生成座標方法的応用低能原子核誘発裂変

萩野浩—
京都大学

＂核物理生成座標方法＂研討会，中山大学，2024．3．14－16

Chongqing, March 10, 2011

Sendai, August, 2015

Chongqing, May 18, 2013

Zhuhai, March 12, 2024

An application of GCM to low－energy induced fission

Kouichi Hagino（萩野浩一）

 Kyoto University 京都大学G．F．Bertsch（Seattle） Kotaro Uzawa（鵜沢浩太朗）（Kyoto）

1．Introduction：nuclear fission
2．GCM for induced fission
3．Application to low－energy fission of ${ }^{236} \mathrm{U}$
4．A comment on the Dynamical GCM
5．Summary
G．F．Bertsch and K．H．，Phys．Rev．C107， 044615 （2023）．
K．Uzawa，K．H．，and G．F．Bertsch，arXiv：2403．04255．

Introduction: particle emission decays of unstable nuclei

Nuclear Fission

G. Scamps and C. Simenel, Nature 564 (2018) 382
$>$ discovered about 80 years ago (in 1938) by Hahn and Strassmann
$>$ a primary decay mode of heavy nuclei

$>$ important role in:

- energy production
- superheavy elements
- r-process nucleosynthesis
- production of neutron-rich nuclei

Superheavy elements

a macroscopic understanding of fission
competition between the surface and the Coulomb energies
\rightarrow fission barrier

Liquid Drop Model

$$
\begin{aligned}
a & =R \cdot(1+\epsilon) \\
b & =R \cdot(1+\epsilon)^{-1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& E_{S}(\epsilon)=\left(1+\frac{2}{5} \epsilon^{2}-\frac{4}{105} \epsilon^{3}+\cdots\right) \\
& E_{C}(\epsilon)=E_{C}^{(0)}\left(1-\frac{1}{5} \epsilon^{2}-\frac{4}{105} \epsilon^{3}+\cdots\right)
\end{aligned}
$$

$>$ various fission processes

induced
fission

spontaneous
fission
beta-delayed fission

A.N. Andreyev et al., PRL105('10)252502
$>$ macroscopic understanding:
competition between the surface and the Coulomb energies \rightarrow fission barrier

$>$ a microscopic understanding:

"Future of fission theory"
M. Bender et al., J. of Phys. G47, 113002 (2020)
large change of nuclear shape
\rightarrow microscopic description : far from complete
$>$ spontaneous fission

A. Staszczak, A. Baran, J. Dobaczewski, and W. Nazarewicz, PRC80 ('09) 014309
constrained Hartree-Fock $(+\mathrm{B})$ method:

$$
\begin{gathered}
\delta\langle\Phi| H-\lambda Q_{20}|\Phi\rangle=0 \\
\rightarrow \Phi\left(Q_{20}\right), E\left(Q_{20}\right) \\
\rightarrow P=\exp \left[-2 \int d q \sqrt{\frac{2 B(q)}{\hbar^{2}}(V(q)-E)}\right]
\end{gathered}
$$

$>$ induced fission
almost nothing has been developed for a microscopic theory

the topic of this talk

Why do we need a microscopic approach?
$>$ r-process nucleosynthesis

(neutron induced) fission of neutron-rich nuclei

$$
\rightarrow \operatorname{low} E^{*} \text { and low } \rho\left(E^{*}\right)
$$

\checkmark Validity of statistical models?
\checkmark Validity of the Langevin approach?
$>$ barrier-top fission

high $\rho(\mathrm{E}) \quad$ low $\rho(\mathrm{E}) \quad$ high $\rho(\mathrm{E})$
discrete levels

How to connect to a many-body Hamiltonian?
a process which we would like to dicscuss

compound

a process which we would like to dicscuss compound

branching ratio

$$
\alpha^{-1}=\frac{\sigma_{f}}{\sigma_{\gamma}}
$$

sensitive to intermediate structure
M.S. Moore et al.,

PRC30 (‘84) 214

branching ratio

$$
\alpha^{-1}=\frac{\sigma_{f}}{\sigma_{\gamma}}
$$

Important questions for r-process nucleosynthesis
$>$ How will a fission barrier be modified for neutron-rich nuclei?
$>$ What is an influence of pairing for (n, f) reactions?
$>$ How does the branching ratio evolve towards n-rich nuclei?

$$
(\mathrm{n}, \mathrm{f}) \text { versus }(\mathrm{n}, \gamma)
$$

$>$ How does fission compete with alpha/cluster decays in neutron-rich heavy nuclei?
a microscopic approach may be crucial to address these questions

Shell model approach?

Shell model

Figure: Noritaka Shimizu (Tsukuba)
many-particle many-hole configurations in a mean-field potential
\rightarrow mixing by residual interactions

> A similar approach for nuclear fission?

$>$ Many-body configurations in a MF pot. for each shape
$>$ hopping due to res. int.
\rightarrow shape evolution
a good connection to nuclear reaction theory

Shell model approach?

$$
|\Psi\rangle=\int d Q \sum_{i} f_{i}(Q)\left|\Phi_{Q}(i)\right\rangle
$$

GCM with excited states
cf. the usual GCM:

$$
\left.|\Psi\rangle=\int d Q f(Q) \mid \Phi_{Q}(\text { g.s. })\right\rangle
$$

> Many-body configurations in a MF pot. for each shape
$>$ hopping due to res. int.
\rightarrow shape evolution
a good connection to nuclear reaction theory

GCM methodology for transmission channels

GCM calculations for

nuclear structure

1. construct $\left\{\left|\Psi_{i}\right\rangle\right\}$ by discretizing $Q=\left(q_{1}, q_{2}, \ldots, q_{\mathrm{N}}\right)$
2. compute

$$
\begin{aligned}
H_{i j} & =\left\langle\Psi_{i}\right| H\left|\Psi_{j}\right\rangle \\
N_{i j} & =\left\langle\Psi_{i} \mid \Psi_{j}\right\rangle
\end{aligned}
$$

3. solve the Hill-Wheeler equation

$$
\sum_{j} H_{i j} f_{j}=E \sum_{j} N_{i j} f_{j}
$$

a many-body wf is then:

$$
|\Phi\rangle=\sum_{i} f_{i}\left|\Psi_{i}\right\rangle
$$

GCM calculations for transmission

1. construct $\left\{\left|\Psi_{i}\right\rangle\right\}$
2. compute $H_{i j}$ and $N_{i j}$
3. introduce imaginary terms

$$
-i\left(\Gamma_{i}\right)_{k k^{\prime}} / 2
$$

representing the decay width of the state i
4. compute the Green's function

$$
\boldsymbol{G}(E)=\left(\boldsymbol{H}-i \sum_{i} \boldsymbol{\Gamma}_{i} / 2-\boldsymbol{N} E\right)^{-1}
$$

5. the transmission probability from i to j is then computed as

$$
T_{i \rightarrow j}=\operatorname{Tr}\left[\boldsymbol{\Gamma}_{i} \boldsymbol{G} \boldsymbol{\Gamma}_{j} \boldsymbol{G}^{\dagger}\right]
$$

GCM methodology for transmission channels

GCM calculations for transmission

1. construct $\left\{\left|\Psi_{i}\right\rangle\right\}$
2. compute $H_{i j}$ and $N_{i j}$
3. introduce imaginary terms

$$
-i\left(\Gamma_{i}\right)_{k k^{\prime}} / 2
$$

representing the decay width
of the state i
4. compute the Green's function

$$
\boldsymbol{G}(E)=\left(\boldsymbol{H}-i \sum_{i} \boldsymbol{\Gamma}_{i} / 2-\boldsymbol{N} E\right)^{-1}
$$

5. the transmission probability from i to j is then computed as

$$
T_{i \rightarrow j}=\operatorname{Tr}\left[\boldsymbol{\Gamma}_{i} \boldsymbol{G} \boldsymbol{\Gamma}_{j} \boldsymbol{G}^{\dagger}\right] \quad \leftarrow " \text { Datta formula" }
$$

A test with a simple model

G.F. Bertsch and K. Hagino, PRC105, 034618 (2022)

CM in $\mathrm{HO} \quad \Psi_{q_{i}}(q)=\left(\pi s^{2}\right)^{-1 / 4} e^{-\left(q-q_{i}\right)^{2} / 4 s^{2}}$

$$
\left(q_{1}, q_{2}, \ldots, q_{\mathrm{N}}\right) \text { with } \Delta q
$$

$$
\begin{gathered}
\left\langle\Psi_{q_{i}} \mid \Psi_{q_{j}}\right\rangle=\exp \left(-\left(q_{i}-q_{j}\right)^{2} / 4 s^{2}\right) \\
\left\langle\Psi_{q_{i}}\right|-\frac{\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial q^{2}}\left|\Psi_{q_{j}}\right\rangle=E_{K}\left(1-\frac{\left(q_{i}-q_{j}\right)^{2}}{2 s^{2}}\right) N_{i j} \\
E_{K}=\frac{\hbar^{2}}{2 M s^{2}}
\end{gathered}
$$

$$
\begin{aligned}
\left(\boldsymbol{\Gamma}_{1}\right)_{i j} & =\gamma N_{i 1} N_{j 1} \\
\left(\boldsymbol{\Gamma}_{N}\right)_{i j} & =\gamma N_{i N} N_{j N} \\
\boldsymbol{\Gamma}_{k} & =0 \quad(k \neq 1, N)
\end{aligned}
$$

(b) $\stackrel{0}{\leftrightarrow} 000000$

7 configurations with $L=6(\Delta q / 2)$
$\Delta q / 2$

$$
\begin{aligned}
s & =1 / \sqrt{5}, \Delta q=1 \\
E_{K} & =5 / 4 \\
\gamma & =1
\end{aligned}
$$

A low E behavior is similar.
\rightarrow one can take a large mesh.

$$
\begin{aligned}
I \equiv & \int_{-\infty}^{\infty} d E T(E) \\
= & 1.69 E_{K} \text { for (a) } \\
& 1.65 E_{K} \text { for (b) }
\end{aligned}
$$

* qualitatively similar even with a barrier

(b) $\stackrel{0}{\leftrightarrow} 000000$

7 configurations with $L=6(\Delta q / 2)$
$\Delta q / 2$

Eigenvalues of $N_{i j}$

model (a)	model (b)		
1.	1.47	1.	2.85
2.	1.17	2.	2.07
3.	0.82	3.	1.22
4.	0.54	4.	0.57
		5.	0.22
		6.	0.062
		7.	0.012

red: model (b), but including only 4 eigenstates of N

Application to low-energy fission of ${ }^{236} \mathrm{U}$

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).
K. Uzawa, K.H., and G.F. Bertsch, arXiv:2403.04255.

Assumption: fission occurs along Q_{20} as a collective coordinate \rightarrow discretized

Application to low-energy fission of ${ }^{236} \mathrm{U}$

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).
\checkmark Constrained Skyrme Hartree-Fock with the UNEDF1 parameter set
\checkmark Hartree-Fock basis (the pairing interaction: external)
\checkmark Axial and Time-reversal symmetries
\checkmark HF Solver: SkyAx $\leftarrow 2$ D coordinate space
P.-G. Reinhard et al., CPC258, 107603 (2021).

Simplifications:
$\checkmark{ }^{236} \mathrm{U}$: only neutron configurations, up to 4 MeV
\checkmark Dynamics of the first barrier: axial symmetry
\checkmark seniority-zero config. only: occupation of (K, -K)
\checkmark the end configurations: replaced by GOE
\checkmark a scaled fission barrier with $B_{\mathrm{f}}=4 \mathrm{MeV}$

Application to low-energy fission of ${ }^{236} \mathrm{U}$

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

Simplifications: $\quad \checkmark{ }^{236} \mathrm{U}$: only neutron configurations, up to 4 MeV
\checkmark Dynamics of the first barrier: axial symmetry
\checkmark seniority-zero config. only: occupation of (K, -K)
\checkmark discretization:

$$
\left\langle\Psi_{\mu}(Q) \mid \Psi_{\mu}\left(Q^{\prime}\right)\right\rangle \sim e^{-1}
$$

dim.

$$
\begin{array}{ll}
\Gamma_{\text {cap }} & \text { many-body config. based on UNEDF1 } \\
& \left(H F \text { basis, } \mathrm{E}^{*}<4 \mathrm{MeV}\right)
\end{array}
$$

714x714 Hamiltonian matrix

Application to low-energy fission of ${ }^{236} \mathrm{U}$

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

\checkmark overlap: $\left\langle\Psi_{\mu}(Q) \mid \Psi_{\mu}\left(Q^{\prime}\right)\right\rangle \sim e^{-1}$
\checkmark pairing: $v_{\text {pair }}=-G P^{\dagger} P$

Q

$$
\begin{aligned}
& H=\sum_{k} \epsilon_{k} a_{k}^{\dagger} a_{k}-G P^{\dagger} P \\
& P=a_{k}^{\dagger} a \frac{\dagger}{k}
\end{aligned}
$$

Q

Application to low-energy fission of ${ }^{236} \mathrm{U}$

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

\checkmark overlap: $\left\langle\Psi_{\mu}(Q) \mid \Psi_{\mu}\left(Q^{\prime}\right)\right\rangle \sim e^{-1}$
\checkmark pairing: $v_{\text {pair }}=-G P^{\dagger} P$
\checkmark diabatic:

$$
\frac{\left\langle\Psi_{\mu}(Q)\right| H\left|\Psi_{\mu}\left(Q^{\prime}\right)\right\rangle}{\left\langle\Psi_{\mu}(Q) \mid \Psi_{\mu}\left(Q^{\prime}\right)\right\rangle} \sim E_{\mu}(\bar{Q})-h_{2}(\Delta Q)^{2}
$$

$\checkmark \Gamma_{\text {cap }}:$ exp. data (scaled according to N_{GOE}), $\Gamma_{\text {fis }}$: insensitivity

energy average

$$
\alpha^{-1}=\frac{\int_{\Delta E} T_{\mathrm{fis}}\left(E^{\prime}\right) d E^{\prime}}{\int_{\Delta E} T_{\mathrm{cap}}\left(E^{\prime}\right) d E^{\prime}}
$$

$$
\Delta E=0.5 \mathrm{MeV}
$$

insensitivity property

the transition state theory

N. Bohr and J.A. Wheeler, Phys. Rev. 56, 426 (1939)

$$
\Gamma_{f}=\frac{1}{2 \pi \rho_{\mathrm{gs}}\left(E^{*}\right)} \int_{0}^{E^{*}-B_{f}} \rho_{\mathrm{sd}}\left(E^{*}-B_{f}-K\right) d K \rightarrow \frac{1}{2 \pi \rho_{\mathrm{gs}}\left(E^{*}\right)} \sum_{c} T_{c}
$$

\checkmark decay dynamics: entirely determined at the saddle \checkmark does not depend on what will happen after the barrier
insensitivity property

An analytic derivation with a Random matrix model

K.H. and G.F. Bertsch, arXiv: 2310.09537 (2023)

$$
\begin{aligned}
& \left(H_{k}\right)_{i j}=\sqrt{1+\delta_{i, j}} v_{k} r_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}_{3} \equiv 2 \pi \rho_{3} \gamma_{3} \gg 1 \rightarrow\left\langle\left(V_{32}^{T} G_{3} \tilde{\Gamma}_{3} G_{3}^{\dagger} V_{32}\right)_{i j}\right\rangle=2 \pi v_{32}^{2} \rho_{3} \delta_{i j} \\
& \rho_{k}=\frac{N_{k}^{1 / 2}}{\pi v_{k}} \quad G_{3}=\left(H_{3}-i \Gamma_{3} / 2-E\right)^{-1} \\
& \rightarrow\left\langle T_{\mathrm{in}, 3}\right\rangle=\frac{\mathcal{T}_{\text {in }}}{\mathcal{T}_{1}} \sum_{i} \frac{\Gamma_{L} \Gamma_{R}}{E_{i}^{2}+\left(\Gamma_{L}+\Gamma_{R}\right)^{2} / 4} \\
& \left(H_{2}\right)_{i j}=E_{i} \delta_{i, j} \\
& \Gamma_{R}=2 \pi v_{32}^{2} \rho_{3}, \quad \Gamma_{L}=2 \pi v_{12}^{2} \rho_{1}
\end{aligned}
$$

no dependence on γ_{3} !

$$
\frac{\left\langle\Psi_{\mu}(Q)\right| H\left|\Psi_{\mu}\left(Q^{\prime}\right)\right\rangle}{\left\langle\Psi_{\mu}(Q) \mid \Psi_{\mu}\left(Q^{\prime}\right)\right\rangle} \sim E_{\mu}(\bar{Q})-h_{2}(\Delta Q)^{2}
$$

$$
\begin{aligned}
& h_{2} \rightarrow 2 h_{2} \\
& \mathrm{G}_{\text {pair }}=0.2 \mathrm{MeV} \\
& h_{2}=0.3 \mathrm{MeV} \\
& \rightarrow \alpha^{-1}=1.10 \\
& \hline h_{2} \rightarrow 0 \\
& \mathrm{G}_{\text {pair }}=0.2 \mathrm{MeV} \\
& h_{2}=0.0 \mathrm{MeV} \\
& \rightarrow \alpha^{-1}=0.13
\end{aligned}
$$

- sensitive to the pairing, though less than in spontaneous fission
base set

$$
\mathrm{G}_{\mathrm{pair}}=0.2 \mathrm{MeV}
$$

$$
h_{2}=0.15 \mathrm{MeV}
$$

$$
\rightarrow \alpha^{-1}=0.95
$$

$$
\text { cf. } \alpha^{-1}{ }_{\exp } \sim 3.0
$$

- h_{2} effect is not negligible, but insensitive to h_{2} when it is large

A comment on the Dynamical GCM

Q as a collective coordinate

$$
|\Phi\rangle=\int d Q f(Q)\left|\Psi_{Q}\right\rangle
$$

a (may be) better approach for dynamics:

$$
|\Phi\rangle=\int d Q d P f(Q, P)\left|\Psi_{Q P}\right\rangle
$$

dynamical GCM
N. Hizawa, K.H., and K. Yoshida, PRC103, 034313 (2021) PRC105, 064302 (2022)

A comment on the Dynamical GCM

for a particle number projection: usually $\left|\Phi_{N}\right\rangle=\hat{P}_{N}|B C S(N)\rangle$

$$
|\Phi\rangle=\sum_{N^{\prime}} f_{N^{\prime}} \hat{P}_{N}\left|B C S\left(N^{\prime}\right)\right\rangle ; \quad\left\langle B C S\left(N^{\prime}\right)\right| \hat{N}\left|B C S\left(N^{\prime}\right)\right\rangle=N^{\prime}
$$

N. Hizawa, K.H., and K. Yoshida, PRC103, 034313 (2021)
(See J.L. Egido, M. Borrajo, and T. Rodriguez, PRL116, 052502 (2016) for cranking + angular momentum projection)

A comment on the Dynamical GCM

$$
\left|\Psi_{Q P}\right\rangle=e^{i P \hat{Q}}\left|\Psi_{Q}\right\rangle
$$

$$
|\Phi\rangle=\int d Q d P f(Q, P)\left|\Psi_{Q P}\right\rangle
$$

Quadrupole motion of ${ }^{16} \mathrm{O}$ with Gogny D1S
TABLE I. The GCM and the DGCM energy for the quadrupole excitations of ${ }^{16} \mathrm{O}$ with the point sets S_{25}^{GCM} and S_{25}^{DGCM}, respectively. The cut-off for the norm kernel is taken as 10^{-5}.

state	GCM (MeV)	DGCM (MeV)
1	-129.682	-129.765
2	-107.993	-108.140
3	-92.260	-104.475
4	-77.911	-87.019
5	-64.097	-83.059

N. Hizawa, K.H., and K. Yoshida, PRC105, 064302 (2022)

Summary

r-process nucleosynthesis: fission of neutron-rich nuclei requires a microscopic approach applicable to low E^{*} and $\rho\left(E^{*}\right)$
\Rightarrow a new approach: shell model + GCM an application to induced fission of ${ }^{236} \mathrm{U}$ based on Skyrme EDF
\checkmark neutron seniority-zero configurations only

- insensitivity property (transition state theory)
- an importance of the pairing interaction

Future perspectives:

\checkmark seniority non-zero config. \rightarrow pn res. interaction a test with a schematic model:
K. Uzawa and K. Hagino, PRC108 (‘23) 024319
a large scale calculation ($\sim 10^{6} \mathrm{dim}$.)
\checkmark role of conjugate momentum (Dynamical GCM)?

dim.

$\Gamma_{\text {cap }}$ many-body config. based on UNEDF1

