An application of shell model to low-energy induced fission

fissione di un biscotto nucleare

Kouichi Hagino Kyoto University

G.F. Bertsch (Seattle)

Kotaro Uzawa (Kyoto)
NUCLEAR COOKIES SEMINARS
Kouichi Hagino
Department of Physics, Kyoto University

1. Introduction
2. Shell Model for induced fission
3. Summary
G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

Introduction: particle emission decays of unstable nuclei

Nuclear Fission

> discovered about 80 years ago (in 1938) by Hahn and Strassmann
$>$ a primary decay mode of heavy nuclei

G. Scamps and C. Simenel, Nature 564 (2018) 382

> important role in:

- energy production
- superheavy elements
- r-process nucleosynthesis
- production of neutron-rich nuclei

Superheavy elements

Y. Zhu et al.,
fission in r-process nucleosynthesis

$>$ various fission processes

induced fission

asymmetric fission
beta-delayed fission

A.N. Andreyev et al., PRL105(‘'10)252502
$>$ macroscopic understanding:
competition between the surface and the Coulomb energies \rightarrow fission barrier

$>$ a microscopic understanding:
large change of nuclear shape
\rightarrow microscopic description : far from complete
an ultimate goal of nuclear physics

"Future of fission theory"
M. Bender et al., J. of Phys. G47, 113002 (2020)
$>$ spontaneous fission

A. Staszczak, A. Baran, J. Dobaczewski, and W. Nazarewicz, PRC80 (‘09) 014309
constrained Hartree-Fock $(+\mathrm{B})$ method:

$$
\begin{aligned}
& \delta\langle\Phi| H-\lambda Q_{20}|\Phi\rangle=0 \\
& \quad \rightarrow \Phi\left(Q_{20}\right), \quad E\left(Q_{20}\right)
\end{aligned}
$$

$\rightarrow P=\exp \left[-2 \int d q \sqrt{\frac{2 B(q)}{\hbar^{2}}(V(q)-E)}\right]$

Importance of a microscopic approach

$>$ r-process nucleosynthesis

(neutron induced) fission of neutron-rich nuclei
\rightarrow low E^{*} and low $\rho\left(E^{*}\right)$
\checkmark Validity of statistical models?
> barrier-top fission

low $\rho(\mathrm{E})$
high $\rho(\mathrm{E})$
\checkmark Validity of the Langevin approach?
discrete levels
How to connect to a many-body Hamiltonian?
many-particle many-hole configurations in a mean-field potential
\rightarrow mixing by residual interactions

$$
|\Psi\rangle=\int d Q \sum_{i} f_{i}(Q)\left|\Phi_{Q}(i)\right\rangle
$$

GCM with excited states

Shell model approach?

Shell model

$$
|\Psi\rangle=v_{1}\left|m_{1}\right\rangle+v_{2}\left|m_{2}\right\rangle+v_{3}\left|m_{3}\right\rangle+\cdots
$$

Figure: Noritaka Shimizu (Tsukuba)
A similar approach for nuclear fission?
$>$ Many-body configurations in a MF pot. for each shape
$>$ hopping due to res. int.
\rightarrow shape evolution
a good connection to nuclear reaction theory

a process which we would like to dicscuss

a process which we would like to dicscuss

branching ratio

$$
\alpha^{-1}=\frac{\sigma_{f}}{\sigma_{\gamma}}
$$

sensitive to intermediate structure
M.S. Moore et al., PRC30 (‘84) 214

a process which we would like to dicscuss

Reaction theory (absorption probability):

$$
\begin{aligned}
& T_{\mathrm{fis}}=\operatorname{Tr}\left[\Gamma_{\mathrm{in}} G(E) \Gamma_{\mathrm{fis}} G^{\dagger}(E)\right] \\
& T_{\mathrm{cap}}=\operatorname{Tr}\left[\Gamma_{\mathrm{in}} G(E) \Gamma_{\gamma} G^{\dagger}(E)\right] \\
& \qquad G(E)=[H-i \Gamma / 2-E O]^{-1}
\end{aligned}
$$

Calculations based on Skyrme Hartree-Fock method

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

Simplifications:
$\checkmark{ }^{236} \mathrm{U}$: only neutron configurations, up to 4 MeV \checkmark Dynamics of the first barrier: axial symmetry \checkmark seniority-zero config. only: occupation of (K, -K) \checkmark a scaled fission barrier with $B_{\mathrm{f}}=4 \mathrm{MeV}$

714x714 Hamiltonian matrix

$$
\begin{aligned}
H=\sum_{k} \epsilon_{k} a_{k}^{\dagger} a_{k}-G P^{\dagger} P & \\
& P=a_{k}^{\dagger} a \frac{1}{k}
\end{aligned}
$$

dim.
$=100$
GOE
42
97
153
29

65
$33 b$
3

3
37b
$\Gamma_{\text {cap }}$
many-body config. based on UNEDF1

Calculations based on Skyrme Hartree-Fock method

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

\checkmark overlap: $\left\langle\Psi_{\mu}(Q) \mid \Psi_{\mu}\left(Q^{\prime}\right)\right\rangle \sim e^{-1}$
\checkmark pairing: $v_{\text {pair }}=-G P^{\dagger} P$
\checkmark diabatic:

Q'

$$
\frac{\left\langle\Psi_{\mu}(Q)\right| H\left|\Psi_{\mu}\left(Q^{\prime}\right)\right\rangle}{\left\langle\Psi_{\mu}(Q) \mid \Psi_{\mu}\left(Q^{\prime}\right)\right\rangle} \sim E_{\mu}(\bar{Q})-h_{2}(\Delta Q)^{2}
$$

$\checkmark \Gamma_{\text {cap }}:$ exp. data (scaled according to N_{GOE}), $\Gamma_{\text {fis }}:$ insensitivity

energy average

$$
\alpha^{-1}=\frac{\int_{\Delta E} T_{\mathrm{fis}}\left(E^{\prime}\right) d E^{\prime}}{\int_{\Delta E} T_{\mathrm{cap}}\left(E^{\prime}\right) d E^{\prime}}
$$

$$
\Delta E=0.5 \mathrm{MeV}
$$

insensitivity property

the transition state theory

N. Bohr and J.A. Wheeler, Phys. Rev. 56, 426 (1939)

$$
\Gamma_{f}=\frac{1}{2 \pi \rho_{\mathrm{gs}}\left(E^{*}\right)} \int_{0}^{E^{*}-B_{f}} \rho_{\mathrm{sd}}\left(E^{*}-B_{f}-K\right) d K \rightarrow \frac{1}{2 \pi \rho_{\mathrm{gs}}\left(E^{*}\right)} \sum_{c} T_{c}
$$

\checkmark decay dynamics: entirely determined at the saddle \checkmark does not depend on what will happen after the barrier

insensitivity property

sensitivity test

$$
\frac{\left\langle\Psi_{\mu}(Q)\right| H\left|\Psi_{\mu}\left(Q^{\prime}\right)\right\rangle}{\left\langle\Psi_{\mu}(Q) \mid \Psi_{\mu}\left(Q^{\prime}\right)\right\rangle} \sim E_{\mu}(\bar{Q})-h_{2}(\Delta Q)^{2}
$$

$$
\begin{aligned}
& h_{2} \rightarrow 2 h_{2} \\
& \mathrm{G}_{\text {pair }}=0.2 \mathrm{MeV} \\
& h_{2}=0.3 \mathrm{MeV} \\
& \rightarrow \alpha^{-1}=1.10 \\
& \hline h_{2} \rightarrow 0 \\
& \mathrm{G}_{\text {pair }}=0.2 \mathrm{MeV} \\
& h_{2}=0.0 \mathrm{MeV} \\
& \rightarrow \alpha^{-1}=0.13
\end{aligned}
$$

- sensitive to the pairing, though less than in spontaneous fission

- h_{2} effect is not negligible, but insensitive to h_{2} when it is large

Summary

r-process nucleosynthesis: fission of neutron-rich nuclei
requires a microscopic approach applicable to low E^{*} and $\rho\left(E^{*}\right)$
\# also for barrier-top fission
\Rightarrow a new approach: shell model + GCM an application to induced fission of ${ }^{236} \mathrm{U}$ based on Skyrme EDF

\checkmark neutron configurations only
\checkmark pairing and diabatic interactions
\checkmark truncation at 4 MeV
\rightarrow an importance of the pairing interaction
Future perspectives: seniority non-zero config. \rightarrow pn res. interaction Uzawa, Hagino, Bertsch, arXiv:2303.16488
a large scale calculation $\left(\sim 10^{6} \mathrm{dim}.\right)$

