Quantum many-body dynamics in heavy-ion fusion reactions around the Coulomb barrier

> Kouichi Hagino Kyoto University, Kyoto, Japan

from my slide on Sep. 21, 2018

감사합니다

тоноки

Quantum many-body dynamics in heavy-ion fusion reactions around the Coulomb barrier

- 1. Nuclear Reactions: overview
- 2. Fusion of light nuclei and Feshbach resonances
- 3. Fusion of medium-heavy nuclei and quantum tunneling
- 4. Fusion for superheavy nuclei
- 5. Microscopic modelling of low-energy nuclear reactions
- 6. Fission
- 7. Summary

Introduction: low-energy nuclear physics

behaviors of atomic nuclei as a quantum many-body systems

 — understanding based on strong interaction

- static properties: nuclear structure
 - ✓ ground state properties (mass, size, shape,....)
 - \checkmark excitations
 - ✓ nuclear matter
 - ✓ decays
- > dynamics: nuclear reactions

nucleus: a composite system ✓ various sort of reactions

- elastic scattering
- inelastic scattering
- transfer rection
- breakup reactions
- fusion reactions

Introduction: low-energy nuclear physics

behaviors of atomic nuclei as a quantum many-body systems

 — understanding based on strong interaction

- static properties: nuclear structure
 - ✓ ground state properties
 (mass, size shape,...)
 ✓ excitations
 ✓ nuclear matter
 ✓ decays

> dynamics: nuclear reactions

nucleus: a composite system
✓ various sort of reactions
✓ an interplay between nuclear structure and reaction

- elastic scattering
- inelastic scattering
- transfer rection
- breakup reactions
- fusion reactions

simultaneously

many-body problem

still very challenging

many-body problem

still very challenging

two-body problem, but with excitations (the coupled-channels approach)

scattering theory with excitations

$$0^+ \frac{\psi_0(r)}{0^+}$$

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + V_0(r) - E\right]\psi_0(r) = 0$$

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + V_0(r) - E\right]\psi_0(r) = -F_{0\to 2}(r)\psi_2(r)$$

$$0^{+} \frac{\psi_{0}(r)}{0^{+}} 0^{+} \frac{\psi_{0}(r)}{0^{+}} 0^{+} \frac{\psi_{2}(r)}{0^{+}} 0^{+} \frac{\psi_{2}(r)}{0^{+}} 0^{+} \frac{\psi_{0}(r)}{0^{+}} \frac{\psi_{0}(r)}{0^{+}$$

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_0(r) - E \end{bmatrix} \psi_0(r) = -F_{0\to 2}(r)\psi_2(r)$$
$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_2(r) - (E - \epsilon_2) \end{bmatrix} \psi_2(r) = -F_{2\to 0}(r)\psi_0(r)$$

$$0^{+} \frac{\psi_{0}(r)}{0^{+}} 0^{+} \frac{\psi_{0}(r)}{0^{+}} 0^{+} \frac{\psi_{2}(r)}{0^{+}} 0^{+} \frac{\varepsilon_{2}}{0^{+}} 0^{+} \frac{\psi_{1}(r)}{0^{+}} \frac{\psi_{1$$

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_0(r) - E \end{bmatrix} \psi_0(r) = -F_{0\to 2}(r)\psi_2(r)$$
$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_2(r) - (E - \epsilon_2) \end{bmatrix} \psi_2(r) = -F_{2\to 0}(r)\psi_0(r)$$

- Fusion \rightarrow an absorbing potential (an optical potential)
- excitations to unbound states \rightarrow breakup reactions (neutron-rich nuclei)

a recent review: K. Hagino, K. Ogata, and A.M. Moro, PPNP in press. arXiv: 2201.09512

one-dimensional 2 level problem

$$P(E) = |T_0|^2 + \frac{k_1}{k_0}|T_1|^2$$

one-dimensional 2 level problem

$$P(E) = |T_0|^2 + \frac{k_1}{k_0}|T_1|^2$$

$$V(x) = V_0 e^{-x^2/2s^2}$$

$$F(x) = F_0 e^{-x^2/2s^2}$$

 $V_0 = 100 \text{ MeV}, F_0 = 3 \text{ MeV}, s=3 \text{ fm}, \epsilon = 2 \text{ MeV}, m = 29 m_N$

Fusion Reactions

Fusion reactions \rightarrow a many-body quantum tunneling

K. Hagino and N. Takigawa, Prog. Theo. Phys.128 ('12)1061

Fusion Reactions

cf. Bohr '36

NASA, Skylab space station December 19. 1973, solar flare reaching 583 000 km off solar surfa

energy production in stars (Bethe '39)

nucleosynthesis

Y Gamma Ray

He

Proton Neutron

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction ← microscopic understanding: an ultimate goal of nuclear physics

cf. Bohr '36

✓ Many-particle tunneling

Т

- rich intrinsic motions
 - several nuclear shapes
 - several surface vibrations

several modes and adiabaticities

H.I. fusion reaction = an ideal playground to study quantum tunneling with many degrees of freedom

nucleus

Nuclear Chart: RIKEN Nishina Center

Nuclear Chart: RIKEN Nishina Center

Fusion of light nuclei: nuclear astrophysics

figure: M. Aliotta

Fusion of light nuclei: nuclear astrophysics

¹²C+¹²C fusion : a key reaction in nuclear astrophysics

Carbon burning in massive stars

 ${}^{12}C+{}^{12}C \rightarrow \alpha + {}^{20}Ne$ ${}^{12}C+{}^{12}C \rightarrow p + {}^{23}Na$

also

✓ Type Ia supernovae✓ X-ray superburst

figure: M. Aliotta

Fusion of light nuclei: nuclear astrophysics

¹²C+¹²C fusion : a key reaction in nuclear astrophysics

Carbon burning in massive stars

 ${}^{12}C+{}^{12}C \rightarrow \alpha + {}^{20}Ne$ ${}^{12}C+{}^{12}C \rightarrow p + {}^{23}Na$

also ✓ Type Ia supernovae ✓ X-ray superburst

A. Tumino et al., Nature557 ('18) 687

 ~ 25 times larger than before \rightarrow lots of debates

¹²C+¹²C fusion reaction

N.T. Zhang,..., K.H., S. Kubono, ..., C.J. Lin,.... XiaoDong Tang (IMP) et al., Phys. Lett. B801 (2020) 135170

and W. Greiner, NPA188 ('72) 259

a kind of Feshbach resonance

K.H., unpublished (2015)

A recent AMD calculation

Y. Taniguchi and M. Kimura, PLB823 ('21) 136790

Nuclear Chart: RIKEN Nishina Center

Fusion reactions of medium-heavy nuclei

potential model: inert nuclei (no structure)

$$\sigma_{\rm fus} = \frac{\pi}{k^2} \sum_{l} (2l+1)(1-|S_l|^2)$$

Fusion reactions of medium-heavy nuclei

potential model: inert nuclei (no structure)

$$\sigma_{\rm fus} = \frac{\pi}{k^2} \sum_{l} (2l+1)(1-|S_l|^2)$$

¹⁵⁴Sm : a typical deformed nucleus

rotational spectrum

strong correlation
with nuclear spectrum
→ coupling assisted
tunneling phenomena

✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

Semi-microscopic modelling of subbarrier fusion reactions

K.H. and J.M. Yao, PRC91('15) 064606

simple harmonic oscillator

Semi-microscopic modelling of subbarrier fusion reactions

K.H. and J.M. Yao, PRC91('15) 064606

$$|JM\rangle = \int d\beta f_J(\beta) \hat{P}^J_{M0} |\Phi(\beta)\rangle$$

 MF + ang. mom. projection
 + particle number projection
 + generator coordinate method (GCM)

Beyond-mean-field method anharmonicity of phonon spectra

 \rightarrow C.C. calculations with a phenomenological potential

From phenomenological approach to microscopic approach

Macroscopic (phenomenological)

Microscopic

TDHF = Time Dependent Hartree-Fock

S. Ebata, T. Nakatsukasa, JPC Conf. Proc. 6 ('15)

ab initio, but no tunneling

Fusion of neutron-rich nuclei

K.-S. Choi, M.-K. Cheoun, W.Y. So, K.H., and K.S. Kim, Phys. Lett. B780 ('18) 455

simultaneous explanation for ${}^{9}\text{Li}+{}^{208}\text{Pb}$ and ${}^{11}\text{Li}+{}^{208}\text{Pb}$ with: ${}^{11}\text{Li}+{}^{208}\text{Pb} \longleftrightarrow {}^{9}\text{Li}+{}^{210}\text{Pb} \longleftrightarrow {}^{7}\text{Li}+{}^{212}\text{Pb}$ transfer couplings

Nuclear Chart: RIKEN Nishina Center

Superheavy elements

the island of stability (安定的島)

Transu raniu m Elemens

Spherical

Shell

Sea of Instability

Neutron number

LogT_{1/2}

(sec)

14

10

2

-2

Superheavy Elemens

Spherical

Shell

Fusion of heavy nuclei and superheavy elements

shape evolution cf. fission

Fusion

cf. Nihonium (RIKEN) 70 Zn+ 209 Bi $\rightarrow ^{278}$ Nh+ n

Fusion of heavy nuclei and superheavy elements

strong Coulomb repulsion \rightarrow re-separation

Nuclear shape evolution

nucleus = many-body system of nucleons

nuclear intrinsic d.o.f. : internal environment →physics of open quantum systems

cf. Classical Langevin equation

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

Y. Aritomo, K. Hagino, K. Nishio, and S. Chiba, PRC85 (2012) 044614

Nuclear shape evolution

successful as a phenomenological approach

nucleus = many-body system of nucleons

nuclear intrinsic d.o.f. : internal environment

→physics of open quantum systems

cf. Classical Langevin equation

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

✓ optimum bombarding energy?
 ✓ ⁵¹V rather than ⁴⁸Ca?

optimum bombarding energy

the role of deformation in heavy-ion reactions?

hot fusion: ⁴⁸Ca + deformed target

✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

the side/tip collisions

Application to hot fusion reactions

T. Tanaka,..., K.H., et al., JPSJ 87 ('18) 014201 PRL124 ('20) 052502

capture barrier distribution

Application to hot fusion reactions

 $^{48}Ca + ^{248}Cm$

0.08

CN

S

capture barrier distribution

S_{sd} s

cf. notion of compactness: D.J. Hinde et al., PRL74 ('95) 1295

PRL124 ('20) 052502

Application to hot fusion reactions

 ${}^{48}Ca + {}^{248}Cm \rightarrow {}^{296}{}_{116}Lv^*$

T. Tanaka,..., K.H., et al., JPSJ 87 (*18) 014201 PRL124 (*20) 052502

CN

S

K. Hagino, PRC98 ('18) 014607

capture barrier distribution cf. notion of compactness: D.J. Hinde et al., PRL74 ('95) 1295

S_{sd}

Towards a microscopic nuclear reaction theory

still very challenging

Time-dependent mean-field theory (TDHF/TDDFT)

S. Ebata, T. Nakatsukasa,
JPC Conf. Proc. 6 ('15) 020056
(semi) classical → no tunneling

a microscopic understanding of many-body tunneling?

a single Slater determinat for a many-body wave function

 $\alpha + \alpha$ in 1D

a linear superposition of many Slater determinants

time-dependent variational principle

$$\delta \int dt \frac{\langle \Psi(t) | i\hbar \partial_t - H | \Psi(t) \rangle}{\langle \Psi(t) | \Psi(t) \rangle} = 0$$

Nuclear Fission

important role in:

- energy production
- superheavy elements
- r-process nucleosynthesis
- production of neutron-rich nuclei

G. Scamps and C. Simenel, Nature 564 (2018) 382 very complicated dynamics: a microscopic understanding → far from complete

very complicated dynamics: a microscopic understanding \rightarrow far from complete

M. Bender et al., J. of Phys. G47, 113002 (2020)

CI approach: a novel way to understand fission

K.H. and G.F. Bertsch

c.f. Generator Coordinate Method (GCM) $|\Psi\rangle = \int dQ f(Q) |\Phi_Q\rangle$

 \rightarrow CI approach

$$|\Psi\rangle = \int dQ \sum_{i} f_i(Q) |\Phi_Q(i)\rangle$$

hopping due to the residual interaction

 \rightarrow shape evolution

From phenomenological to microscopic nuclear reaction theories

Macroscopic (phenomenological)

A folding potential does not work for subbarrier fusion reactions

