Imaging quantum interferences in heavy-ion elastic scattering

Kouichi Hagino(萩野浩一) Kyoto University(京都大学), Kyoto, Japan

Collaborator: Takuya Yoda (particle theory, Kyoto University)

- 1. Introduction: interferences in nuclear reactions
- 2. A new attempt: visualization of nuclear reactions
- 3. Summary

K. Hagino and T. Yoda, PLB848, 138326 (2024).

A seminar at Sun Yat-sen University (中山大学), March 13, 2024

Low energy nuclear reactions

Nuclei as quantum many-body systems

- $\longleftarrow \text{ in terms of nucleon d.o.f.}$
- > static properties: nuclear structure E < 0

CN

•7

ER

> dynamics: nuclear reactions E > 0

✓ Nuclear Reactions as a tool to investigate nuclear structure

a synthesis of SHE

Two aspects of nuclear reactions

 \checkmark a tool for nuclear structure \leftarrow this is often emphasized....

✓ g.s. properties (mass, size, shape....)
✓ excitations

quantum many-body dynamics (nuclear reactions)

elastic scattering

inelastic scattering

fusion

a unified description of these processes

Subbarrier enhancement of fusion cross sections

A typical example of the interplay between structure and reaction

K.H., N. Takigawa, PTP128 (2012) 1061

a recent review of C.C. approach (Hagino, Ogata, and Moro) Prog. Part. Nucl. Phys. 125 (2022) 103951

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Coupled-channels calculations for nuclear reactions: From exotic nuclei to superheavy elements

K. Hagino^{a,*}, K. Ogata^{b,c,d}, A.M. Moro^{e,f}

Semi-microscopic modelling of subbarrier fusion reactions K.H. and J.M. Yao, PRC91('15) 064606 58NI 6 333 simple harmonic 0 273 oscillator $\mathbf{0}_2^{\dagger}$ 0+,2+,4+ 206 82 229 2ε 270 2^{+} 3 150 0 В 0^{+} 0 PC-PK1

Beyond-mean-field method anharmonicity of phonon spectra

→ C.C. calculations with a phenomenological potential

Nuclear Reactions

nucleus: a composite system
✓ a rich reaction processes
✓ a rich interplay between nuclear structure and reaction ✓ elastic scattering
 ✓ inelastic scattering
 ✓ transfer reactions
 ✓ fusion reactions

<u>Another aspect of nuclear reactions</u> : a variety of quantum mechanical natures

a figure from "Quantum Theory" by Jim Al-Khalili

Manifestation of Quantum Nature in Nuclear Reactions

a superposition principle $\psi = \alpha \psi_1 + \beta \psi_2$

$$\rightarrow |\psi|^2 = |\alpha\psi_1|^2 + |\beta\psi_2|^2 + (\alpha\psi_1)^*(\beta\psi_2) + (\alpha\psi_1)(\beta\psi_2)^*$$
interference

when two processes are in principle indistinguishable \rightarrow take square after adding two amplitudes

Interference phenomena in Nuclear Reactions

(ii) Nuclear-Coulomb interference

(iii) Near-far interference

(iv) barrier-wave internal-wave interference

Manifestation of Quantum Nature in Nuclear Reactions

Mott Scattering: scattering of identical particles

expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

Interference phenomena in Nuclear Reactions

(ii) Nuclear-Coulomb interference

(iii) Near-far interference

(iv) barrier-wave internal-wave interference

Coulomb-Nuclear interference

a special case: Fresnel oscillations $(S_l = 0 \ (l < l_g); S_l = e^{2i\sigma l} \ (l > l_g))$

Interference phenomena in Nuclear Reactions

(ii) Nuclear-Coulomb interference

(iii) Near-far interference

(iv) barrier-wave internal-wave interference

➤ near side - far side interference

R.C. Fuller, PRC12('75)1561 N. Rowley and C. Marty, NPA266('76)494 M.S. Hussein and K.W. McVoy, Prog. in Part. and Nucl. Phys. 12 ('84)103

F. Carstoiu et al., PRC70 ('04) 054610

Interference phenomena in Nuclear Reactions

(ii) Nuclear-Coulomb interference

(iii) Near-far interference

(iv) barrier-wave internal-wave interference

barrier wave – internal wave interference cf. D.M. Brink and N. Takigawa, NPA279 ('77) 159

¹⁶O+¹⁶O system

expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

Comparison between ¹⁶O+¹⁶O and ¹⁸O+¹⁸O

¹⁸O+¹⁸O : much less pronounced interference pattern

 $^{18}O = ^{16}O$ (double closed shell) + 2n

 \rightarrow stronger coupling to environment

manifestation of (environmental) decoherence

Optical potential model calculation

Optical potential model calculations

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r) - iW(r) - E\right]u_l(r) = 0$$

an imaginary part \rightarrow absorption

Optical potential model calculation

 10^{3} $^{16}\text{O} + ^{16}\text{O} (\text{E}_{\text{cm}} = 26.5 \text{ MeV})$ U(m) 10^{2} E $d\sigma / d\Omega \pmod{(mb/sr)}$ 10^{1} E 10⁰⊦ 10^{-1} 10^{-2} 60 90 120 150 θ_{cm} (deg)

an opt. pot. model calculation with a deep WS² potential.

$$V(r) = -\frac{(1 + \exp[(r - R)/a])^2}{W(r)}$$

$$W(r) = \frac{W_0}{(1 + \exp[(r - R_W)/a_W])^2}$$

$$\int_{0}^{0} -100 - \frac{16}{10} + \frac{16}{10} - \frac{16}{10} + \frac{16}{10} - \frac{16}{10} + \frac{16}{10} - \frac$$

 V_0

Optical potential model calculation

Spectra up to $E^* = 13 \text{ MeV}$

cf. the number of oepn channels, F. Haas and Y. Abe, PRL46('81)1667

Origins of oscillations

strong oscillations even in unsymmetrized cross sections \downarrow

✓ symmetrization: minor
✓ the main origin: near-side-far-side interference

R.C. Fuller, PRC12, 1561 (1975)

the far-side component is largely damped in ¹⁸O+¹⁸O due to absorption \rightarrow almost no interference oscillations cf. a single slit

interaction \rightarrow decoherence

(x,y) screen f(x,y) screen f(x,y

K. Hagino and T. Yoda, PLB848, 138326 (2024).

"condensing" scattering waves with a lens

K. Hashimoto et al., PRD101, 066018 (2020)

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \, e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

 $I(X,Y) = |\Phi(X,Y)|^2$

Application to a double slit problem

K. Hashimoto, Y. Matsuo, and T. Yoda, PTEP2023, 043B04 (2023)

the amplitude at P

 $f(\theta) = f_1 + f_2$

 $f_i = A \sin\left(\frac{2\pi}{\lambda}l_i - \omega t\right)$ $l_i \sim L\left(1 \pm \frac{l}{2L}\sin\theta\right)$

peaks at $\pm \frac{l}{2} \sin \theta_0$

applications in particle physics

Takuya Yoda (世田拓也)

a double slit problem scattering of string

imaging black holes through AdS/CFT

K. Hashimoto, Y. Matsuo, and T. Yoda, PTEP2023, 043B04 (2023)
K. Hashimoto, S. Kinoshita, and K. Murata, PRL123, 031602 (2019) PRD101, 066018 (2020)

K. Hagino and T. Yoda, PLB848, 138326 (2024).

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \times e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

$$I(X,Y) = |\Phi(X,Y)|^2$$

for a flat distribution, $f(\theta, \phi) = \text{const.}$,

1.2
1
$$\int_{\varphi_0 - \Delta \varphi}^{\varphi_0 + \Delta \varphi} d\varphi e^{ik(\varphi - \varphi_0)Y} = 2\Delta \varphi \frac{\sin(kY\Delta \varphi)}{kY\Delta \varphi}$$

0.6
0.4
0.2
0

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \, e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

1

for the Rutherford scattering, $f(\theta,\phi) = f_C(\theta,\phi)$, $I(X,Y) = |\Phi(X,Y)|^2$

⁶O+¹⁶O at
$$E_{cm} = 8.8$$
 MeV
 $\theta_0 = 90$ deg.
 $\Delta \theta = \Delta \phi = 30$ deg.
 \downarrow
 $b_{cl} = 5.24$ fm ~ X_{peak}

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \, e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

(note) for θ_0 =90 deg.,

 $\Phi_{\theta}(X,Y) = \Phi_{\pi-\theta}(-X,Y)$

 $I(X,Y) = |\Phi(X,Y)|^2$

 $\theta_0 = 90 \text{ deg.}, \Delta \theta = \Delta \phi = 30 \text{ deg.}$

K. Hagino and T. Yoda,

Summary

Nuclear Reactions as quantum many-body phenomena

- ✓ strong interplay with nuclear structure
- ✓ several nuclear intrinsic motions
- \checkmark Coupled-channels approach
- \checkmark a variety of interference phenomena
 - scattering of identical nuclei
 - Coulomb-nuclear interference
 - farside-nearside interference
 - barrier-wave-internal-wave interference

✓ Imaging: a new approach

- a Fourier transform of scatt. amplitudes
- an intuitive way to understand physics of interferences

Ongoing work: inelastic scattering? with Kyoungsu Heo (Soongsil University)

-10-8 -6 -4 -2 0 2 4 6 8 10 x (fm)

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \, e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

r

$$\Psi_s(X_s, Y_s) = \int_{-d_{\xi}}^{d_{\xi}} d\xi \int_{-d_{\eta}}^{d_{\eta}} d\eta A(\xi, \eta) e^{-ikr}$$

$$= \sqrt{(X_s - \xi)^2 + (Y_s - \eta)^2 + (L - L')^2}$$

$$\sim L - L' + \frac{(X_s - \xi)^2 + (Y_s - \eta)^2}{2(L - L')}$$

$$\sim L - L' + \frac{X_s^2 + Y_2^s}{2(L - L')} + \frac{\xi X_s + \eta Y_s}{L - L'}$$

(the size of the lens: much smaller than *L*-*L*')

$$X \equiv -L'X_s/(L-L')$$

$$Y \equiv L'\sin\theta_0 Y_s/(L-L')$$