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Introduction: particle emission decays of unstable nuclei

Fig.: H. Koura (JAEA)
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G. Scamps and C. Simenel,
Nature 564 (2018) 382

Nuclear Fission
Ø discovered about 80 years ago 

(in 1938) by Hahn and Strassmann
Ø a primary decay mode of heavy nuclei

Ø important role in: 
• energy production
• superheavy elements
• r-process nucleosynthesis
• production of neutron-rich nuclei
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a macroscopic understanding of fission 
competition between the surface and the Coulomb energies 

→ fission barrier
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Ø various fission processes

spontaneous 
fission

induced 
fission

neutron

b

fission

beta-delayed fission

A.N. Andreyev et al., PRL105(‘10)252502

180Hg

tunneling



Ø macroscopic understanding: 

Ø a microscopic understanding:
large change of nuclear shape
→ microscopic description : far from complete

an ultimate goal of nuclear physics

“Future of fission theory”
M. Bender et al., J. of Phys. G47, 
113002 (2020)

competition between the surface and the Coulomb energies 
→ fission barrier



constrained Hartree-Fock (+B) method:

 

A. Staszczak, A. Baran, J. Dobaczewski,
and W. Nazarewicz, PRC80 (‘09) 014309

Ø spontaneous fission Ø induced fission

almost nothing has 
been developed for 
a microscopic theory

the topic of this talk



Ø r-process nucleosynthesis

Why do we need a microscopic approach?

→ low E* and low r(E*)

(neutron induced) fission of 
neutron-rich nuclei

ü Validity of statistical models?
ü Validity of the Langevin approach?

Ø barrier-top fission

V
(e

)

CN barrier-top

high r(E) high r(E)low r(E)

discrete levels

post
barrier

How to connect to a many-body Hamiltonian?



a process which we would like to dicscuss

neutron

E

compound
nucleus

g decay

capture
(n,g)

neutron
emission

fission

shape evolution

fission barrier



a process which we would like to dicscuss

neutron

E

compound
nucleus

g decay

capture
(n,g)

neutron
emission

fission

shape evolution

235U(n,f)

M.S. Moore et al., 
PRC30 (‘84) 214

sensitive to intermediate 
structure

branching ratio

fission barrier



235U(n,f) branching ratio

Important questions for r-process nucleosynthesis

Ø How will a fission barrier be modified for neutron-rich nuclei?
Ø What is an influence of pairing for (n,f) reactions?
Ø How does the branching ratio evolve towards n-rich nuclei?

(n,f) versus (n,g)
Ø How does fission compete with alpha/cluster decays 

in neutron-rich heavy nuclei?
a microscopic approach may be crucial to address these questions



Shell model approach?

Shell model

Figure: Noritaka Shimizu (Tsukuba)

many-particle many-hole configurations 
in a mean-field potential
   →mixing by residual interactions

A similar approach 
for nuclear fission?

Ø Many-body configurations 
in a MF pot. for each shape

Ø hopping due to res. int.
→ shape evolution

a good connection to 
nuclear reaction theory



Shell model approach?

Ø Many-body configurations 
in a MF pot. for each shape

Ø hopping due to res. int.
→ shape evolution

a good connection to 
nuclear reaction theory

GCM with excited states

V
(e
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cf. the usual GCM:

|Ψ〉 =
∫

dQf(Q)|ΦQ(g.s.)〉



GCM methodology for transmission channels

GCM calculations for 
nuclear structure

1. construct            by 
discretizing Q=(q1,q2,…,qN)

2. compute
Hij = 〈Ψi|H|Ψj〉

Nij = 〈Ψi|Ψj〉

3. solve the Hill-Wheeler 
equation
∑

j

Hijfj = E
∑

j

Nijfj

a many-body wf is then:
|Φ〉 =

∑

i

fi|Ψi〉

GCM calculations for 
transmission 

1. construct              
2. compute Hij and Nij
3. introduce imaginary terms 

−i(Γi)kk′/2

representing the decay width 
of the state i

4. compute the Green’s function

G(E) =

(

H − i
∑

i

Γi/2−NE

)

−1

5. the transmission probability from 
i to j is then computed as

Ti→j = Tr[ΓiGΓjG
†]

{|Ψi〉}
{|Ψi〉}



GCM methodology for transmission channels
GCM calculations for 
transmission 

1. construct 
2. compute Hij and Nij
3. introduce imaginary terms 

−i(Γi)kk′/2

representing the decay width 
of the state i

4. compute the Green’s function

G(E) =

(

H − i
∑

i

Γi/2−NE

)

−1

5. the transmission probability from 
i to j is then computed as

Ti→j = Tr[ΓiGΓjG
†]

← “Non-equilibrium Green’s 
function (NEGF)”

← “Datta formula”

←Fermi’s Golden Rule

Γi ∼
2π

h̄

∑

k

|〈k|v|i〉|2δ(Ek − Ei)

{|Ψi〉}



A test with a simple model
G.F. Bertsch and K. Hagino, PRC105, 034618 (2022)

Ψqi(q) = (πs2)−1/4
e
−(q−qi)

2/4s2

〈Ψqi |Ψqj 〉 = exp
(

−(qi − qj)
2/4s2

)

〈
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Γk = 0 (k != 1, N)
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(a)
Dq

4 configurations with L = 3Dq

(b) 7 configurations with L = 6 (Dq/2)
Dq/2

G. F. BERTSCH AND K. HAGINO PHYSICAL REVIEW C 105, 034618 (2022)

FIG. 1. Relationship between states in the models described in
Secs. IV A, B, and C. The states in the four-state and seven-state
channels are shown as black and black + red circles, respectively.
The real part of the Hamiltonian couples the states in the channel
or channels; the couplings to the reservoirs are parameterized by the
imaginary part of the Hamiltonian.

similar to the four-state approximation. However, it has three
additional peaks at higher energy, corresponding to the high-
energy eigenfunctions of the seven-dimensional (7D) model.
These peaks are much narrower than the lower ones and
can be neglected in calculating integrated transmission rates.
The same behavior would continue with finer mesh spacings;
there would remain four peaks in the energy region [0,2]

FIG. 2. Transmission factor for a chain of length QT = 3 com-
paring GCM calculations for four and seven states in the chain (solid
black and dashed red lines, respectively). Besides the peaks visible in
the figure, there are two extremely narrow peaks at somewhat higher
energy in the seven-state model. The parameters of the Hamiltonian
are (s, E0, γ ) = (1/

√
5, 5/4, 1). See the Supplemental Material [24]

for the computer scripts used to calculate the data presented here and
later in the figures.

FIG. 3. Transmission factor for a chain of length q = 4 compar-
ing GCM calculations for four and seven states in the chain (solid
black and dashed red lines, respectively). The difference from Fig. 2
is that the 7D space was truncated to four dimensions by the singular
value decomposition of the overlap matrix. The Hamiltonians are the
same as in Fig. 2.

and the additional narrow peaks would appear at higher and
higher energies. The qualitative aspects of this behavior can
be easily understood. With a finite mesh spacing of Gaussian
wave packets one can approximate plane wave with a good
fidelity for low momentum, but there is a momentum cutoff
controlled by the mesh spacing. In the transmission channel as
parametrized, the momentum at the injection and exit point is
controlled by the Gaussian width parameter s. The momentum
match to the channel parameters suppresses the transmission
to the high-momentum modes in the channel. We conclude
that fairly sparse meshes are adequate for representing the
overall conductivity of flat transmission channels.

As mentioned earlier, very fine mesh spacings often lead
to numerical instabilities in the spectroscopic applications of
the GCM. The usual fix is to make a singular value decom-
position of the overlap matrix, throwing out eigenfunctions
that have small norms. It is instructive to see what happens
when the same procedure is applied here. Figure 3 compares
the four-state model with the seven-state model truncated to
four states. That is, we diagonalize the norm matrix in the
seven-state model and project the Hamiltonian on the basis of
the four eigenfunctions having the highest eigenvalues of the
norm matrix. One sees that the resonance positions are rather
close and the widths are also very similar. There is no obvious
benefit from starting out with a larger space. Since there is no
need to truncate the space for reasons of numerical stability,
this aspect of the usual methodology can be dropped.

We next examine how T (E ) depends on the strength of the
absorption at the ends of the channel. Figure 4 shows T (E )
for a range of absorption strengths γ . Obviously, for small
γ the channel acts as a resonant cavity with sharply defined
resonances and the overall conductance is low. For the larger
γ ’s the reflection amplitude is small and the individual peak
broaden and merge together.

034618-4

s = 1/
√

5, ∆q = 1,

EK = 5/4

γ = 1

A low E behavior is similar.
→ one can take a large mesh.

I ≡

∫
∞

−∞

dE T (E)

= 1.69 EK for (a)
1.65 EK for (b)

* qualitatively similar even with a barrier

G.F. Bertsch and K.H., PRC105, 034618 (2022)

(a)(b)

L



4 configurations with L = 3Dq

(b) 7 configurations with L = 6(Dq/2)
Dq/2

G.F. Bertsch and K.H., PRC105, 034618 (2022)

G. F. BERTSCH AND K. HAGINO PHYSICAL REVIEW C 105, 034618 (2022)

FIG. 1. Relationship between states in the models described in
Secs. IV A, B, and C. The states in the four-state and seven-state
channels are shown as black and black + red circles, respectively.
The real part of the Hamiltonian couples the states in the channel
or channels; the couplings to the reservoirs are parameterized by the
imaginary part of the Hamiltonian.

similar to the four-state approximation. However, it has three
additional peaks at higher energy, corresponding to the high-
energy eigenfunctions of the seven-dimensional (7D) model.
These peaks are much narrower than the lower ones and
can be neglected in calculating integrated transmission rates.
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and the additional narrow peaks would appear at higher and
higher energies. The qualitative aspects of this behavior can
be easily understood. With a finite mesh spacing of Gaussian
wave packets one can approximate plane wave with a good
fidelity for low momentum, but there is a momentum cutoff
controlled by the mesh spacing. In the transmission channel as
parametrized, the momentum at the injection and exit point is
controlled by the Gaussian width parameter s. The momentum
match to the channel parameters suppresses the transmission
to the high-momentum modes in the channel. We conclude
that fairly sparse meshes are adequate for representing the
overall conductivity of flat transmission channels.

As mentioned earlier, very fine mesh spacings often lead
to numerical instabilities in the spectroscopic applications of
the GCM. The usual fix is to make a singular value decom-
position of the overlap matrix, throwing out eigenfunctions
that have small norms. It is instructive to see what happens
when the same procedure is applied here. Figure 3 compares
the four-state model with the seven-state model truncated to
four states. That is, we diagonalize the norm matrix in the
seven-state model and project the Hamiltonian on the basis of
the four eigenfunctions having the highest eigenvalues of the
norm matrix. One sees that the resonance positions are rather
close and the widths are also very similar. There is no obvious
benefit from starting out with a larger space. Since there is no
need to truncate the space for reasons of numerical stability,
this aspect of the usual methodology can be dropped.

We next examine how T (E ) depends on the strength of the
absorption at the ends of the channel. Figure 4 shows T (E )
for a range of absorption strengths γ . Obviously, for small
γ the channel acts as a resonant cavity with sharply defined
resonances and the overall conductance is low. For the larger
γ ’s the reflection amplitude is small and the individual peak
broaden and merge together.
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Eigenvalues of Nij
model (a)
1. 1.47
2. 1.17
3. 0.82
4. 0.54

model (b)
1. 2.85
2. 2.07
3. 1.22
4. 0.57
5. 0.22
6. 0.062
7. 0.012

red: model (b), but including only 4 eigenstates of N

(a)(b)

(a)
Dq

L



incident 
channel

g decay fission

fission barrier

Q1 Q2 Q3

Gg Gfis

constrained DFT

H

Gin

Application to low-energy fission of 236U

Q0

CN

QN

pre-fission

G(E) =

(

H − i
∑

i

Γi/2−NE

)

−1

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).
K. Uzawa, K.H., and G.F. Bertsch, arXiv:2403.04255.

Assumption: fission occurs along Q20 as a collective coordinate
→ discretized



ü 236U：only neutron configurations, up to 4 MeV 
ü Dynamics of the first barrier: axial symmetry
ü seniority-zero config. only: occupation of (K, -K)
ü the end configurations: replaced by GOE 
ü a scaled fission barrier with Bf = 4 MeV

Simplifications:

Application to low-energy fission of 236U
G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).

ü Constrained Skyrme Hartree-Fock with the UNEDF1 parameter set 
ü Hartree-Fock basis (the pairing interaction: external)
ü Axial and Time-reversal symmetries
ü HF Solver: SkyAx ← 2D coordinate space

P.-G. Reinhard et al., CPC258, 107603 (2021).



GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfis

dim.
=100 42 97 153 125 65 32

ü 236U：only neutron configurations, up to 4 MeV 
ü Dynamics of the first barrier: axial symmetry
ü seniority-zero config. only: occupation of (K, -K)
ü discretization: 

100

many-body config. based on UNEDF1 
(HF basis, E* < 4 MeV)

714x714 Hamiltonian matrix 

Simplifications:

Application to low-energy fission of 236U
G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).



GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfis

ü overlap: 

ü pairing: 

many-body config. based on UNEDF1 

Q

Q’

Application to low-energy fission of 236U
G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).



Q

the second 0+ state of 236U



GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfis

dim.
=100 42 97 153 125 65 32 100

many-body config. based on UNEDF1 
(HF basis, E* < 4 MeV)



GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfis

ü overlap: 

ü pairing: 

ü diabatic:

ü Gcap: exp. data (scaled according to NGOE), Gfis: insensitivity

many-body config. based on UNEDF1 

Q

Q’

Application to low-energy fission of 236U
G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023).



Gin = 0.01 MeV
Gcap = 0.00125 MeV
Gfis = 0.015 MeV

DE = 0.5 MeV

energy average



a
-1

= 
T f

is
/ T

ca
p

insensitivity property

α
−1
exp ∼ 3.0

GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfismany-body config. based on UNEDF1 

insensitive to Gf
(post-barrier dynamics) 
→the main assumption 

of the transition state
theory (TST)



the transition state theory

N. Bohr and J.A. Wheeler, 
Phys. Rev. 56, 426 (1939)

ü decay dynamics: entirely determined at the saddle
ü does not depend on what will happen after the barrier



a
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= 
T f

is
/ T
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insensitivity property

α
−1
exp ∼ 3.0

GOE 18b 22b 26b 29b 33b 37b GOE

Gcap Gfismany-body config. based on UNEDF1 

insensitive to Gf
(post-barrier dynamics) 
→the main assumption 

of TST

The main assumption of 
TST is realized for the 
first time! 



H1
(GOE) H2

G1

Gin

v12 v23

H3
(GOE)

G3

Tin,3(E) = Tr
(

ΓinG(E)Γ3G
†(E)

)

An analytic derivation with a Random matrix model 
K.H. and G.F. Bertsch, arXiv: 2310.09537 (2023)

H =





H1 V12 0

V
T

12
H2 V

T

32

0 V32 H3





Tin,3 = Tr
(

ΓinG(E)Γ3G
†(E)

)

T3 ≡ 2πρ3γ3 " 1 → 〈(V T
32
G3Γ̃3G

†
3
V32)ij〉 = 2πv2

32
ρ3δij

ρk =

N
1/2
k

πvk
G3 = (H3 − iΓ3/2− E)

−1

(Hk)ij =
√

1 + δi,j vkrij

→ 〈Tin,3〉 =
Tin
T1

∑

i

ΓLΓR

E2

i + (ΓL + ΓR)2/4

(H2)ij = Eiδi,j

ΓR = 2πv
2

32
ρ3, ΓL = 2πv

2

12
ρ1

no dependence on g3!



base set
Gpair = 0.2 MeV
h2 = 0.15 MeV
→ a-1 = 0.95

Gpair → Gpair/2
Gpair = 0.1 MeV
h2 = 0.15 MeV
→ a-1 = 0.37

h2 → 2h2
Gpair = 0.2 MeV
h2 = 0.3 MeV
→ a-1 = 1.10

h2 → 0
Gpair = 0.2 MeV
h2 = 0.0 MeV
→ a-1 = 0.13

sensitivity test

cf. a-1
exp ~ 3.0

・sensitive to the pairing, though less
than in spontaneous fission

・h2 effect is not negligible, but insensitive to h2 when it is large



A comment on the Dynamical GCM

Q as a collective coordinate

|Φ〉 =

∫
dQf(Q)|ΨQ〉

a (may be) better approach 
for dynamics:

|Φ〉 =

∫
dQdP f(Q,P )|ΨQP 〉

dynamical GCM

N. Hizawa, K.H., and K. Yoshida,
PRC103, 034313 (2021)
PRC105, 064302 (2022)

|ΨQP 〉 = e
iP Q̂|ΨQ〉



A comment on the Dynamical GCM

for a particle number projection:

|Φ〉 =
∑

N ′

fN ′ P̂N |BCS(N ′)〉; 〈BCS(N ′)|N̂ |BCS(N ′)〉 = N ′

N. HIZAWA, K. HAGINO, AND K. YOSHIDA PHYSICAL REVIEW C 103, 034313 (2021)

TABLE II. The ground-state energy of each nucleus calculated
with different methods. The energies are given in units of MeV.
For the DGCM method, the number in the parenthesis denotes the
number of basis states, NGCM, for which DGCM(1) is equivalent to
VBP.

BCS DGCM(1) DGCM(3) DGCM(21)

16O −128.01 −128.01 −128.41 −129.29
18O −144.91 −147.50 −147.82 −148.03
40Ca −341.30 −341.30 −342.63 −342.79
42Ca −363.83 −365.55 −365.87 −365.98
56Ni −482.74 −482.74 −484.76 −485.04
58Ni −504.40 −506.31 −507.37 −507.79
64Ni −557.87 −559.44 −559.66 −559.84

as that with !N = 0.2, with a similar convergence feature to
each other.

Table II summarizes the results for the 16,18O, 40,42Ca, and
56,58,64Ni nuclei.1 One can see that a large energy gain is
obtained for all of these cases, as in 56Ni shown in Fig. 2.
As we have discussed in Sec. II D, this can be interpreted as
a consequence of the fluctuation of a mean particle number
in mean-field wave functions. It is noteworthy that the energy
gain is particularly large for the neutron magic nuclei, 16O,
40Ca, and 56Ni. To clarify the reason for this, we show in Fig. 3
the energy gain (the solid lines) and the contribution of the
pairing energy (the dashed lines) as a function of NDGCM. The
lines with the filled circles denote the results for 56Ni, while
the lines with the filled triangles are for 58Ni. One can clearly

1For 16O, the problem of overcompleteness is found to be severe,
and we chose λcut = 8.0×10−2, which is determined from the eigen-
value distribution of the overlap kernel.

1 6 11 16 21
number of basis states
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Etot(58Ni)

Epair(58Ni)

FIG. 3. Similar to Fig. 2, but for a comparison between the total
energy (the solid lines) and the pairing energy (the dashed lines). The
filled circles and the filled triangles denote the results for the 56Ni and
the 58Ni nuclei, respectively.
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FIG. 4. The pairing gap ! of 56Ni in the BCS approximation for
the basis states for the DGCM calculation.

see that the total energy decreases with the development of
the pairing energy. It is interesting to notice that the pairing
contribution is larger in the neutron magic nucleus 56Ni as
compared to that in 58Ni. This is due to the fact that, for
58Ni, the effect of the pairing correlation is already taken into
account to some extent in the calculation with NDGCM = 1,
while for 56Ni the energy with VBP does not change from that
in the BCS approximation due to the absence of the pairing
gap. To illustrate this, Fig. 4 shows the BCS pairing gap for
the basis states |N〉 for 56Ni used in this study. While the
pairing gap is zero for N = 28, the gap is finite for other basis
states. Therefore, this nucleus can take an advantage of finite
pairing gaps by mixing configurations with 〈N̂〉 %= 28, which
significantly lowers the total energy. In this sense, the DGCM
for the particle number is somewhat similar to the GCM cal-
culations where a pairing fluctuation is treated as a generator
coordinate [41,49–51]. It is also noted that the energy gain due
to DGCM is small for nuclei where the pairing correlation is
well developed, such as 64Ni shown in Table II.

In the mean-field calculations, the VAP method is more
consistent than the VBP method [26,52–57]. However, the
VAP is much more cumbersome and is often numerically
more involved as compared to the VBP. One may resort to
the Lipkin-Nogami method (LN) [58,59] as an approximation
of the VAP, but it has been know that the LN method does
not work well for nuclei closed to shell closures [60–63].
The method proposed in this paper is much simpler than
the VAP, yet a similar amount of the energy gain can be
obtained with a lower computation cost. In particular, it is a
numerical advantage of our method that the total energy is
significantly lowered already with NDGCM = 3. Moreover, our
method works well not only for open shell nuclei but also for
nuclei close to a shell closure. We thus argue that our method
can be a good alternative to the VAP and the Lipkin-Nogami
methods.

IV. SUMMARY AND FUTURE PERSPECTIVES

We have discussed an extension of the generator coordinate
method (GCM) by treating both a collective coordinate and

034313-6
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TABLE I. The strengths of the pairing interaction, Vn, employed in the present calculations. These are given in units of MeV fm−3.

nucleus 16O 18O 40Ca 42Ca 56Ni 58Ni 64Ni

Vn −800.00 −901.98 −700.00 −775.23 −897.80 −897.80 −707.81

Figure 1 shows the probability of the component of N0 in
each BCS wave function |N〉 as a function of N for the 56Ni
nucleus (N0 = 28). This is computed as PN0

N = 〈N |P̂N0 |N〉,
with the particle number projection operator, Eq. (29). One
can see that the probability has a large value in the range
considered in this paper, N0 − 2 ! N ! N0 + 2. The BCS
states with larger values of N have a smaller overlap with the
state with N0, and inclusion of such states in the DGCM may
cause a serious numerical problem.

We then apply the particle number projection, Eq. (29),
to the wave functions |N〉 and superpose them according to
Eq. (30). For this purpose, we discretize the gauge angle φ
with "φ = 2π/80 for the integral with respect to φ. We use
the mixed density prescription to calculate the Hamiltonian
and the overlap kernels [46,47]. Since we use the same single-
particle wave functions for each N , the mixed density and the
mixed pair density are simply given by

ρ
φ
NN ′ (r) =

∑

i

vN
i vN ′

i e2iφ

uN
i uN ′

i + vN
i vN ′

i e2iφ
|ϕi(r)|2, (37)

ρ̃
φ
NN ′ (r) =

∑

i

uN
i vN ′

i e2iφ

uN
i uN ′

i + vN
i vN ′

i e2iφ
|ϕi(r)|2, (38)

respectively. Here, uN
i and vN

i are the uv factors for the single-
particle state i in the BCS wave function with the average
neutron number N . Other local mixed densities are given in
a similar way.

In our calculations, we superpose many similar states. The
problem of overcompleteness may then arise [26] due to the
linear dependence of the bases. To avoid this problem, in nu-
merical calculations shown below, we remove the eigenstates
of the overlap kernel whose eigenvalue is smaller than λcut =
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FIG. 1. The probability to find the N0 = 28 component in the
BCS wave function |N〉 for 56Ni which has the average neutron
number of N .

10−5 (see Fig. 2 below for the dependence of the result on the
choice of λcut). In the actual calculations, with this remedy
for the overcompleteness, we use the subroutine DSYEV of
the LAPACK package [48] to diagonalize the discretized Hill-
Wheeler equation as both the Hamiltonian and the overlap
kernels are real symmetric matrices in the present calculation.

B. Results

Figure 2 shows the total energy gain "E for 56Ni due to
the superposition of various |N〉 states in Eq. (30). Here, the
energy gain is defined as "E = E (NDGCM) − E (NDGCM = 1),
where E (NDGCM) is the total energy of the system when the
number of basis is NDGCM. This quantity is plotted as a func-
tion of the number of basis (|N〉), NDGCM, where NDGCM = 1
corresponds to the usual variation before particle number pro-
jection (VBP). To draw the figure, we increase the number of
basis by adding two basis states symmetrically around N0, that
is, N0, N0 ± "N, N0 ± 2"N . . . . The solid, the dashed, and
the dotted lines denote the results with λcut = 10−4, 10−5, and
10−6 for the cut-off of the eigenvalues of the overlap kernel,
respectively. One can see that the results are almost converged
at λcut = 10−5. We thus use this value in all the calculations
shown below unless otherwise mentioned. The figure also
shows that the energy gain quickly converges as a function
of NDGCM. In particular, the energy is significantly decreased
even with a mixture of three basis states only, NDGCM = 3.
We have repeated the same calculation with "N = 0.1 and
have found that the converged energy remains almost the same
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FIG. 2. The energy gain in the 56Ni nucleus as a function of the
number of basis states NDGCM in the DGCM method. It is plotted
with respect to the energy of NDGCM = 1, which is equivalent to the
variation before projection method. The solid, the dashed, and the
dotted lines denote the results with λcut = 10−4, 10−5, and 10−6 for
the cut-off of the eigenvalues of the overlap kernel, respectively.
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FIG. 1. The energy surface of the dynamical path E (β, pβ ) for
the quadrupole motion of 16O, in units of MeV. The Gogny D1S inter-
action is used to draw this figure. The minimum of the energy surface
is E (0, 0) = −129.569 MeV, which is the same as the Hartree-Fock
result without the constraint condition. Because of the time reversal
symmetry of |β, 0〉, the energy surface is symmetric about the pβ

axis.

B. Results

We now apply the GCM and the DGCM to the quadrupole
excitations of 16O. To this end, we include the harmonic
oscillator basis up to N0 = 10 with the oscillator length of
b = 1.457433 fm, which is the optimized value in the mean-
field approximation with HFBTHO [41]. We first generate the
coordinate β in increments of 0.02 in the range of −0.24 to
0.24. The range of β is chosen so that a level crossing does
not occur, as we do not include the pairing correlation. We
then generate the conjugate momentum pβ/2π from −0.6 to
0.6 in increments of 0.05 for each β.

Figure 1 shows the energy surface defined as E (β, pβ ) :=
〈β, pβ |Ĥ |β, pβ〉. As we can see, we determine the range of
pβ from the condition that E (±0.24, 0) and E (0,±0.6 × 2π )
are similar to each other. Since |β〉 = |β, 0〉 is an eigenstate of
the time reversal operator in our method, |β, pβ〉 and |β,−pβ〉
are paired for the time reversal operation. This leads to the
inverted symmetry of the energy surface with respect to the
vertical direction in Fig. 1.

Figure 2 shows the root-mean-square (rms) radius
rms(β, pβ ) for each basis, which is defined as

rrms(β, pβ ) =

√

〈β, pβ |
∫

d3r r2ρ̂(r)|β, pβ〉/A, (31)

where ρ̂(r) is the particle number density operator of nucle-
ons. Notice that rrms(β, pβ ) is almost independent of pβ . This
means that the operator eipβ β̂ does not significantly change
the rms radius. This result is not surprising, given that β̂
and

∫
d3r r2ρ̂(r) are commutative in the full space. However,

rigorously speaking, they are not commutative, since we now
restrict the model space to a finite space. Figure 2 implies that
our model space is large enough and this noncommutativity
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FIG. 2. The root-mean-square (rms) radius for the dynamical
path rrms(β, pβ ), in units of fm. The rms radius increases as the
deformation β increases, while it is flat in the direction of pβ .

is practically negligible. Notice that, as in the rms radius, the
operator eipβ β̂ in |β, pβ〉 keeps the expectation value of any
local deformation operator,

Q̂ =
∑

σ,τ,σ ′,τ ′

∫
d3r Q(r, σ, τ, σ ′, τ ′)ψ̂†(r, σ, τ )ψ̂ (r, σ ′, τ ′),

(32)
invariant in the full space. This implies that dealing with the
dynamical path in the DGCM allows us to introduce the effect
of internal excitations for each 〈Q̂〉. That is, |β, pβ〉 all have
the same expectation value of Q̂ for each β, while the energy
expectation value is different. This effect cannot be captured
by the conventional GCM with |β〉.

In performing the DGCM, it is computationally
expensive to include all of the 625 points in the (β, pβ )
plane. We thus select 25 points, SDGCM

25 = {(β, pβ ) | β ∈
{−0.2,−0.1, 0, 0.1, 0.2}, pβ/2π ∈{−0.6,−0.3, 0, 0.3, 0.6}},
to carry out the DGCM calculations. On the other hand, for the
GCM calculations, we use 25 points of SGCM

25 = {(β, 0) | β ∈
{−0.24,−0.22, . . . , 0.24}}, to compare the DGCM to the
GCM under the same conditions as much as possible.

Table I shows the results of the GCM and the DGCM
energies with these point sets, obtained with the cut-off for the
norm kernel of 10−5. We can see that the energies are lower for

TABLE I. The GCM and the DGCM energy for the quadrupole
excitations of 16O with the point sets SGCM

25 and SDGCM
25 , respectively.

The cut-off for the norm kernel is taken as 10−5.

state GCM (MeV) DGCM (MeV)

1 −129.682 −129.765
2 −107.993 −108.140
3 −92.260 −104.475
4 −77.911 −87.019
5 −64.097 −83.059
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Summary
r-process nucleosynthesis: fission of neutron-rich nuclei

requires a microscopic approach applicable to low E* and r(E*)
a new approach: shell model + GCM

an application to induced fission of 236U 
based on Skyrme EDF
ü neutron seniority-zero configurations only
• insensitivity property (transition state theory)
• an importance of the pairing interaction

ü seniority non-zero config. →pn res. interaction
a test with a schematic model: 
K. Uzawa and K. Hagino, PRC108 (‘23) 024319

a large scale calculation (~ 106 dim.)
ü role of conjugate momentum (Dynamical GCM)?

Future perspectives: 


