第8回クラスター領域研究会 2023.2.9-11

Shape evolution of atomic nucleus and clustering

Kouichi Hagino Kyoto University

G.F. Bertsch (Seattle) Kotaro Uzawa (Kyoto)

- 1. Introduction
- 2. CI model for cluster decays
- 3. Extension to induced fission
- 4. Summary

Introduction: particle emission decays of unstable nuclei

Importance of fission

G. Scamps and C. Simenel, Nature 564 (2018) 382

r-process nucleosynthesis

microscopic understanding

240Pu

t=0

t=15.9 zs

t=19.8 zs

t=20.4 zs

of fission

a

large change of nuclear shape
→ microscopic description
: far from complete

an ultimate goal of nuclear physics

M. Bender et al., J. of Phys. G47, 113002 (2020)

G. Scamps and C. Simenel, Nature 564 (2018) 382 "Future of fission theory" White paper

microscopic understanding of fission 240Pu а t=0t=15.9 zs C_n -0.4 -0.3 t=19.8 zs 0.2 -0.1 -0.0 t=20.4 zs

large change of nuclear shape
→ microscopic description
: far from complete

the aim of this work:

to construct a microscopic fission theory based on a many-body Hamiltonian

the method:

configurations based on DFT \rightarrow shell model

G. Scamps and C. Simenel, Nature 564 (2018) 382

Generator Coordinate Method + CI approach

hopping due to residual interactions \rightarrow shape evolution

in the case of induced fission

large change of nuclear shape
→ microscopic description
: far from complete

the aim of this work:

to construct a microscopic fission theory based on a many-body Hamiltonian

the method:

configurations based on DFT \rightarrow shell model

objects:

- cluster decays from the ground state
- induced fission of ²³⁶U
- •(spontaneous fission of heavy nuclei)

G. Scamps and C. Simenel, Nature 564 (2018) 382

Cluster Radioactivities

 224 Ra $\rightarrow ^{14}C + ^{210}$ Pb

M. Warda and L.M. Robledo, PRC84, 044608 (2011)

✓ intermediate between α-decay and fission (very asymmetric fission)
 ✓ first observation in 1984 by Rose and Jones (²²³Ra → ¹⁴C + ²⁰⁹Pb)
 ✓ very small branching to α decays ("rare decay") ²²⁴Ra: 4.3 x 10⁻¹¹
 ✓ may become a dominant decay mode in superheavy nuclei
 : ²⁹⁴Og → ⁸⁶Kr+²⁰⁸Pb
 Z. Mateson, Giuliani, Nazarewicz, Sadhukhan, Schunck, PRC99('19) 041304(R)

GCM+CI approach to cluster decays

K. Uzawa, K. Hagino, and K. Yoshida, PRC105 (2022) 034326

Gamow theory: $w = SfP_{tunnel}$

<u>GCM+CI approach to cluster decays</u>

K. Uzawa, K. Hagino, and K. Yoshida, PRC105 (2022) 034326

excited configurations at each $Q_3 \leftarrow$ shell model aspect $|\Psi\rangle = \int dQ_3 \sum_i f_i(Q_3) |\Phi_{Q_3}(i)\rangle$ <u>GCM+CI approach to cluster decays</u>

K. Uzawa, K. Hagino, and K. Yoshida, PRC105 (2022) 034326

reaction theory:

$$T_{\rm fis} = Tr[\Gamma_{\rm in}G(E)\Gamma_{\rm fis}G^{\dagger}(E)]$$
$$G(E) = [H - i\Gamma/2 - EO]^{-1}$$
decay branching ratio: $\alpha^{-1} = T_{\rm fis}/T_{\rm Cap}$

Induced Fission

G.F. Bertsch and K. Hagino, arXiv: 2302.00572 (2023).K. Uzawa, K. Hagino, and G.F. Bertsch, in preparation (2023).

✓ pairing: enhances T_{fis} at energies around the barrier
 ✓ T_{fis}: insensitive to the dynamics after the barrier
 → transition state theory (TST)

✓ a microscopic theory based on a many-body Hamiltonian
 ✓ applied to cluster decays and induced fission
 ✓ so far, one degree of freedom

 \rightarrow a challenge: extension to many degrees of freedom

- how clusters are emerged inside a nucleus
- competition between alpha decays and cluster decays

 \checkmark another challenge: realistic calculations for induced fission

• the inversion of a Hamiltonian with a large dimension