Transition-state dynamics in barrier-top nuclear fission

Kouichi Hagino Kyoto University

G.F. Bertsch (Seattle) Kotaro Uzawa (Kyoto)

- 1. Introduction
- 2. Shell Model for induced fission
- 3. Summary

International Symposium on Physics of Unstable Nuclei (ISPUN23), Phu Quoc Island, Vietnam, 2023.5.4-8

G. Scamps and C. Simenel, Nature 564 (2018) 382

r-process nucleosynthesis

large change of nuclear shape → microscopic description : far from complete

an ultimate goal of nuclear physics

G. Scamps and C. Simenel, Nature 564 (2018) 382 M. Bender et al., J. of Phys. G47, 113002 (2020)

"Future of fission theory" White paper

Importance of a microscopic approach

- (neutron induced) fission of neutron-rich nuclei
 - \rightarrow low E^* and low $\rho(E^*)$
- ✓ Validity of statistical models?
- ✓ Validity of the Langevin approach?

How to connect to a many-body Hamiltonian?

➢ barrier-top fission

in a mean-field potential →mixing by <u>residual interactions</u>

$$|\Psi
angle = \int dQ \sum_{i} f_{i}(Q) |\Phi_{Q}(i)
angle$$

GCM with excited states

- Many-body configurations in a MF pot. for each shape
- \succ hopping due to res. int.
- → shape evolution
 a good connection to
 nuclear reaction theory

a process which we would like to dicscuss

Reaction theory (absorption probability):

$$T_{\text{fis}} = Tr[\Gamma_{\text{in}}G(E)\Gamma_{\text{fis}}G^{\dagger}(E)]$$
$$T_{\text{cap}} = Tr[\Gamma_{\text{in}}G(E)\Gamma_{\gamma}G^{\dagger}(E)] \quad \text{``Datta formula''}$$
$$G(E) = [H - i\Gamma/2 - EO]^{-1}$$

Calculations based on Skyrme Hartree-Fock method

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

Simplifications: \checkmark ²³⁶U: only neutron configurations, up to 4 MeV \checkmark Dynamics of the first barrier: axial symmetry \checkmark seniority-zero config. only: occupation of (K, -K) \checkmark a scaled fission barrier with $B_f = 4$ MeV dim. $\langle \Psi_{\mu}(Q) | \Psi_{\mu}(Q') \rangle \sim e^{-1}$

Calculations based on Skyrme Hartree-Fock method

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

✓ Γ_{cap} : exp. data (scaled according to N_{GOE}), Γ_{fis} : insensitivity

insensitivity property

• insensitive to $\Gamma_{\rm f}$ (post-barrier dynamics)

 \rightarrow compatible to the assumption in TST

• decays via many configurations \rightarrow somewhat different from the idea of TST

• h_2 effect is not negligible, but insensitive to h_2 when it is large

Summary

r-process nucleosynthesis: fission of neutron-rich nuclei

requires a microscopic approach applicable to low E^* and $\rho(E^*)$

also for barrier-top fission

➡ a new approach: shell model + GCM

an application to induced fission of ²³⁶U based on Skyrme EDF

- \checkmark neutron configurations only
- \checkmark pairing and diabatic interactions
- ✓ truncation at 4 MeV

 \rightarrow an importance of the pairing interaction

<u>Future perspectives:</u> seniority non-zero config. →pn res. interaction Uzawa, Hagino, Bertsch, arXiv:2303.16488

a large scale calculation (~ 10^6 dim.)