Imaging quantum decoherence in nuclear reactions

Kouichi Hagino
Kyoto University, Kyoto, Japan

Collaborator: Takuya Yoda (particle theory, Kyoto University)

1. Introduction: interferences in nuclear reactions
2. A new attempt: visualization of nuclear reactions
3. Summary
K. Hagino and T. Yoda, PLB848, 138326 (2024).

Low energy nuclear reactions

\square Nuclei as quantum many-body systems
\longleftarrow in terms of nucleon d.o.f.
$>$ static properties: nuclear structure $E<0$
$>$ dynamics: nuclear reactions $\quad E>0$
\checkmark Nuclear Reactions as a tool to investigate nuclear structure

knock-out reactions

K. Sekiguchi et al., PRC89('14)064007

a synthesis of SHE

Two aspects of nuclear reactions

\checkmark a tool for nuclear structure
\leftarrow this is often emphasized....
\checkmark reaction dynamics

this talk

\checkmark g.s. properties (mass, size, shape....)
\checkmark excitations

quantum many-body dynamics (nuclear reactions)

elastic scattering
inelastic scattering
fusion

physics of nuclear reactions:
a unified description of these processes

Subbarrier enhancement of fusion cross sections

A typical example of the interplay between structure and reaction

K.H., N. Takigawa, PTP128 (2012) 1061

Coupled-channels method: a quantal reaction theory with excitations a many-particle treatment

still very challenging for low energy scattering cf. a quantum many-body tunneling
a two-body problem + internal excitations (C.C. approach)

a reduction to the entrance channel \rightarrow Optical Potential approach

a recent review of C.C. approach (Hagino, Ogata, and Moro)

Prog. Part. Nucl. Phys. 125 (2022) 103951

Progress in Particle and Nuclear Physics 125 (2022) 103951

Review

Coupled-channels calculations for nuclear reactions: From exotic nuclei to superheavy elements

K. Hagino ${ }^{\text {a,* }}$, K. Ogata ${ }^{\text {b,c,d }}$, A.M. Moro ${ }^{\text {e,f }}$
a Department of Physics, Kyoto University, Kyoto 606-8502, Japan
${ }^{\text {b }}$ Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
${ }^{\text {c }}$ Department of Physics, Osaka City University, Osaka 558-8585, Japan
${ }^{\mathrm{d}}$ Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan
${ }^{e}$ Departmento de FAMN, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain
${ }^{\mathrm{f}}$ Instituto Interuniversitario Carlos I de Física Teórica y Computacional (iC1), Apdo. 1065, E-41080 Sevilla, Spain

Nuclear Reactions

nucleus: a composite system
\checkmark a rich reaction processes
\checkmark a rich interplay between nuclear structure and reaction
\checkmark elastic scattering \checkmark inelastic scattering
\checkmark transfer reactions
\checkmark fusion reactions

Another aspect of nuclear reactions

: a variety of quantum mechanical natures

a figure from "Quantum Theory" by Jim Al-Khalili

Manifestation of Quantum Nature in Nuclear Reactions

a superposition principle $\quad \psi=\alpha \psi_{1}+\beta \psi_{2}$

$$
\rightarrow|\psi|^{2}=\left|\alpha \psi_{1}\right|^{2}+\left|\beta \psi_{2}\right|^{2}+\underbrace{\left(\alpha \psi_{1}\right)^{*}\left(\beta \psi_{2}\right)+\left(\alpha \psi_{1}\right)\left(\beta \psi_{2}\right)^{*}}_{\text {interference }}
$$

when two processes are in principle indistinguishable
\rightarrow take square after adding two amplitudes

Wikipedia

Manifestation of Quantum Nature in Nuclear Reactions

Mott Scattering: scattering of identical particles

expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

$>$ Coulomb-Nuclear interference

$$
f(\theta)=f_{C}(\theta)+f_{N}(\theta) \rightarrow \frac{d \sigma}{d \Omega}=|f(\theta)|^{2}
$$

J.B. Ball et al., NPA252 ('75) 208
a special case: Fresnel oscillations $\left(S_{l}=0\left(l<l_{g}\right) ; S_{l}=e^{2 i \sigma l}\left(l>l_{g}\right)\right)$
> near side - far side interference

R.C. Fuller, PRC12(‘75)1561
N. Rowley and C. Marty,
NPA266(‘76)494
M.S. Hussein and K.W. McVoy, Prog. in Part. and Nucl. Phys. 12 (‘84)103

F. Carstoiu et al., PRC70 (‘04) 054610

$>$ barrier wave - internal wave interference cf. D.M. Brink and N. Takigawa, NPA279 (‘77) 159

F. Michel et al., PRL85 ('00) 1823
anomalous large angle scattering

${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ system

expt: D.A. Bromley et al., Phys. Rev. 123 ('61)878

Comparison between ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}+{ }^{18} \mathrm{O}$

${ }^{16} \mathrm{O},{ }^{18} \mathrm{O}: \mathrm{I}^{\pi}$ (g.s.) $=0^{+}$
(both are bosons)

$$
V_{\mathrm{b}} \sim 10.3 \mathrm{MeV}
$$

$$
\longrightarrow E_{\mathrm{cm}} \sim 2.5 V_{\mathrm{b}}
$$

${ }^{18} \mathrm{O}+{ }^{18} \mathrm{O}$: much less pronounced interference pattern
${ }^{18} \mathrm{O}={ }^{16} \mathrm{O}($ double closed shell $)+2 \mathrm{n}$
\longrightarrow stronger coupling to environment

Optical potential model calculation

an opt. pot. model calculation with a deep WS^{2} potential.

However, the same opt. pot. does not fit ${ }^{18} \mathrm{O}+{ }^{18} \mathrm{O}$
\downarrow
(with a surface imaginary pot.)

Spectra up to $\mathrm{E}^{*}=13 \mathrm{MeV}$

${ }^{16} \mathrm{O}$
20 levels

18 O
56 levels
cf. the number of oepn channels, F. Haas and Y. Abe, PRL46(‘81)1667
C. Von Charzewski, V. Hnizdo, and
C. Toepffer, NPA307(‘78)309

$$
\begin{aligned}
W(E, R)= & -W_{0} f(R) \\
& \times \int_{0}^{E-V(R)} \frac{d N\left(E^{*}, R\right)}{d E^{*}} e^{-E^{*} / \Delta E} d E^{*}
\end{aligned}
$$

$N\left(E^{*}, R\right)$: the density of accessible 1p1h states (TCSM)

F. Haas and Y. Abe, PRL46('81)1667

The number of open channels

Origins of oscillations

strong oscillations even in unsymmetrized cross sections
\checkmark symmetrization: minor
\checkmark the main origin: near-side-far-side interference

the far-side component is largely damped in ${ }^{18} \mathrm{O}+{ }^{18} \mathrm{O}$ due to absorption \rightarrow almost no interference oscillations
cf. a single slit

Imaging of nuclear reactions

K. Hagino and T. Yoda, PLB848, 138326 (2024).

"condensing" scattering waves with a lens

K. Hashimoto et al., PRD101, 066018 (2020)

Fourier transform of scattering amplitude

$$
\Phi(X, Y) \propto \int_{\theta_{0}-\Delta \theta}^{\theta_{0}+\Delta \theta} d \theta \int_{\varphi_{0}-\Delta \varphi}^{\varphi_{0}+\Delta \varphi} d \varphi e^{i k\left(\left(\theta-\theta_{0}\right) X+\left(\varphi-\varphi_{0}\right) Y\right)} f(\theta, \varphi)
$$

$$
I(X, Y)=|\Phi(X, Y)|^{2}
$$

Application to a double slit problem

K. Hashimoto, Y. Matsuo, and
T. Yoda, PTEP2023, 043B04 (2023)
the amplitude at P

$$
\begin{aligned}
& \begin{array}{l}
f(\theta)=f_{1}+f_{2} \\
f_{i}
\end{array}=A \sin \left(\frac{2 \pi}{\lambda} l_{i}-\omega t\right) \\
& l_{i} \sim L\left(1 \pm \frac{l}{2 L} \sin \theta\right)
\end{aligned} \text { imaging } 8
$$

applications in particle physics

a double slit problem

scattering of string

imaging black holes through AdS/CFT
K. Hashimoto, Y. Matsuo, and T. Yoda, PTEP2023, 043B04 (2023)
K. Hashimoto, S. Kinoshita, and K. Murata, PRL123, 031602 (2019)

PRD101, 066018 (2020)

Imaging of nuclear reactions

K. Hagino and T. Yoda, PLB848, 138326 (2024).

Fourier transform of scattering amplitude

$$
\begin{aligned}
\hline \Phi(X, Y) \propto & \int_{\theta_{0}-\Delta \theta}^{\theta_{0}+\Delta \theta} d \theta \int_{\varphi_{0}-\Delta \varphi}^{\varphi_{0}+\Delta \varphi} d \varphi \\
& \times e^{i k\left(\left(\theta-\theta_{0}\right) X+\left(\varphi-\varphi_{0}\right) Y\right)} f(\theta, \varphi) \\
& I(X, Y)=|\Phi(X, Y)|^{2}
\end{aligned}
$$

for a flat distribution, $f(\theta, \phi)=$ const.,

Imaging of nuclear reactions

Fourier transform of scattering amplitude

$$
\Phi(X, Y) \propto \int_{\theta_{0}-\Delta \theta}^{\theta_{0}+\Delta \theta} d \theta \int_{\varphi_{0}-\Delta \varphi}^{\varphi_{0}+\Delta \varphi} d \varphi e^{i k\left(\left(\theta-\theta_{0}\right) X+\left(\varphi-\varphi_{0}\right) Y\right)} f(\theta, \varphi)
$$

$$
I(X, Y)=|\Phi(X, Y)|^{2}
$$

for the Rutherford scattering, $f(\theta, \phi)=f_{C}(\theta, \phi)$,

Imaging of nuclear reactions

$$
\Phi(X, Y) \propto \int_{\theta_{0}-\Delta \theta}^{\theta_{0}+\Delta \theta} d \theta \int_{\varphi_{0}-\Delta \varphi}^{\varphi_{0}+\Delta \varphi} d \varphi e^{i k\left(\left(\theta-\theta_{0}\right) X+\left(\varphi-\varphi_{0}\right) Y\right)} f(\theta, \varphi)
$$

Imaging of Mott scattering

$$
I(X, Y)=|\Phi(X, Y)|^{2}
$$

(note) for $\theta_{0}=90$ deg.,

$\theta_{0}=90$ deg., $\Delta \theta=\Delta \phi=30 \mathrm{deg}$.

Imaging of nuclear reactions

K. Hagino and T. Yoda, PLB848, 138326 (2024).
$\theta_{0}=55 \mathrm{deg} ., \Delta \theta=15 \mathrm{deg}$.

Imaging of nuclear reactions

Summary

Nuclear Reactions as quantum many-body phenomena

\checkmark strong interplay with nuclear structure
\checkmark several nuclear intrinsic motions
\checkmark Coupled-channels approach
\checkmark a variety of interference phenomena

- scattering of identical nuclei
- farside-nearside interference
- barrier-wave-internal-wave interference
\checkmark Imaging: a new approach
- a Fourier transform of scatt. amplitudes
- an intuitive way to understand physics of interferences

