

□ 原子核物理:核子多体系としての原子核の振る舞い

← 核子間相互作用から理解する

- ▶ 静的な振る舞い:原子核構造論
  - ✓ 基底状態の性質(質量、大きさ、形など)
     ✓ 励起状態の性質

# ▶ ダイナミックス:原子核反応論



✓ 基底状態の性質(質量、大きさ、形など)
 ✓ 励起状態の性質







# 原子核反応の2つの側面 ✓ ツールとしての原子核反応





緒方さんのHPより

K. Sekiguchi et al., PRC89('14)064007

✓ 反応ダイナミックス自体としての面白み



緒方さんのHPより

# 核反応は宝の山:核反応に見られる量子性



expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878



# Manifestation of Quantum Nature in Nuclear Reactions

a superposition principle  $\psi = \alpha \psi_1 + \beta \psi_2$ 

$$\rightarrow |\psi|^2 = |\alpha\psi_1|^2 + |\beta\psi_2|^2 + (\alpha\psi_1)^*(\beta\psi_2) + (\alpha\psi_1)(\beta\psi_2)^*$$
  
interference

when two processes are in principle indistinguishable  $\rightarrow$  take square after adding two amplitudes



# Interference phenomena in Nuclear Reactions

(i) Mott Scattering



(ii) Nuclear-Coulomb interference



(iii) Near-far interference



(iv) barrier-wave internal-wave interference



# Interference phenomena in Nuclear Reactions

(i) Mott Scattering



(ii) Nuclear-Coulomb interference



(iii) Near-far interference



(iv) barrier-wave internal-wave interference



#### near side - far side interference



R.C. Fuller, PRC12('75)1561 N. Rowley and C. Marty, NPA266('76)494 M.S. Hussein and K.W. McVoy, Prog. in Part. and Nucl. Phys. 12 ('84)103 2重井戸問題との類似性

#### F. Carstoiu et al., PRC70 ('04) 054610



<sup>16</sup>O+<sup>16</sup>O system

 $V_{\rm b} \sim 10.3 \,\,{\rm MeV}$ 



expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r) - iW(r) - E\right]u_l(r) = 0$$

an imaginary part  $\rightarrow$  absorption

# <u>光学ポテンシャル計算</u>

Reaction processes
>Elastic scatt.
>Inelastic scatt.
>Transfer reaction
>Compound nucleus formation (fusion)



# Loss of incident flux (absorption)



How to choose  $V_0(r)$ ? : Optical model

### **Reaction processes**

Elastic scatt.
Inelastic scatt.
Transfer reaction
Compound nucleus formation (fusion)



# Loss of incident flux (absorption)

# **Optical potential**

$$V_{\text{opt}}(\boldsymbol{r}) = V(\boldsymbol{r}) - iW(\boldsymbol{r}) \qquad (W > 0)$$

How to choose  $V_0(r)$ ? : Optical model

### **Reaction processes**

Elastic scatt.
Inelastic scatt.
Transfer reaction
Compound nucleus formation (fusion)



# Loss of incident flux (absorption)

# **Optical potential**

$$V_{\text{opt}}(r) = V(r) - iW(r)$$
 (W > 0)  
 $\longrightarrow \quad \nabla \cdot j = \dots = -\frac{2}{\hbar}W|\psi|^2$ 

(note) Gauss's theorem

$$\int_{S} \boldsymbol{j} \cdot \boldsymbol{n} \, dS = \int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{j} \, dV$$





$$-\frac{\hbar^2}{2\mu}\nabla^2 + \frac{Z_P Z_T e^2}{r} + V_{\text{opt}}(r) - E \bigg) \psi(r) = 0$$

Woods-Saxon + volume & surface imaginary parts

H. Sakaguchi et al., PRC26 (1982) 944

# <u>原子核の吸収から原子核の大きさを見る</u>



# <u>原子核の吸収から原子核の大きさを見る</u>



 $\rightarrow R \sim 1.41 A^{1/3} + 2.11 \text{ fm}$ 

(核力のレンジや密度分布のテールの効果により 実際の半径はもう少し小さい) <sup>16</sup>O+<sup>16</sup>O system

 $V_{\rm b} \sim 10.3 \,\,{\rm MeV}$ 



expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878







cf. 二重スリット

対称化しなくても強い振動 ✓ 対称化による干渉はマイナー ✓ near-sideとfar-side の干渉が主 検出器

M.S. Hussein and K.W. McVoy, PPNP 12 ('84)103.



#### Comparison between <sup>16</sup>O+<sup>16</sup>O and <sup>18</sup>O+<sup>18</sup>O



<sup>18</sup>O+<sup>18</sup>O : much less pronounced interference pattern

 $^{18}O = ^{16}O$  (double closed shell) + 2n

 $\rightarrow$  stronger coupling to environment



manifestation of (environmental) decoherence

# <u>光学ポテンシャル計算</u>



深い WS<sup>2</sup> 型ポテンシャル によるフィット

同じポテンシャルで<sup>18</sup>O+<sup>18</sup>O はフィットできず

→吸収を強くする必要あり (ここでは表面型吸収 ポテンシャルを導入)

## **Optical potential model calculation**



(with a surface imaginary pot.)

#### Spectra up to $E^* = 13 \text{ MeV}$



cf. the number of oepn channels, F. Haas and Y. Abe, PRL46('81)1667



強い吸収のため、<sup>18</sup>O+<sup>18</sup>Oでは far-side 成分が大きく減衰 →干渉パターンがほとんど消えている cf. 一重スリット





### analogy to the double slit problem



M.S. Hussein and K.W. McVoy, Prog. in Part. and Nucl. Phys. 12 ('84)103









J. Al-Khalili, "Quantum"



Shape, interaction, and excitation structures of nuclei  $\leftarrow$  scattering expt. cf. Experiment by Rutherford ( $\alpha$  scatt.)



http://www.th.phys.titech.ac.jp/~muto/lectures/QMII11/QMII11\_chap21.pdf

K. Muto (TIT)





K. Sekiguchi et al., PRC89('14)064007



✓ elastic scattering

✓ inelastic scattering





fundamental interaction between *a* and *A* 

excitation spectrum of a nucleus *A* 

励起状態の ✓ エネルギー ✓ 角運動量

 $E_a$ 



transfer reactions

✓ transfer reaction (pick-up reaction) ✓ transfer reaction (stripping reaction)







#### hypernucleus production reactions

 $^{12}C(\pi^+,K^+) {^{12}}_{\Lambda}C$  reaction



excitation spectrum of a hypernucleus  $A_A$ 



O. Hashimoto and H. Tamura, Prog. in Part. and Nucl. Phys. 57 ('06)564

"reaction spectroscopy"

$$\checkmark$$
 (e,e'K<sup>+</sup>) reaction

 ${}^{9}\text{Be}(e,e'K^{+}) {}^{9}{}_{\Lambda}\text{Li}$ 



S.N. Nakamura et al., PRL110('13)012502

T. Gogami, Ph.D. Thesis (Tohoku U.) 2014



T. Gogami et al., PRC103('21)L041301

K.N. Suzuki, T. Gogami et al., PTEP2022 (2022) 013D01

 $^{3}$ He(e,e'K<sup>+</sup>) nn $\Lambda$ 

#### Cross sections



event rate (the number of event per unit time per target nucleus) : proportional to the incident flux

j

R = N-

cross section



event rate (the number of event per unit time per target nucleus) : proportional to the incident flux

cross section

$$\longrightarrow R = N_{\mathsf{T}} \sigma j$$

differential cross sections (angular distribution)

$$dR(\theta,\phi) = N_{\mathsf{T}} \cdot \frac{d\sigma}{d\Omega} \cdot j \cdot d\Omega \qquad \sigma = \int d\Omega \frac{d\sigma}{d\Omega}$$

units: 1 barn =  $10^{-24}$  cm<sup>2</sup> = 100 fm<sup>2</sup> (1 mb =  $10^{-3}$  b = 0.1 fm<sup>2</sup>)





center of mass frame



Born approximation

 $\psi_f(\boldsymbol{r}) = e^{i \boldsymbol{p}_f \cdot \boldsymbol{r} / \hbar}$  $\psi_i(\boldsymbol{r}) = e^{i\boldsymbol{p}_i\cdot\boldsymbol{r}/\hbar}$ V(r)θ

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + \underline{V(r)} - E\right)\psi(r) = 0$$

perturbation

transition rate for elastic scattering:

$$W_{fi} = \frac{2\pi}{\hbar} \int \frac{dp_f}{(2\pi\hbar)^3} |\langle \psi_f | V | \psi_i \rangle|^2 \delta(E_f - E_i)$$
  
=  $\frac{\mu p_i}{4\pi^2 \hbar^4} \int d\Omega \left| \tilde{V}(\boldsymbol{q}) \right|^2$ 

$$\widetilde{V}(\boldsymbol{q}) = \int d\boldsymbol{r} e^{i(\boldsymbol{p}_i - \boldsymbol{p}_f) \cdot \boldsymbol{r} / \hbar} V(r) \equiv \int d\boldsymbol{r} e^{-i\boldsymbol{q} \cdot \boldsymbol{r}} V(r)$$

Born approximation  $\psi_{i}(r) = e^{ip_{i} \cdot r/\hbar}$   $\psi_{i}(r) = e^{ip_{i} \cdot r/\hbar}$   $\psi_{i}(r) = e^{ip_{i} \cdot r/\hbar}$ 

$$W_{fi} = \frac{\mu p_i}{4\pi^2 \hbar^4} \int d\Omega \left| \tilde{V}(\boldsymbol{q}) \right|^2 \qquad \text{fromentum} \\ \tilde{V}(\boldsymbol{q}) = \int d\boldsymbol{r} e^{i(\boldsymbol{p}_i - \boldsymbol{p}_f) \cdot \boldsymbol{r}/\hbar} V(\boldsymbol{r}) \equiv \int d\boldsymbol{r} e^{-i\boldsymbol{q} \cdot \boldsymbol{r}} V(\boldsymbol{r})$$

incident flux:  $j_{\text{inc}} = \rho_i v = p_i / \mu$ 

$$\sigma = \frac{W_{fi}}{j_{\text{inc}}} = \int d\Omega \frac{\frac{\mu^2}{4\pi^2 \hbar^4} |\tilde{V}(q)|^2}{\frac{\theta}{4\pi^2 \hbar^4}} = \frac{d\sigma}{d\Omega}$$

$$p_i = \frac{p_f}{p_i} q \hbar$$

$$p_i = 2p_i \sin \frac{\theta}{2}$$

#### **Electron scattering**

$$V(r) = -e^2 \int dr' \frac{\rho_{ch}(r')}{|r - r'|}$$
$$\frac{d\sigma}{d\Omega} = \frac{e^4}{(4E\sin^2\theta/2)^2} |F(q)|^2$$
$$= \left(\frac{d\sigma_{Ruth}}{d\Omega}\right) |F(q)|^2$$

Form factor

$$F(\boldsymbol{q}) = \int e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} \rho_{\mathsf{Ch}}(\boldsymbol{r}) \, d\boldsymbol{r}$$

\* relativistic correction:





## cf. electron scattering off unstable nuclei (SCRIT)



レポート問題6(〆切:12月2日(月))

### 電子と原子核の相互作用が

$$V(r) = -e^2 \int dr' \frac{\rho_{\rm Ch}(r')}{|r-r'|}$$

で与えられているとする。ここで、 $ho_{ch}$ は原子核の電荷密度で $\int dr \, 
ho_{ch}(r) = Z$ 

と規格化されているとする。ボルン近似を用いて弾性散乱の断面積 を求め、

$$\frac{d\sigma}{d\Omega} = \left(\frac{e^2}{4E\sin^2\theta/2}\right)^2 |F(q)|^2$$
$$F(q) = \int e^{-i\mathbf{q}\cdot\mathbf{r}} \rho_{\mathsf{ch}}(\mathbf{r}) \, d\mathbf{r}$$

となることを示せ。

レポート問題7(〆切:12月2日(月))

# *q*が小さいところで電子散乱の形状因子 *F*(*q*) を決めることにより、原子核の荷電半径

$$\langle r^2 \rangle = \frac{1}{Z} \int d\mathbf{r} \, r^2 \rho_{\rm Ch}(\mathbf{r})$$

を求められることを示せ。

Distorted Wave Born approximation (DWBA)

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + \frac{V(r)}{P} - E\right)\psi(r) = 0$$
perturbation

$$\begin{pmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_0(r) + V(r) - V_0(r) - E \end{pmatrix} \psi(r) = 0 \\ \frac{}{2\mu} \nabla^2 + \frac{V_0(r)}{\frac{1}{2\mu}} \frac{\psi(r)}{\frac{1}{2\mu}} \frac{$$

✓ inelastic scattering✓ transfer reactions