Imaging quantum decoherence in nuclear reactions

Kouichi Hagino Kyoto University, Kyoto, Japan

Collaborator: Takuya Yoda (particle theory, Kyoto University)

- 1. Introduction: interferences in nuclear reactions
- 2. A new attempt: visualization of nuclear reactions
- 3. Summary

K. Hagino and T. Yoda, PLB848, 138326 (2024).

Low energy nuclear reactions

Nuclei as quantum many-body systems

- $\longleftarrow \text{ in terms of nucleon d.o.f.}$
- > static properties: nuclear structure E < 0

CN

•7

ER

> dynamics: nuclear reactions E > 0

✓ Nuclear Reactions as a tool to investigate nuclear structure

a synthesis of SHE

Two aspects of nuclear reactions

 \checkmark a tool for nuclear structure \leftarrow this is often emphasized....

✓ g.s. properties (mass, size, shape....)
✓ excitations

quantum many-body dynamics (nuclear reactions)

elastic scattering

inelastic scattering

fusion

Subbarrier enhancement of fusion cross sections

A typical example of the interplay between structure and reaction

K.H., N. Takigawa, PTP128 (2012) 1061

Coupled-channels method: a quantal reaction theory with excitations

a many-particle treatment

still very challenging for low energy scattering cf. a quantum many-body tunneling

a two-body problem + internal excitations (C.C. approach)

a reduction to the entrance channel \rightarrow Optical Potential approach

a recent review of C.C. approach (Hagino, Ogata, and Moro) Prog. Part. Nucl. Phys. 125 (2022) 103951

Progress in Particle and Nuclear Physics 125 (2022) 103951

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Coupled-channels calculations for nuclear reactions: From exotic nuclei to superheavy elements

K. Hagino^{a,*}, K. Ogata^{b,c,d}, A.M. Moro^{e,f}

^a Department of Physics, Kyoto University, Kyoto 606-8502, Japan

^b Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan

^c Department of Physics, Osaka City University, Osaka 558-8585, Japan

^d Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan

^e Departmento de FAMN, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain

^f Instituto Interuniversitario Carlos I de Física Teórica y Computacional (iC1), Apdo. 1065, E-41080 Sevilla, Spain

Nuclear Reactions

nucleus: a composite system
✓ a rich reaction processes
✓ a rich interplay between nuclear structure and reaction ✓ elastic scattering
 ✓ inelastic scattering
 ✓ transfer reactions
 ✓ fusion reactions

<u>Another aspect of nuclear reactions</u> : a variety of quantum mechanical natures

a figure from "Quantum Theory" by Jim Al-Khalili

Manifestation of Quantum Nature in Nuclear Reactions

a superposition principle $\psi = \alpha \psi_1 + \beta \psi_2$

$$\rightarrow |\psi|^2 = |\alpha\psi_1|^2 + |\beta\psi_2|^2 + (\alpha\psi_1)^*(\beta\psi_2) + (\alpha\psi_1)(\beta\psi_2)^*$$
interference

when two processes are in principle indistinguishable \rightarrow take square after adding two amplitudes

Manifestation of Quantum Nature in Nuclear Reactions

Mott Scattering: scattering of identical particles

expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

Coulomb-Nuclear interference

a special case: Fresnel oscillations $(S_l = 0 \ (l < l_g); S_l = e^{2i\sigma l} \ (l > l_g))$

➤ near side - far side interference

R.C. Fuller, PRC12('75)1561 N. Rowley and C. Marty, NPA266('76)494 M.S. Hussein and K.W. McVoy, Prog. in Part. and Nucl. Phys. 12 ('84)103

F. Carstoiu et al., PRC70 ('04) 054610

barrier wave – internal wave interference cf. D.M. Brink and N. Takigawa, NPA279 ('77) 159

David M Brich

¹⁶O+¹⁶O system

expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

Comparison between ¹⁶O+¹⁶O and ¹⁸O+¹⁸O

¹⁸O+¹⁸O : much less pronounced interference pattern

 $^{18}O = ^{16}O$ (double closed shell) + 2n

 \rightarrow stronger coupling to environment

manifestation of environmental decoherence?

Optical potential model calculation

an opt. pot. model calculation with a deep WS² potential.

However, the same opt. pot. does not fit ${}^{18}O+{}^{18}O$ \downarrow need to increase *W* (with a surface imaginary pot.)

Spectra up to $E^* = 13 \text{ MeV}$

cf. the number of oepn channels, F. Haas and Y. Abe, PRL46('81)1667

C. Von Charzewski, V. Hnizdo, and C. Toepffer, NPA307('78)309

 $W(E,R) = -W_0 f(R)$ $\times \int_0^{E-V(R)} \frac{dN(E^*,R)}{dE^*} e^{-E^*/\Delta E} dE^*$

 $N(E^*,R)$: the density of accessible 1p1h states (TCSM)

-5

-10

-150

2

W (MeV)

F. Haas and Y. Abe, PRL46('81)1667 The number of *open channels*

Origins of oscillations

strong oscillations even in unsymmetrized cross sections \downarrow

 ✓ symmetrization: minor
 ✓ the main origin: near-side-far-side interference

R.C. Fuller, PRC12, 1561 (1975)

the far-side component is largely damped in ¹⁸O+¹⁸O due to absorption \rightarrow almost no interference oscillations cf. a single slit

interaction \rightarrow decoherence

K. Hagino and T. Yoda, PLB848, 138326 (2024).

"condensing" scattering waves with a lens

K. Hashimoto et al., PRD101, 066018 (2020)

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \, e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

 $I(X,Y) = |\Phi(X,Y)|^2$

Application to a double slit problem

K. Hashimoto, Y. Matsuo, and T. Yoda, PTEP2023, 043B04 (2023)

the amplitude at P

 $f(\theta) = f_1 + f_2$ $f_i = A \sin\left(\frac{2\pi}{\lambda}l_i - \omega t\right)$ $l_i \sim L\left(1 \pm \frac{l}{2L}\sin\theta\right)$

peaks at $\pm \frac{l}{2} \sin \theta_0$

applications in particle physics

K. Hashimoto, Y. Matsuo, and T. Yoda, PTEP2023, 043B04 (2023)
K. Hashimoto, S. Kinoshita, and K. Murata, PRL123, 031602 (2019) PRD101, 066018 (2020)

K. Hagino and T. Yoda, PLB848, 138326 (2024).

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \times e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

$$I(X,Y) = |\Phi(X,Y)|^2$$

for a flat distribution, $f(\theta, \phi) = \text{const.}$,

1.2
1
$$\int_{\varphi_0 - \Delta \varphi}^{\varphi_0 + \Delta \varphi} d\varphi e^{ik(\varphi - \varphi_0)Y} = 2\Delta \varphi \frac{\sin(kY\Delta \varphi)}{kY\Delta \varphi}$$

0.8
0.6
0.4
0.2
0

Fourier transform of scattering amplitude

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \, e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

for the Rutherford scattering, $f(\theta,\phi) = f_C(\theta,\phi)$, $I(X,Y) = |\Phi(X,Y)|^2$

¹⁶O+¹⁶O at
$$E_{cm} = 8.8$$
 MeV
 $\theta_0 = 90$ deg.
 $\Delta \theta = \Delta \phi = 30$ deg.
 \downarrow
 $b_{cl} = 5.24$ fm ~ X_{peak}

$$\Phi(X,Y) \propto \int_{\theta_0 - \Delta\theta}^{\theta_0 + \Delta\theta} d\theta \int_{\varphi_0 - \Delta\varphi}^{\varphi_0 + \Delta\varphi} d\varphi \, e^{ik((\theta - \theta_0)X + (\varphi - \varphi_0)Y)} f(\theta,\varphi)$$

(note) for θ_0 =90 deg.,

 $\Phi_{\theta}(X,Y) = \Phi_{\pi-\theta}(-X,Y)$

 $I(X,Y) = |\Phi(X,Y)|^2$

 $\theta_0 = 90 \text{ deg.}, \Delta \theta = \Delta \phi = 30 \text{ deg.}$

K. Hagino and T. Yoda, PLB848, 138326 (2024).

x (fm)

Summary

Nuclear Reactions as quantum many-body phenomena

- ✓ strong interplay with nuclear structure
- ✓ several nuclear intrinsic motions
- ✓ Coupled-channels approach

 \checkmark a variety of interference phenomena

- scattering of identical nuclei
- farside-nearside interference
- barrier-wave-internal-wave interference

✓ Imaging: a new approach

- a Fourier transform of scatt. amplitudes
- an intuitive way to understand physics of interferences

x (fm)