

はじめに
 (HI, αxn) 反応:野村メカニズム
 超重元素合成反応理論と残された課題
 重イオン反応の複雑性:拡張された野村メカニズム?
 まとめ

「低エネルギー重イオン反応と超重元素の科学」2024年3月3日、学士会館

はじめに:低エネルギー核反応物理のめざすもの

原子核反応

原子核は複合粒子

- →豊富な反応様式
 - 弾性散乱
 - 非弾性散乱
 - 核子移行反応
 - 核融合反応

→核構造と核反応の織り成す様々なインタープレイ

・ 原子核の大きさ、形、励起など

原子核反応物理のゴール

・豊富な反応プロセスを統一的に記述/理解する
 結合チャンネル法

はじめに:低エネルギー核反応物理のめざすもの

RIBF-UEC/理研 共催研究会 「不安定核物理 この10年とこれから」 2004年6月15日~17日(理研・大河内ホール)

RIBF稼働を間近に控え、レビュー講演と議論に重点を置いた研究会

議論:「不安定核ビームは超重核合成反応に有利か?」

はじめに:低エネルギー核反応物理のめざすもの

議論:「不安定核ビームは超重核合成反応に有利か?」

→ 野村さんの逆鱗に触れる(若手への叱咤激励)

当時のスライドを振り返ってみると、確かに自分の超重核生成反応 への理解が浅かった(若気の至り)。

野村亨さん: (HI, αxn) の有効性を逸早く指摘した

- ✓ Proc. of Lanzhou 1990, Proc. of Niigata 1991
- ✓ Proc. of Tours Sympo. II, 1994
- ✓ Hyperfine Interaction 103, 33 (1996)
- ✓ 日本物理学会誌 2005年9月号

$$\sigma_{xn} \sim \sigma_{CN} \left(\frac{\Gamma_n}{\Gamma_f}\right)^x, \quad \sigma_{\alpha yn} \sim \sigma_{\alpha} \left(\frac{\Gamma_n}{\Gamma_f}\right)^y$$

 α 粒子は大きなエネルギーを持ち去る $\rightarrow y \sim x-2$

α 粒子放出が複合核からの蒸発過程だとすると。。。

$$\sigma_{\alpha y n} \sim \sigma_{\alpha} \left(\frac{\Gamma_n}{\Gamma_f}\right)^y \sim \sigma_{CN} \left(\frac{\Gamma_\alpha}{\Gamma_f}\right) \left(\frac{\Gamma_n}{\Gamma_f}\right)^{x-2}$$

$$\rightarrow \left(\frac{\Gamma_{\alpha}}{\Gamma_{f}}\right) > \left(\frac{\Gamma_{n}}{\Gamma_{f}}\right)^{2}$$
 the $\sigma_{\alpha y n} > \sigma_{x n}$

最近になっていくつかの統計模型計算が行われるようになった:

(例)Fl(Z=114)生成反応

α 粒子放出は前平衡過程からかもしれない。 (まだきちんと検討されていない。今後の課題。)

P_{CN}とW_{sur}で1桁ずつ 稼げたとすると B_α =10⁻² でも (HI,xn) と (HI,αxn) は同程度の確率

- 蒸発過程だけだと寄与は小
- ・ 分解過程も寄与する (次のスライドで)
- 図: D.J. Hinde and M. Dasgupta, PLB622, 23 (2005)

超重元素同定の問題はあるが、反応ダイナミックスとしては興味深い

(HI, αxn) 反応 α 粒子放出は前平衡過程からかもしれない。

久保野さんと議論していること(2018.6~)

 $A = \alpha + A'$ のような構造を持った場合

D.J. Hinde and M. Dasgupta, Nucl. Phys. A787, 176c (2007).

反応の初期でα粒子の放出があると3ケタくらい断面積が増幅する(?) (ただし、何と何を比較するのかという問題はある)

原子核=核子多体系

◇ 原子核の内部自由度:「環境」
「内的環境自由度」

→量子開放系の物理

▶ 現象論的には成功

V.I. Zagrebaev and W. Greiner (2015)

- ✓ どのように熱化するのか?
 - 「摩擦の量子論」

- ✓ どのように熱化するのか?
 - 「摩擦の量子論」

反応前(冷)→複合核(熱)への過程を連続的に記述することが必要

反応前(冷)→複合核(熱)への過程を連続的に記述することが必要

系+環境のハミルトニアン をそのまま解く

M. Tokieda and K.Hagino, Ann. of Phys. 412 (2020) 168005

各時刻ごとに内部状態がわかる

- → エネルギー輸送の議論 が容易になる。
 - 熱化の様子を追うことが できる

多体問題

低エネルギー領域では未だに超難問題 cf. 多粒子トンネルの記述

少数の励起チャンネルを取り入れた2体問題 (結合チャンネル・アプローチ)

K. Hagino, K. Ogata, and A.M. Moro, PPNP125, 103951 (2022)

重イオン反応の複雑性 現実はもっと複雑かもしれない。。。

K.J. Cook (ANU) et al., Nature Communications 14, 7988 (2023)

重イオン反応の複雑性 現実はもっと複雑かもしれない。。。。 K.J. Cook (ANU) et al., Nature Communications 14, 7988 (2023) ${}^{40}Ca + {}^{208}Pb$

重イオン反応の複雑性:拡張された野村メカニズム? 超重元素生成反応に対する示唆

<u>超重元素反応のハイブリッドモデル: TDHF + Langevin アプロ</u> ーチ Q

K. Sekizawa and K.H., PRC99 (2019) 051602(R)

断面積の反応系依存性

<u>超重元素反応のハイブリッドモデル: TDHF + Langevin アプローチ</u>

K. Sekizawa and K.H., PRC99 (2019) 051602(R)

⁴⁸Ca はどのような意味で特別なのか?

System	CN	E* (MeV)	R _{min} (fm)	$\begin{array}{c} P_{\rm CN} \\ (\times 10^4) \end{array}$	$W_{\rm sur}$ (×10 ⁹)	$\frac{P_{\rm CN} W_{\rm sur}}{(\times 10^{13})}$
$^{48}Ca + {}^{254}Fm$ $^{54}Cr + {}^{248}Cm$	³⁰² 120 ³⁰² 120	29.0 33.2	12.93 13.09	1.72 1.89	176 1.31	302 2.47
$^{51}V + {}^{249}Bk$ $^{48}Ca + {}^{257}Fm$	³⁰⁰ 120 ³⁰⁵ 120	37.0 30.5	12.94 12.94	3.95 2.49	0.117 0.729	0.461 1.82
$P_{\rm ER} = P_{\rm cap}$	$ \cdot P_{\rm CN} $	$\cdot W_{ m suv}$	同じ	くらいの	P _{CN}	2桁の違し

✓ エントランスチャンネルでは⁴⁸Ca はあまり特別ではない
 ✓ 主に生き残り確率で⁴⁸Ca は2桁ほど有利になっている

 $\Delta E \sim 9 \text{ MeV}$ **くらい**(実際には結合のためにもう少し大きい)

→ $P_{tr} > \Gamma_n / \Gamma_f$ であればこのメカニズムは有利になる(かもしれない) 「拡張された野村メカニズム」

> (HI, axn)反応←野村亨さん

- 実験的にも理論的にもまだ十分検討されていない
- 蒸発過程
- 前平衡過程、トロイの木馬機構
- > 量子開放系としての超重元素合成反応
 - ・標的核の変形はヒートアップとともにどのように 変化するのか?
 - 非平衡グリーン関数法(誘起核分裂の問題)
- ▶ 重イオン反応の複雑性:「拡張された野村メカニズム?」
 - クーロン障壁に至る前の多核子移行反応
 - 移行反応により質量非対称性が高い系へ移行すると?

9

TDHF + ランジュバン法?