Quantum many-body dynamics in heavy-ion fusion reactions around the Coulomb barrier

Kouichi Hagino (萩野浩一) Kyoto University (京都大学), Kyoto, Japan

- 1. Nuclear Reactions: overview
- 2. Fusion of light nuclei and Feshbach resonances
- 3. Fusion of medium-heavy nuclei and quantum tunneling
- 4. Fusion for superheavy nuclei and open quantum systems
- 5. Microscopic modelling of low-energy nuclear reactions
- 6. Fission
- 7. Summary

Introduction: low-energy nuclear physics

behaviors of atomic nuclei as a quantum many-body systems

 — understanding based on strong interaction

- static properties: nuclear structure
 - ✓ ground state properties (mass, size, shape,....)
 - \checkmark excitations
 - ✓ nuclear matter
 - ✓ decays
- > dynamics: nuclear reactions

nucleus: a composite system ✓ various sort of reactions

- elastic scattering
- inelastic scattering
- transfer rection
- breakup reactions
- fusion reactions

Introduction: low-energy nuclear physics

behaviors of atomic nuclei as a quantum many-body systems

 — understanding based on strong interaction

- static properties: nuclear structure
 - ✓ ground state properties
 (mass, size shape,...)
 ✓ excitations
 ✓ nuclear matter
 ✓ decays
- > dynamics: nuclear reactions

nucleus: a composite system
✓ various sort of reactions
✓ an interplay between nuclear structure and reaction

- elastic scattering
- inelastic scattering
- transfer rection
- breakup reactions
- fusion reactions

simultaneously

many-body problem

still very challenging

two-body problem, but with excitations (the coupled-channels approach)

scattering theory with excitations

$$0^+ \frac{\psi_0(r)}{0^+}$$

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + V_0(r) - E\right]\psi_0(r) = 0$$

$$0^{+} \underbrace{\psi_{0}(r)}_{\text{coupling}} 0^{+} \underbrace{\psi_{0}(r)}_{2^{+}} 0^{+} \underbrace{\psi_{2}(r)}_{0^{+}} 0^{+} \underbrace{\varepsilon_{2}}_{-} \underbrace{2^{+}}_{0^{+}} 0^{+} \underbrace{\psi_{0}(r)}_{0^{+}} 0^{+} \underbrace{\psi_{0}(r)} 0^{+} \underbrace{$$

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + V_0(r) - E\right]\psi_0(r) = -F_{0\to 2}(r)\psi_2(r)$$

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_0(r) - E \end{bmatrix} \psi_0(r) = -F_{0\to 2}(r)\psi_2(r)$$
$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_2(r) - (E - \epsilon_2) \end{bmatrix} \psi_2(r) = -F_{2\to 0}(r)\psi_0(r)$$

- Fusion \rightarrow an absorbing potential (an optical potential)
- excitations to unbound states \rightarrow breakup reactions (neutron-rich nuclei)

a recent review: K. Hagino, K. Ogata, and A.M. Moro, PPNP in press. arXiv: 2201.09512

Fusion Reactions

Fusion reactions \rightarrow a many-body quantum tunneling

K. Hagino and N. Takigawa, Prog. Theo. Phys.128 ('12)1061

Fusion Reactions

cf. Bohr '36

NASA, Skylab space station December 19. 1973, solar flare reaching 569 000 km off solar surfa

energy production in stars (Bethe '39)

nucleosynthesis

Y Gamma Ray

He

Proton Neutron

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

microscopic understanding: an ultimate goal of nuclear physics

cf. Bohr '36

- ✓ Many-particle tunneling
 - rich intrinsic motions
 - several nuclear shapes
 - several surface vibrations

several modes and adiabaticities

H.I. fusion reaction = an ideal playground to study quantum tunneling with many degrees of freedom

Nuclear Chart: RIKEN Nishina Center

Nuclear Chart: RIKEN Nishina Center

Fusion of light nuclei: nuclear astrophysics

¹²C+¹²C fusion : a key reaction in nuclear astrophysics

Carbon burning in massive stars

$${}^{12}C+{}^{12}C \rightarrow \alpha + {}^{20}Ne$$
$${}^{12}C+{}^{12}C \rightarrow p + {}^{23}Na$$

also

✓ Type Ia supernovae✓ X-ray superburst

figure: M. Aliotta

Fusion of light nuclei: nuclear astrophysics

¹²C+¹²C fusion : a key reaction in nuclear astrophysics

Carbon burning in massive stars

 ${}^{12}C+{}^{12}C \rightarrow \alpha + {}^{20}Ne$ ${}^{12}C+{}^{12}C \rightarrow p + {}^{23}Na$

also ✓ Type Ia supernovae ✓ X-ray superburst

A. Tumino et al., Nature557 ('18) 687

~ 25 times larger than before
 → lots of debates

¹²C+¹²C fusion reaction

N.T. Zhang,..., K.H., S. Kubono, ..., C.J. Lin,... XiaoDong Tang (IMP) et al., Phys. Lett. B801 (2020) 135170

K.H., unpublished (2015)

A recent AMD calculation

Y. Taniguchi and M. Kimura, PLB823 ('21) 136790

Nuclear Chart: RIKEN Nishina Center

Fusion reactions of medium-heavy nuclei

potential model: inert nuclei (no structure)

$$\sigma_{\rm fus} = \frac{\pi}{k^2} \sum_{l} (2l+1)(1-|S_l|^2)$$

Fusion reactions of medium-heavy nuclei

potential model: inert nuclei (no structure)

$$\sigma_{\rm fus} = \frac{\pi}{k^2} \sum_{l} (2l+1)(1-|S_l|^2)$$

¹⁵⁴Sm : a typical deformed nucleus

strong correlation
with nuclear spectrum
→ coupling assisted
tunneling phenomena

Semi-microscopic modelling of subbarrier fusion reactions

K.H. and J.M. Yao, PRC91('15) 064606

Beyond-mean-field method anharmonicity of phonon spectra

 \rightarrow C.C. calculations with a phenomenological potential

From phenomenological approach to microscopic approach

Macroscopic (phenomenological)

Microscopic

TDHF = Time Dependent Hartree-Fock

S. Ebata, T. Nakatsukasa, JPC Conf. Proc. 6 ('15)

ab initio, but no tunneling

Nuclear Chart: RIKEN Nishina Center

Superheavy elements

the island of stability (安定的島)

November, 2016

Fusion of heavy nuclei and superheavy elements

nihonium

strong Coulomb repulsion \rightarrow re-separation

Nuclear shape evolution

nucleus = many-body system of nucleons

nuclear intrinsic d.o.f. : internal environment →physics of open quantum systems

cf. Classical Langevin equation

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

Y. Aritomo, K. Hagino, K. Nishio, and S. Chiba, PRC85 (2012) 044614

Nuclear shape evolution

successful as a phenomenological approach

V.I. Zagrebaev and W. Greiner (2015)

a more microscopic approach?quantum effects?

nucleus = many-body system of nucleons

nuclear intrinsic d.o.f. : internal environment →physics of open quantum

→physics of open quantum systems

cf. Classical Langevin equation

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

Fusion from a viewpoint of open quantum systems

classical mechanics

N F W

heat generation when a rigid body stops

quantum mechanics

Caldeira-Leggett model

$$H_S = \frac{p^2}{2m} + V(q)$$

$$H_{\text{int}} = \sum_i \frac{p_i^2}{2m_i} + \frac{1}{2}m_i\omega_i^2 x_i^2$$

a collection of H.O.

Fusion from a viewpoint of open quantum systems

cf. a vib. coupling in subbarrier fusion

2.90 MeV
$$---- 0^+, 2^+, 4^+$$

⁵⁸Nj

 0^{+}

quantum mechanics

Caldeira-Leggett model

$$H_S = \frac{p^2}{2m} + V(q)$$

$$H_{\text{int}} = \sum_i \frac{p_i^2}{2m_i} + \frac{1}{2}m_i\omega_i^2 x_i^2$$

a collection of H.O.

 \rightarrow C.C. calculations

Fusion from a viewpoint of open quantum systems

Caldeira-Leggett model

$$H_S = \frac{p^2}{2m} + V(q)$$

$$H_{\text{int}} = \sum_{i=1}^{\infty} (a_i^{\dagger} a_i + 1/2) \hbar \omega_i$$

how to deal with a huge number of phonon modes?

 \rightarrow an efficient truncation scheme

$$b_k^{\dagger} = \sum_{i=1}^{\infty} C_{ki} a_i^{\dagger} \qquad (k = 1, \cdots K)$$

cf. a "two-phonon" state

2.90 MeV
$$= 0^+, 2^+, 4^+$$

1.45 MeV _____ 2+

$$|2ph\rangle = \sum_{I} \langle 2020|I0\rangle |\phi_{I}\rangle$$

58Ni

$$e^{-i\omega t} \sim \sum_{k=0}^{K} \eta_k(\omega) J_k(t)$$

$$\rightarrow b_k^{\dagger} = \sum_i \left[\frac{d_i}{\hbar} \eta_k(\omega_i) \right] a_i^{\dagger}$$

M. Tokieda and K. Hagino, Ann. of Phys. 412 (2020) 168005 Front. in Phys. 8 (2020) 8.

Towards a microscopic nuclear reaction theory

still very challenging

Time-dependent mean-field theory (TDHF/TDDFT)

S. Ebata, T. Nakatsukasa,
JPC Conf. Proc. 6 ('15) 020056
(semi) classical → no tunneling

a microscopic understanding of many-body tunneling?

a single Slater determinat for a many-body wave function

 $\alpha + \alpha$ in 1D

a linear superposition of many Slater determinants

time-dependent variational principle

$$\delta \int dt \frac{\langle \Psi(t) | i\hbar \partial_t - H | \Psi(t) \rangle}{\langle \Psi(t) | \Psi(t) \rangle} = 0$$

Nuclear Fission 240Pu а t=0t=15.9 zs C_n 0.5 0.4 -0.3 t=19.8 zs 0.2 -0.1 0.0 t=20.4 zs

important role in:

- energy production
- superheavy elements
- r-process nucleosynthesis
- production of neutron-rich nuclei

G. Scamps and C. Simenel, Nature 564 (2018) 382 very complicated dynamics: a microscopic understanding → far from complete CI approach: a novel way to understand fission

K.H. and G.F. Bertsch

c.f. Generator Coordinate Method (GCM) $|\Psi\rangle = \int dQ f(Q) |\Phi_Q\rangle$

 \rightarrow CI approach

$$|\Psi\rangle = \int dQ \sum_{i} f_i(Q) |\Phi_Q(i)\rangle$$

hopping due to the residual interaction

 \rightarrow shape evolution

nuclear fission

the transition state theory

$$\Gamma_f = \frac{1}{2\pi\rho_{\rm gs}(E^*)} \sum_c T_c$$

✓ decay dynamics: the saddle only✓ the insenstitivity property

Can one derive the properties of the transition state theorybased on a *microscopic* many-body Hamiltonian?

 v_k (k = 2,3, 4): random interactions

G.F. Bertsch and K. Hagino, J. Phys. Soc. Jpn. 90, 11405 (2021)

$$T(E) = T_a(E) + T_b(E) = 1 - |R(E)|^2$$

$$T_a(E) = 1 - |R(E)|^2 - |A(E)|^2 + |B(E)|^2$$

$$T_b(E) = |A(E)|^2 - |B(E)|^2$$

branching ratio:

$$Br = \frac{\int dE \, T_b(E)}{\int dE \, T_a(E)}$$

branching ratios

the average and the variance with 20 ensembles

the first realization of TST with a many-body Hamiltonian

G.F. Bertsch and K.H., J. Phys. Soc. Jpn. 90, 11405 (2021)

