Imaging quantum decoherence in nuclear reactions

Kouichi Hagino Kyoto University, Kyoto, Japan

- \checkmark nuclear reactions as a tool
- \checkmark nuclear reactions as many-body phenomena

Introduction: interferences in nuclear reactions A new attempt: imaging of nuclear reactions **Summary**

New Frontiers in Nuclear Physics and Astrophysics-2, Akdeniz Univ., Antalya, Turkey, September 5-10, 2023

Nuclear Reactions

nucleus: a composite system

- \checkmark a rich reaction processes
- ✓ a rich interplay between nuclear structure and reaction

- ✓ elastic scattering
- ✓ inelastic scattering
- \checkmark transfer reactions
- \checkmark fusion reactions

✓ g.s. properties (mass, size, shape....)
✓ excitations

physics of nuclear reactions:

a unified description of these nuclear reaction processes

cf. Francesco Cappuzzello's talk

Nuclear Reactions: a variety of quantum mechanical natures

Manifestation of Quantum Nature in Nuclear Reactions

a superposition principle $\psi = \alpha \psi_1 + \beta \psi_2$

$$\rightarrow |\psi|^2 = |\alpha\psi_1|^2 + |\beta\psi_2|^2 + (\alpha\psi_1)^*(\beta\psi_2) + (\alpha\psi_1)(\beta\psi_2)^*$$

interference

when two processes are in principle indistinguishable \rightarrow take square after adding two amplitudes

Manifestation of Quantum Nature in Nuclear Reactions

expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

Coulomb-Nuclear interference

a special case: Fresnel oscillations $(S_l = 0 \ (l < l_g); S_l = e^{2i\sigma l} \ (l > l_g))$

➢ near side - far side interference

R.C. Fuller, PRC12('75)1561 N. Rowley and C. Marty, NPA266('76)494 M.S. Hussein and K.W. McVoy, Prog. in Part. and Nucl. Phys. 12 ('84)103

M.H. Cha, Comp. Phys. Comm. 176 ('07) 318

➢ barrier wave – internal wave interference

cf. D.M. Brink and N. Takigawa, NPA279 ('77) 159

¹⁶O+¹⁶O system

expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

R.H. Siemessen et al., PRL19 ('67) 369 R. Vandenbosch et al., NPA230 ('74) 59

Comparison between ¹⁶O+¹⁶O and ¹⁸O+¹⁸O

¹⁸O+¹⁸O : much less pronounced interference pattern

 $^{18}O = ^{16}O$ (double closed shell) + 2n

 \rightarrow stronger coupling to environment

manifestation of environmental decoherence?

Optical potential model calculation

an opt. pot. model calculation with a deep WS² potential.

However, the same opt. pot. does not fit ${}^{18}O{+}{}^{18}O$ \downarrow need to increase W(with a surface imaginary pot.)

Spectra up to $E^* = 13 \text{ MeV}$

cf. the number of oepn channels, F. Haas and Y. Abe, PRL46('81)1667

Origins of oscillations

strong oscillations even in unsymmetrized cross sections
✓
✓ symmetrization: minor
✓ the main origin: near-side-far-side interference

the far-side component is largely damped in ¹⁸O+¹⁸O due to absorption \rightarrow almost no interference oscillations

cf. a single slit

K. Hagino and T. Yoda, in preparation

"condensing" scattering waves with a lens

K. Hashimoto et al., PRD101, 066018 (2020)

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} \sin\theta d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \times e^{i\alpha((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

 $I(X,Y) = |\Phi(X,Y)|^2$

applications in particle physics

a double slit problem scattering of string

imaging black holes through AdS/CFT

K. Hashimoto, Y. Matsuo, and T. Yoda, PTEP2023, 043B04 (2023)
K. Hashimoto, S. Kinoshita, and K. Murata, PRL123, 031602 (2019) PRD101, 066018 (2020)

K. Hagino and T. Yoda, in preparation

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} \sin\theta d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \times e^{i\alpha((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

$$I(X,Y) = |\Phi(X,Y)|^2$$

for a flat distribution, $f(\theta, \phi) = \text{const.}$,

1.2
1.
$$\int_{\varphi_0 - \Delta \varphi}^{\varphi_0 + \Delta \varphi} d\varphi e^{i\alpha(\varphi - \varphi_0)Y} = 2\Delta \varphi \frac{\sin(\alpha Y \Delta \varphi)}{\alpha Y \Delta \varphi}$$
2.8
2.6
2.6
2.4
2.2

K. Hagino and T. Yoda, in preparation

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} \sin\theta d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \, e^{i\alpha((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

 $I(X,Y) = |\Phi(X,Y)|^2$

for the Rutherford scattering, $f(\theta, \phi) = f_C(\theta, \phi)$,

 ${}^{16}\text{O}{+}{}^{16}\text{O}$ at $E_{\text{cm}} = 8.8 \text{ MeV}$

$$\alpha = k$$

$$\theta_0 = 90 \text{ deg.}$$

$$\Delta \theta = \Delta \phi = 30 \text{ deg.}$$

$$\downarrow$$

 $b_{\rm cl} = 5.24 \, {\rm fm} \sim X_{\rm peak}$

(note) for θ_0 =90 deg.,

$$\Phi_{\theta}(X,Y) = \Phi_{\pi-\theta}(-X,Y)$$

$$I(X,Y) = |\Phi(X,Y)|^2$$

$$\alpha = k$$

 $\theta_0 = 90 \text{ deg.}, \ \Delta \theta = \Delta \phi = 30 \text{ deg.}$

K.H. and T. Yoda, in preparation $\alpha = k, \theta_0 = 55 \text{ deg.}, \Delta \theta = 15 \text{ deg.}$

x (fm)

K.H. and T. Yoda, in preparation

Summary

Nuclear Reactions as quantum many-body phenomena

- \checkmark strong interplay with nuclear structure
- ✓ several nuclear intrinsic motions
- ✓ Coupled-channels approach
- \checkmark a variety of interference phenomena
 - scattering of identical nuclei
 - farside-nearside interference
 - barrier-wave-internal-wave interference

✓ Imaging: a new approach

- a Fourier transform of scatt. amplitudes
- an intuitive way to understand physics of interferences

(tm

-10-8 -6 -4 -2 0 2 4 6 8 10 x (fm)