher-order
terms in the collective coordinate. This is consistent with the present conclusion in
the gauge-invariant formalism. We have also demonstrated that the approximation
made by ignoring the B-part leads to results almost identical to those obtained in
the full calculation, at least for the multi-O(4) model.

We are presently investigating oblate-prolate shape coexistence phenomena54)–56)

in nuclei around 68Se with the pairing-plus-quadrupole interactions63)–65) using a
prescription based on the new formulation of the ASCC method proposed in this
paper. The result will be reported in the near future.
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Fig. 1. Collective potentials V (q) and monopole pairing gaps ∆0(q) plotted as functions of the

quadrupole deformation D. The upper, middle and lower panels display the results for G0 =

0.14, 0.16 and 0.20, respectively. In each graph, results obtained from different calculations

are compared. Those obtained using the QRPA gauge [fN (q) = 0] and the ETOP gauge

[f
(−)
Q,1 (q) = 0] are plotted by solid (red) and dotted (blue) curves, respectively, while those

obtained ignoring the B-part of Q̂(q) [i.e., setting QB
i (q) = 0] are plotted by the dashed curves.
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Fig. 2. Left column: Relation between the collective coordinate q and the quadrupole deformation

D(q) = 〈φ(q)| D̂ |φ(q)〉. The point q = 0 corresponds to the HFB equilibrium, which is the

starting point of the numerical calculation. Right column: Squared frequencies ω2(q) of the

moving-frame QRPA equations, plotted as functions of D. Note that they are negative; i.e.,

ω(q) is purely imaginary in the region where the curvature of the collective potential is negative.

The upper, middle and lower rows display the results for G0 = 0.14, 0.16 and 0.20, respectively.

(See the caption of Fig. 1.)
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Fig. 3. The ASCC collective mass M(q(D)) as functions of the deformation D. The upper, middle

and lower rows display the results for G0 = 0.14, 0.16 and 0.20, respectively. (See the caption

of Fig. 1.)
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Fig. 4. The chemical potentials λ(q) as functions of the deformation D. The upper, middle and

lower rows display the results for G0 = 0.14, 0.16 and 0.20, respectively. In each graph, the

results obtained from different calculations are compared. The solid (red) and dotted (blue)

curves represent the results obtained using the QRPA gauge [fN (q) = 0] and the ETOP gauge

[f
(−)
Q,1 (q) = 0], respectively, while the dashed curves represent those obtained using the ETOP

gauge but ignoring the B-part of Q̂(q) [i.e., setting QB
i (q) = 0]. The dotted (purple) curves

labeled “combination” represent the results calculated by switching to the QRPA gauge after

the collective path is determined using the ETOP gauge.
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Fig. 5. The gauge dependent quantities f
(−)
Q,1 (q) (left column) and fN (q) (right column) plotted

as functions of the deformation D. The upper, middle and lower rows display the results for

G0 = 0.14, 0.16 and 0.20, respectively. (See the caption of Fig. 4.)
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Fig. 6. Excitation spectra and quadrupole transition matrix elements. Left column: The result

obtained using the ETOP gauge [f
(−)
Q,1 (q) = 0] but ignoring the B-part of the collective coor-

dinate operator Q̂(q). This is the same as that presented in Ref. 57). Right column: The

result obtained by solving the gauge-invariant ASCC equations using the ETOP gauge. The

upper, middle and lower rows display the results for G0 = 0.14, 0.16 and 0.20, respectively. In

each row, the results for G2 = 0.00, 0.02 and 0.04 are compared. The numbers adjacent to the

vertical lines are the absolute values of the transition matrix elements. The matrix elements

between the doublets are indicated beside them.
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Fig. 7. Excitation spectra calculated with the exact diagonalization of the multi-O(4) model Hamil-

tonian. The upper, middle and lower rows display the results for G0 = 0.14, 0.16, and 0.20,

respectively. In each row, the results for G2 = 0.00, 0.02, 0.04 are compared. The numbers

adjacent to vertical lines indicate the transition matrix elements. The matrix elements between

the doublets are indicated beside them.


