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Back to Wilson (fermion) !



1.  Reflection on Naive & Wilson fermions



Wilson fermion : species-splitting mass fermion

◆ 1/a additive mass renormalization  → Fine-tune

◆ 15 species are decoupled → doubler-less

◆ Domain-wall & Overlap fermions   → costs

Physical (0,0,0,0) :
Doubler(π/a,0,0,0) :

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

January 9, 2012

1 Introduction

DW (p) =
1
a

∑

µ

[iγµ sin apµ + (1 − cos apµ)] (1)

εx = (−1)x1+x2+x3+x4 (2)

mqa ≡ |M̂ − M̂c| (3)

m2
πa2 =

8
3
mqa + O(a2) (4)

M̂2
c = 4 (5)

m2
π = 0 (6)

Sgw =
∑

x,y

ψ̄x[γµDµ + r(1 + Mf ) + m]xyψy (7)

Ψ̄(1 ⊗ X)Ψ (8)

f = P, T, A, V (9)

H2 = D†D + m2 ≥ 0 (10)

Hgw = γ5(Dnf − MP ) (11)

Hsw = ε(Dst − M (A)
f ) = Γ55(Dst − M (A)

f ) (12)
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Only one flavor is massless, 
while others have O(1/a) mass. 

Lattice fermion action with species-splitting term
X

n,µ

a5

2
 ̄n(2 n �  n+µ �  n�µ)

6

FIG. 1. Free Dirac spectrum of Wilson fermion (r = 1) with m = 0 on a 204 lattice. The degenerate

spectrum of 16 species for naive fermions are split into five branches with 1, 4, 6, 4 and 1 species.

transformations,

 n ! exp
h
i
X

X

⇣
✓(+)

X �(+)

X + ✓(�)

X �(�)

X

⌘ i
 n ,

 n !  n exp
h
i
X

X

⇣
�✓(+)

X �(+)

X + ✓(�)

X �(�)

X

⌘ i
, (2)

where �(+)

X and �(�)

X are site-dependent 4⇥ 4 matrices,

�(+)

X 2

⇢
14 , (�1)n1+...+n4�5 , (�1)ňµ�µ , (�1)nµi�µ�5 , (�1)nµ,⌫

i [�µ , �⌫ ]

2

�
, (3)

�(�)

X 2

⇢
(�1)n1+...+n414 , �5 , (�1)nµ�µ , (�1)ňµi�µ�5 , (�1)ňµ,⌫

i [�µ , �⌫ ]

2

�
, (4)

with ňµ =
P

⇢ 6=µ n⇢, nµ,⌫ = nµ + n⌫ and ňµ,⌫ =
P

⇢ 6=µ,⌫ n⇢. It is notable that the onsite fermion

mass term  ̄n n breaks this U(4)⇥U(4) to the U(4) subgroup �(+)

X . In the presence of the Wilson

term the U(4)⇥ U(4) invariance is broken to the U(1) invariance under 14 in Eq. (3).

In Refs. [24, 61], it was shown that the Wilson fermion with the “central-branch" condition,

MW ⌘ m+ 4r = 0, (5)

has an extra U(1) symmetry, denoted as U(1)V . It becomes clear if one is reminded that the onsite

term (⇠  ̄n n) breaks all the invariance under the transformation �(�)

X in Eq.(4). Thus, dropping

onsite terms can restore some invariance under the group, and the action comes to have larger

symmetry.

The free Wilson fermion with this condition (5) gives six-flavor massless fermions in the con-

tinuum, which correspond to the central branch of the Wilson Dirac spectrum as shown in Fig. 2.

They are excitations around the Dirac zeros at p = (⇡,⇡, 0, 0), (⇡, 0,⇡, 0), (⇡, 0, 0,⇡), (0,⇡,⇡, 0),
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Wilson fermion as U(1) SPT phases

New fermion discretizations Tatsuhiro Misumi
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

Topological # of SPT    ~   index of modes with negative mass 

m > 0 

ν = 0    (trivial SPT)

These indices reflect topology of Berry connection for free fermion,
while gauge field topology plays the same role in gauged theory.
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.
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by
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}
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where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

Topological # of SPT    ~   index of modes with negative mass 

-2/a < m < 0 

ν = 1    

Domain-wall fermion : gapless mode emerging at boundary 
between ν=0 and ν=1 SPTs, where ’t Hooft anomaly cancels.

Wilson fermion as U(1) SPT phases
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
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the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

Topological # of SPT    ~   index of modes with negative mass 

ν = -3    

-4/a < m < -2/a 

Wilson fermion as U(1) SPT phases
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.
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X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)
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Topological # of SPT    ~   index of modes with negative mass 

ν = 3    

-6/a < m < -4/a 
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

university-logo

Intro Construction Index Overlap Improvements Concl.

Construction

• Idea # 1: Nf = 4 → 2
Include taste-dependent mass term: ±ρ for left-/right-handed tastes

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1

Im
[la

m
bd

a]

Re[lambda]

-1 -0.5 0 0.5 1
Re[λ]/ρ

-2

-1

0

1

2

Im
[λ
]

Dst DAdams ≡ Dst+ρ(1⊗ γ5)

Then add mass (ie. shift spectrum) to make Nf = 2 massless flavors!
Drawback: additive mass renormalization, ie. fine-tuning for mq → 0

Ph. de Forcrand QCDNA, Sept. 2010 Overlap staggered fermions

16

�

µ

Cµ

it has been reported in the study of the Gross-Neveu model that the symmetry enhancement

would take place at the central branch (the third branch) of Wilson-type fermions [18].

The aim of this paper is to shed light on the structures of underlying continuous symme-

tries and their spontaneous breakdown in four types of lattice fermions formulation: the naive

fermion, the Wilson fermion and two kinds of minimally doubled fermion. For this purpose,

we rewrite lattice fermion actions in “the spin-flavor representation” [43,44], in which the spin

and doubler-multiplet structures of the lattice fermions become manifest. We first re-express

the U(4) × U(4) symmetry of the naive fermion in [7, 42] using the spin-flavor representation.

We then apply the same method to the Wilson fermion action, which is invariant under only

the ordinary U(1) vector transformation for general values of the mass parameter m. We show,

however, that an additional U(1) vector symmetry is realized by tuning m and this symmetry

is spontaneously broken by pion condensation. Finally, we explore the Karsten-Wilczek and

the Boriçi-Creutz minimally doubled fermion and discover that a similar type of symmetry

enhancement and its spontaneous breakdown occur.

This paper is organized as follows. In section 2, we revisit the symmetries of the naive

lattice fermion via the spin-flavor representation. In section 3, we discuss the symmetries of the

Wilson fermion with emphasis on the symmetry enhancement and its spontaneous breakdown.

We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.

2 Naive fermion and Spin-flavor representation

In this section, we first review the U(4)×U(4) symmetries of the naive fermion [7,42]. Then we

introduce the spin-flavor representation, which simplifies the identification of symmetry in the

case of the Wilson fermion and the minimally doubled fermions.

The action of the naive fermion is given by

Snf =
1

2

∑

n,µ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) + m
∑

n

ψ̄nψn . (1)

Throughout this paper, we consider the nondimensionalized action. As is discussed in [7, 42],

the kinetic term of this action has larger symmetry than the action of the continuum theory:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
ψn ,

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
.

(2)

2

it has been reported in the study of the Gross-Neveu model that the symmetry enhancement

would take place at the central branch (the third branch) of Wilson-type fermions [18].

The aim of this paper is to shed light on the structures of underlying continuous symme-

tries and their spontaneous breakdown in four types of lattice fermions formulation: the naive

fermion, the Wilson fermion and two kinds of minimally doubled fermion. For this purpose,

we rewrite lattice fermion actions in “the spin-flavor representation” [43,44], in which the spin

and doubler-multiplet structures of the lattice fermions become manifest. We first re-express

the U(4) × U(4) symmetry of the naive fermion in [7, 42] using the spin-flavor representation.

We then apply the same method to the Wilson fermion action, which is invariant under only

the ordinary U(1) vector transformation for general values of the mass parameter m. We show,

however, that an additional U(1) vector symmetry is realized by tuning m and this symmetry

is spontaneously broken by pion condensation. Finally, we explore the Karsten-Wilczek and

the Boriçi-Creutz minimally doubled fermion and discover that a similar type of symmetry

enhancement and its spontaneous breakdown occur.

This paper is organized as follows. In section 2, we revisit the symmetries of the naive

lattice fermion via the spin-flavor representation. In section 3, we discuss the symmetries of the

Wilson fermion with emphasis on the symmetry enhancement and its spontaneous breakdown.

We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.

2 Naive fermion and Spin-flavor representation

In this section, we first review the U(4)×U(4) symmetries of the naive fermion [7,42]. Then we

introduce the spin-flavor representation, which simplifies the identification of symmetry in the

case of the Wilson fermion and the minimally doubled fermions.

The action of the naive fermion is given by

Snf =
1

2

∑

n,µ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) + m
∑

n

ψ̄nψn . (1)

Throughout this paper, we consider the nondimensionalized action. As is discussed in [7, 42],

the kinetic term of this action has larger symmetry than the action of the continuum theory:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
ψn ,

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
.

(2)
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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4

Here it has only two zeros located at p = (0, 0, 0, 0), (0, 0, 0,π). These two species are not

equivalent since the gamma matrices are differently defined between them as γ′
µ = Γ−1γµΓ.

In the above case it is given by Γ = iγ4γ5. This means the chiral symmetry possessed

by this action is identified as a flavored one given by γ5 ⊗ τ3. This lattice fermion breaks

discrete rotational symmetry, or hypercubic symmetry. The residual symmetry is spatial

cubic symmetry, corresponding to the permutation of spatial three axes. As a result, it

possesses only CT and P symmetry.

(1) U(1)V × U(1)A

(2) P

(3) CT

(4) Cubic symmetry

Now let us look into symmetries of the naive lattice fermion with complex chemical

potential. The massless action is given by

Sn(µ) =
1

2

∑

x

[
3∑

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j)

+ ψ̄xγ4

(
eµRe+iµImUx,x+4ψx+4 − e−µRe−iµImUx,x−4ψx−4

)
]

(3)

The action obviously breaks the hypercubic symmetry into the spatial cubic symmetry. It

also breaks C,P and T symmetries into CT and P symmetry. We line up symmetries of this

case below.

(1) U(4) × U(4) (residual flavor symmetry among 16 species)

(2) P

(3) CT

(4) Cubic symmetry

These discrete symmetries are the same as those of Karsten-Wilczek fermion. From

the viewpoint of the universality class, these two theories belong to the same class. It is

reasonable since the Karsten-Wilczek term proportional to r in Eq.(1) works to assign O(1/a)

imaginary chemical potential to 14 species while 2 species has zero imaginary chemical

potential. More precisely, in weak-coupling limit, two of 16 species have zero imaginary
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

�

sym.

C1C2C3C4
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1
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FIG. 8. Free Dirac spectrum of the four-dimensional eight-flavor central branch fermion (r = 1) on a 204

lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond

to the eight zeros of the Dirac operator p = (0, 0, 0,⇡), (0, 0,⇡, 0), (0,⇡, 0, 0), (⇡, 0, 0, 0), (⇡,⇡,⇡, 0),

(⇡,⇡, 0,⇡), (⇡, 0,⇡,⇡), (0,⇡,⇡,⇡) in the momentum space.

Among the flavor-chiral symmetries of the naive fermion, this setup keeps a relatively large

subgroup as

�(+)

X 2

⇢
14 , (�1)n1+...+n4�5 , (�1)n1,2

i [�1 , �2]

2
, (�1)n3,4

i [�3 , �4]

2

�
, (84)

�(�)

X 2

⇢
(�1)ň1,3

i [�1 , �3]

2
, (�1)ň2,4

i [�2 , �4]

2
, (�1)ň1,4

i [�1 , �4]

2
, (�1)ň2,3

i [�2 , �3]

2

�
. (85)

It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.

4 8 4

23

with j = 1, 2, 3. A coefficient of the former operator is renormalized differently from that of

the other dimension-4 operators  ̄�j@j , while a coefficient of the latter operator is renormalized

differently from that of F 2

ij with i, j = 1, 2, 3. In other words, the speed of light is renormalized in

a unphysical manner in this system both for quark and gauge fields. Thus, we have to tune the

two marginal parameters to restore the Euclidean Lorentz symmetry. However, it is worth noting

that the tuning procedure for these two parameters is well investigated in the QCD simulation on

anisotropic lattices [88, 89] and it may be applied to the present case.

As a summary of this section, we make several comments. The two-flavor central-branch fermion

requires three-parameter tuning for the practical use in lattice QCD. Its advantages such as U(1)V

symmetry, minimal-doubling and ultra-locality seems to be completely beaten by the drawback.

However, this disadvantage rather sets off the original central-branch Wilson fermion since it has

no necessity of parameter-tuning in six-flavor lattice QCD. As we have discussed, this difference

originates in the existence of full hypercubic symmetry. The study of the two-flavor central-branch

fermion gives a good lesson that we have to take care of not only lattice flavor-chiral symmetries

but also hypercubic symmetry in the central-branch fermions.

IV. OTHER CENTRAL-BRANCH WILSON FERMIONS

In this section, we consider other varieties of central-branch fermions. For instance, we obtain

an eight-flavor central-branch fermion by modification of hopping terms in the Wilson term as

4X

µ=1

Cµ ! C12 + C34, (80)

with

Cµ⌫ ⌘
CµC⌫ + C⌫Cµ

2
. (81)

With this modification the action of central-branch fermion is given by

S8fCB =
X

n,µ

 ̄n�µDµ n � r
X

n

 n(C12 + C34) n. (82)

This setup corresponds to the central branch of one of the flavored-mass fermions, called the tensor-

type fermion [34]. In a free theory, the Dirac operator in the momentum space is expressed as

D(p) =
4X

µ=1

i�µ sin pµ � r(cos p1 cos p2 + cos p3 cos p4) . (83)
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lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond
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It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.



Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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FIG. 8. Free Dirac spectrum of the four-dimensional eight-flavor central branch fermion (r = 1) on a 204

lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond

to the eight zeros of the Dirac operator p = (0, 0, 0,⇡), (0, 0,⇡, 0), (0,⇡, 0, 0), (⇡, 0, 0, 0), (⇡,⇡,⇡, 0),

(⇡,⇡, 0,⇡), (⇡, 0,⇡,⇡), (0,⇡,⇡,⇡) in the momentum space.

Among the flavor-chiral symmetries of the naive fermion, this setup keeps a relatively large

subgroup as

�(+)

X 2

⇢
14 , (�1)n1+...+n4�5 , (�1)n1,2

i [�1 , �2]

2
, (�1)n3,4

i [�3 , �4]

2

�
, (84)

�(�)

X 2

⇢
(�1)ň1,3

i [�1 , �3]

2
, (�1)ň2,4

i [�2 , �4]

2
, (�1)ň1,4

i [�1 , �4]

2
, (�1)ň2,3

i [�2 , �3]

2

�
. (85)

It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

Central-branch Wilson Kimura, Komatsu,TM, Noumi, Torii, Aoki (11) 
Creutz, Kimura, TM (11)

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

MW ≡ m + 4r = 0 (1)

ψ̄ψ ↔ ψ̄γ5ψ (2)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (3)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (4)

MH = M (1)
H + M (2)

H + M (3)
H , (5)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (6)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (7)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (8)

MT &→ MH (9)

M (i)
T → M (i)

H (10)

[σµν ,σνρ] &= 0 (11)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (12)

x → R(µν)R(ρσ)x (13)

1

S =
1
2

�

x,µ

�̄x[�µ(Ux,µ�x+µ � Ux,�µ�x�µ) � (Ux,µ�x+µ + Ux,�µ�x�µ)]

�x � ei�(�1)x1+x2+x3+x4
�x, �̄x � �̄xei�(�1)x1+x2+x3+x4

・Flavor-chiral symmetry
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

Prohibits additive mass renormalization !
No fine-tuning !

・Flavor-chiral symmetry
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Figure 18: Diagrams for the quark self-energy. On the left the sunset diagram, on the right the

tadpole diagram.

situation one can think of, although it already leads to complicated manipulations, as we will

shortly see. We carry out these manipulations starting from the operator

Oµν = ψγµDνψ, (15.41)

and implement the symmetrization in µ and ν at a later stage. Due to the presence of the link
variable U in the covariant derivative, this operator has an expansion in the coupling,

Oµν = O(0)
µν

+ g0O
(1)
µν

+ g2
0O

(2)
µν

+ O(g3
0). (15.42)

To evaluate the one-loop Feynman diagrams in momentum space one has to compute the

Fourier transforms of the operators in this expansion including the term of O(g2
0). It turns out

that to work out these momentum-space insertions for our forward matrix element we can use

the operator defined with the right derivative only, instead of the one involving the difference
between the right and the left derivative (which would lead to more complicated manipulations).

We have then that the expansion of a4 ∑

x

(

ψγµ

→

Dν ψ
)

(x) is

a4 1

2a

∑

x

(

ψ(x)γµUν(x)ψ(x + aν̂) − ψ(x)γµU †
ν
(x − aν̂)ψ(x − aν̂)

)

= a4

{

1

2a

∑

x

(

ψ(x)γµψ(x + aν̂) − ψ(x)γµψ(x − aν̂)
)

(15.43)

+
1

2
ig0T

a
∑

x

(

ψ(x)γµAa
ν
(x)ψ(x + aν̂) + ψ(x)γµA

a
ν
(x − aν̂)ψ(x − aν̂)

)

−

1

4
ag2

0T
aT b

∑

x

(

ψ(x)γµA
a
ν
(x)Ab

ν
(x)ψ(x + aν̂) − ψ(x)γµAa

ν
(x − aν̂)Ab

ν
(x − aν̂)ψ(x − aν̂)

)

+O(a2g3
0)

}

.

and Mackenzie, 1997; Mertens, Kronfeld and El-Khadra, 1998) and (Kuramashi, 1998).
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Figure 17: “Proper” diagrams for the 1-loop correction of the matrix element 〈q|ψγ{µD
ν}ψ|q〉. The

black squares indicates the insertion of the operator. Shown is also the choice of momenta used in the

calculations.

ψ(x)
←

Dµ =
1

2a

[

ψ(x + aµ̂)U †
µ(x) − ψ(x − aµ̂)Uµ(x − aµ̂)

]

.

We consider amputated Green’s functions, that is the external propagators are removed.
The tree level of the amputated forward quark matrix element of the operator above is easily

seen to be
〈q|O{µν}|q〉

∣

∣

∣

tree
=

1

2
i(γµpν + γνpµ), (15.39)

and the 1-loop QCD result has, as we will see from the calculation, the form

〈q|O{µν}|q〉
∣

∣

∣

1 loop
=

1

2
i(γµpν + γνpµ) ·

g2
0

16π2
CF

(

c1 log a2p2 + c2), (15.40)

i.e., it is proportional to the tree level and this operator is thus multiplicatively renormalized.
The renormalization constant for the matching to the MS scheme can then be read off from the

above 1-loop result plus the corresponding continuum calculations made in the MS scheme (see
Eq. (3.3) and Section 3). For the computation of the lattice part it is necessary to evaluate six
Feynman diagrams, which are given in Figs. 17 and 18. The two diagrams in Fig. 18 compute

the quark self-energy, and give the renormalization of the wave function. The remaining four
diagrams, in Fig. 17, are specific to the operator considered, and we will call them “proper”

diagrams.

15.4.1 Preliminaries

We work in Feynman gauge (α = 1), where the form of the gluon propagator is simpler, and
we set r = 1. We perform the calculations using massless fermions. 64 This is the simplest

64Calculations in which the quark propagator is massive are more complicated. A few examples of these
calculations, which use simpler operators, can be found in (Kronfeld and Mertens, 1984; El-Khadra, Kronfeld
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FIG. 3: The diagrams contributing to the 1-loop fermionic self-energy.

Figure 6: Diagrams for the self-energy of the gluon on the lattice. The diagrams on the upper row

have a continuum analog, while the diagrams on the lower row are a pure lattice artifact. They are

however necessary to maintain the gauge invariance of the lattice theory, and are important for its

renormalizability.

An example of this fact is given by the diagrams contributing to the gluon self-energy at
one loop (Fig. 6). If one would only consider the diagrams on the upper row, that is the

ones that would also exist in the continuum, the lattice results would contain an unphysical
1/(am)2 divergence. This divergence is canceled away only when the results of the diagrams
on the lower row are added, that is only when gauge invariance is fully restored. Notice that

for this to happen also the measure counterterm is needed (see Section 5.2.1). In a similar way,
terms of the type p2

µ
δµν , which are not Lorentz covariant and are often present in the individual

diagrams, disappear only after all diagrams have been considered and summed.
From what we have seen so far, we can understand that a lattice regularization does not

just amount to introducing in the theory a momentum cutoff. In fact, it is a more complicated
regularization than just setting a nonzero lattice spacing, because one has also to provide a
lattice action. Different actions define different lattice regularizations. Because of the particular

form of lattice actions, the Feynman rules are much more complicated that in the continuum,
and in the case of gauge theories new interaction vertices appear which have no analog in the

continuum. The structure of lattice integrals is also completely different, due to the overall
periodicity which causes the appearance of trigonometric functions. The lattice integrands are
then given by rational functions of trigonometric expressions.

At the end of the day, lattice perturbation theory is much more complicated than contin-
uum perturbation theory: there are more fundamental vertices and more diagrams, and these

propagators and vertices, with which one builds the Feynman diagrams, are more complicated
on the lattice than they are in the continuum, which can lead to expressions containing a huge

number of terms. Finally, one has also to evaluate more complicated integrals. Lattice pertur-
bative calculations are thus rather involved. As a consequence, for the calculation of all but

27

FIG. 4: The diagrams contributing to additive mass in the 1-loop gluon self-energy. The contribu-

tion from sunset and tadpole diagrams cancel.

III. STRONG-COUPLING QCD

We first review the strong-coupling QCD study for the central branch [8], which figures

out that there appears an NG boson associated with the U(1)V̄ symmetry breaking in the

6

as Σ(α)
0 (sun). It is calculated as

Σ(α)
0 (sun) =

g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

4(
∑

λ sin2 kλ
2 )(

∑
µ sin2 kµ + (−

∑
µ cos kµ)2)

× eiπ
(α)
ρ

(
(sin2 kρ

2
− γ2

ρ cos2 kρ

2
)(−

∑

λ

cos kλ)

+ (γρ(γµ sin kµ) + (γµ sin kµ)γρ) sin
kρ

2
cos

kρ

2

)

=
g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

4(
∑

λ sin2 kλ
2 )(

∑
µ sin2 kµ + (−

∑
µ cos kµ)2)

× eiπ
(α)
ρ

(
(sin2 kρ

2
− cos2 kρ

2
)(−

∑

λ

cos kλ) + sin2 kρ

)

= 0, (10)

where eiπ
(α)
ρ gives plus or minus sign depending on locations of the poles in the direction ρ.

This sign change leads to cancelation between different dimensions ρ in the integral for any

poles α.

The contribution from the tadpole diagram I(α)(tad) is given by

I(α)(tad) =
1

2

∫ π
a

−π
a

ddk

(2π)d

∑

ρ

Gρρ(k) · (V aa
2 )ρρ(p, p) (apρ → π(α)

ρ )

=
1

2

∫ π

−π

ddk

(2π)d
a2 1

4
∑

λ sin2 kλ/2

(
−1

2
ag2

0

∑

a

{T a, T a}cc

)
∑

ρ

(−iγρ sin apρ + cos apρ)

= −1

2
g2
0CF

∫ π

−π

ddk

(2π)d

1

4
∑

λ sin2 kλ/2

(
−iγµpµ +

1

a
+

1

a
− 1

a
− 1

a

)

= −1

2
g2
0CF Z0 (−iγµpµ) , (11)

where we denote the final integral for d = 4 as Z0, which is calculated with high precision

as ∫ π

−π

d4k

(2π)4

1

4
∑

λ sin2 kλ
2

= Z0 = 0.15493339... (12)

Therefore, Σ(α)
0 (tad) from the tadpole diagram for any α is zero. These results show

Σ(α)
0 = Σ(α)

0 (sun) + Σ(α)
0 (tad) = 0, (13)

which means the additive mass renormalization becomes zero at one loop as shown in Fig. 3.

TM (12)   Chowdhury, et.al. (13)

Kimura, Komatsu, TM, Noumi, Torii, Aoki (11)

5

We now consider the fermion self energy which consists of two diagrams, sunset and

tadpole. In analogy to the usual Wilson fermion, the 1-loop fermion self-energy has a form

as
g2
0

16π2

(
Σ0

a
+ iγµpµΣ1 + m0Σ2

)
(8)

The term proportional to Σ0/a corresponds to additive mass renormalization, which stands

for the critical mass. The third term comes from bare mass, but we do not consider bare

quark mass in our study. The question is whether the additive mass renormalization Σ0 is

zero or nonzero for the central branch Wilson fermion.

We first consider the sunset diagram, which contains divergent diagram. We denote the

sunset contribution as I. The total contribution from this diagram is given by lima→0 I(ap !=

0) + I(ap = 0) due to the Reisz power-counting theorem. However, the contribution to Σ0

only comes from I(ap = 0) ≡ I0, thus we focus on this quantity for now. We now define π(α)
µ

as the location of zeros of the Dirac operators. α = 1, 2, ..., 6 identifies six zeros, and the

associated zeros π(α)
µ are given by π(1)

µ = (0, 0,π,π), π(2)
µ = (0,π, 0,π),... Then, we consider

I(α)
0 (sun) of the sunset diagram for the six flavors (α = 1, ..., 6), which is given by

I(α)
0 (sun) =

∫ π
a

−π
a

ddk

(2π)d

∑

ρ

Gρρ(p − k) · Vρ(k, p) · S(k) · Vρ(p, k)|
apµ=π(α)

µ

=
g2
0

a
CF

∫ π

−π

ddk

(2π)d

∑

ρ

1

4(
∑

λ sin2 kλ
2 )

(sin
kρ + π(α)

ρ

2
+ iγρ cos

kρ + π(α)
ρ

2
)

×
−iγµ sin kµ + (−

∑
µ cos kµ)

∑
µ sin2 kµ + (−

∑
µ cos kµ)2

(sin
kρ + π(α)

ρ

2
+ iγρ cos

kρ + π(α)
ρ

2
) + O(1), (9)

where we rescaled the integration variables and extracted the terms up to O(1). We also

worked in the dimensional regularization with general dimension d in the integral. It is

obvious that the term proportional to 1/a is the contribution to Σ(α)
0 (sun), which we denote

No additive mass renormalization
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・Massless meson a/w extra U(1)
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2M2

W (16 + M2
W )

16 � 15M2
W

� m� = 0

��̄�5�� �= 0
Parity is also broken!

TM, Yumoto (20)

TM, Yumoto (20)
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(1,3,3,2,3,3,1) splitting

・2-flavor fermion

the mass parameter. The problem is, however, that it produces 6 flavors.
The question is whether or not two-flavor central-branch fermions can be
constructed.

We note this case corresponds to the central cusp of the Aoki phase
diagram in Fig. 2, at which six fermion modes with momentum shift, p =
(π, π, 0, 0), (π, 0,π, 0), (π, 0, 0, π), (0,π, π, 0), (0,π, 0,π) and (0, 0, π, π), are
expected to appear in the continuum limit.

2 2-flavor central branch

In this section, we discuss 2-flavor central-branch fermions. For example, we
consider a simple modification of the usual Wilson flavored-mass as

4∑

µ=1

Cµ →
3∑

j=1

Cj + 3C4. (4)

where Cµ ≡ (T+µ + T−µ)/2 with T±µψn = Un,±µψn±µ In this case the action
(1) is modified for a free case as

SW2 =
1

2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂)

− r

2

∑

n

ψ̄n

[
3∑

j=1

(
ψn+ĵ + ψn−ĵ

)
+ 3ψ̄n(ψn+4̂ + ψn−4̂)

]
. (5)

The schematic Dirac spectrum is depicted in Fig. 3. The 16 species are split
into seven branches with 1, 3, 3, 2, 3, 3 and 1 flavors. The central branch
corresponds to the two zeros of the Dirac operator (0, 0, 0,π) and (π, π, π, 0).
We note this fermion action explicitly breaks hypercubic symmetry into cubic
symmetry while it does not break any of C, P and T symmetry. The emer-
gence of the dimension-3 operator is forbidden by these invarinces, thus what
we need to care regarding Lorentz symmetry restoration is the dimension-4
operator as ψ̄γ4∂4ψ.

In five dimensions, we can take a parallel procedure to have two-flavor
central-branch fermions. The deformation from the 5d Wilson is given as

5∑

µ=1

Cµ →
4∑

j=1

Cj + 4C5. (6)

4
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Figure 3: 4-dimensional two-flavor central branch with
∑

j Cj + 3C4.
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)
+ 3ψ̄n(ψn+4̂ + ψn−4̂)

]
. (5)

The schematic Dirac spectrum is depicted in Fig. 3. The 16 species are split
into seven branches with 1, 3, 3, 2, 3, 3 and 1 flavors. The central branch
corresponds to the two zeros of the Dirac operator (0, 0, 0,π) and (π, π, π, 0).
We note this fermion action explicitly breaks hypercubic symmetry into cubic
symmetry while it does not break any of C, P and T symmetry. The emer-
gence of the dimension-3 operator is forbidden by these invarinces, thus what
we need to care regarding Lorentz symmetry restoration is the dimension-4
operator as ψ̄γ4∂4ψ.

In five dimensions, we can take a parallel procedure to have two-flavor
central-branch fermions. The deformation from the 5d Wilson is given as

5∑

µ=1

Cµ →
4∑

j=1

Cj + 4C5. (6)

4

§ 4D

(1,4,6,4,2,4,6,4,1) splitting

・Hypercubic symmetry   →  Cubic symmetry

・5D hypercubic  →  4D hyperubic

§ 5D

・5D 2-flavor fermion

TM (12)   TM, Yumoto (20)

de Forcrand et.al. (12)   TM (12)   TM, Yumoto (20)

24

FIG. 8. Free Dirac spectrum of the four-dimensional eight-flavor central branch fermion (r = 1) on a 204

lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond

to the eight zeros of the Dirac operator p = (0, 0, 0,⇡), (0, 0,⇡, 0), (0,⇡, 0, 0), (⇡, 0, 0, 0), (⇡,⇡,⇡, 0),

(⇡,⇡, 0,⇡), (⇡, 0,⇡,⇡), (0,⇡,⇡,⇡) in the momentum space.

Among the flavor-chiral symmetries of the naive fermion, this setup keeps a relatively large

subgroup as
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It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1
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FIG. 8. Free Dirac spectrum of the four-dimensional eight-flavor central branch fermion (r = 1) on a 204

lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond

to the eight zeros of the Dirac operator p = (0, 0, 0,⇡), (0, 0,⇡, 0), (0,⇡, 0, 0), (⇡, 0, 0, 0), (⇡,⇡,⇡, 0),

(⇡,⇡, 0,⇡), (⇡, 0,⇡,⇡), (0,⇡,⇡,⇡) in the momentum space.

Among the flavor-chiral symmetries of the naive fermion, this setup keeps a relatively large

subgroup as
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It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.

4 8 4

23

with j = 1, 2, 3. A coefficient of the former operator is renormalized differently from that of

the other dimension-4 operators  ̄�j@j , while a coefficient of the latter operator is renormalized

differently from that of F 2

ij with i, j = 1, 2, 3. In other words, the speed of light is renormalized in

a unphysical manner in this system both for quark and gauge fields. Thus, we have to tune the

two marginal parameters to restore the Euclidean Lorentz symmetry. However, it is worth noting

that the tuning procedure for these two parameters is well investigated in the QCD simulation on

anisotropic lattices [88, 89] and it may be applied to the present case.

As a summary of this section, we make several comments. The two-flavor central-branch fermion

requires three-parameter tuning for the practical use in lattice QCD. Its advantages such as U(1)V

symmetry, minimal-doubling and ultra-locality seems to be completely beaten by the drawback.

However, this disadvantage rather sets off the original central-branch Wilson fermion since it has

no necessity of parameter-tuning in six-flavor lattice QCD. As we have discussed, this difference

originates in the existence of full hypercubic symmetry. The study of the two-flavor central-branch

fermion gives a good lesson that we have to take care of not only lattice flavor-chiral symmetries

but also hypercubic symmetry in the central-branch fermions.

IV. OTHER CENTRAL-BRANCH WILSON FERMIONS

In this section, we consider other varieties of central-branch fermions. For instance, we obtain

an eight-flavor central-branch fermion by modification of hopping terms in the Wilson term as

4X

µ=1

Cµ ! C12 + C34, (80)

with

Cµ⌫ ⌘
CµC⌫ + C⌫Cµ

2
. (81)

With this modification the action of central-branch fermion is given by

S8fCB =
X

n,µ

 ̄n�µDµ n � r
X

n

 n(C12 + C34) n. (82)

This setup corresponds to the central branch of one of the flavored-mass fermions, called the tensor-

type fermion [34]. In a free theory, the Dirac operator in the momentum space is expressed as

D(p) =
4X

µ=1

i�µ sin pµ � r(cos p1 cos p2 + cos p3 cos p4) . (83)
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lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond

to the eight zeros of the Dirac operator p = (0, 0, 0,⇡), (0, 0,⇡, 0), (0,⇡, 0, 0), (⇡, 0, 0, 0), (⇡,⇡,⇡, 0),
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It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.
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(�1)ň1,3

i [�1 , �3]

2
, (�1)ň2,4
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i [�1 , �4]

2
, (�1)ň2,3
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also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.

1 2 1
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We can also construct another eight-flavor version of central-branch fermions by the modification

of the Wilson term
P

4

µ=1
Cµ ! C123 + C4 with Cµ⌫⇢ ⌘

1

6

P
perm.CµC⌫C⇢. Although the 16 species

are again split into three branches with 4, 8 and 4 species, the breaking of hypercubic symmetry is

severer than the previous version, thus we speculate that the tuning procedure is required for more

parameters.

We consider that there are lots of varieties of central-branch fermions and future works will

be devoted to their full classification. The two-flavor central-branch fermion in five dimensions is

briefly addressed in Appendix. A.

V. CENTRAL BRANCH OF STAGGERED-WILSON FERMIONS

In this section we focus on the staggered fermion [13, 14] and its flavored-mass terms. The

argument in this section is in part presented in the proceedings of the lattice conference [29] by one

of the present author.

Let me start with the action of the staggered fermion,

S =
X

xy

�̄x[⌘µDµ +m]xy�y , (86)

where �x is an one-component fermion field, and we define (⌘µ)xy ⌘ (�1)x1+...+xµ�1�x,y and Dµ ⌘

1

2
(Tµ � T�µ) with (T±µ)xy = Ux,±µ�x±µ,y. m = m�x,y is a mass parameter. This action is obtained

from the naive fermion action via the procedure called “spin diagonalization" and contains four

species called “tastes". For simplicity we denote four-dimensional lattice sites as x or y for staggered

fermions. The relevant symmetry of staggered fermion [17–19] is

{C0, ⌅µ, Is, Rµ⌫} ⇥ {U ✏(1)}m=0, (87)

where C0 is staggered charge conjugation, ⌅µ is shift transformation, Is is spatial inversion, Rµ⌫ is

hypercubic rotation, and U ✏(1) is the residual chiral symmetry �x ! ei✓✏x�x with ✏x = (�1)
P

µ xµ ,

which is expressed as �5⌦⇠5 in the spin-taste representation (⇠5 stands for �5 in the taste space). The

combinations of these symmetries give physical symmetries, including charge conjugation, parity

and spacetime hypercubic symmetry. The details of symmetries are summarized in App. B.

A. Staggered-Wilson fermion

The species-splitting mass term, namely the flavored-mass term, is also introduced into staggered

fermions [17, 20–22]. They split four degenerate tastes into multiple branches with satisfying other

28

However, the Dirac spectrum has no central branch for this case.

On the other hand, the two-hopping staggered-Wilson fermion in (98) with the condition m +

2r = 0 has the central branch in the Dirac spectrum. The action with this condition is given by

Scb

H =
X

xy

�̄x(D
cb

H )xy�y =
X

xy

�̄x[⌘µDµ + rMH)]xy�y . (98)

The symmetry [28, 29, 91] is summarized as

{CT , C 0
T , ⌅0

µ, R12, R34, R24R31}. (99)

The extra symmetry is the special charge conjugation C 0
T . Since the two-flavor central branch exists

in the setup, this enhancement of the symmetry is meaningful. First of all, the two other mass

terms

�̄x�x , �̄x(MA)xy�y , (100)

are not invariant under the enhanced C 0
T invariance, thus their generation by the loop effects is

prohibited. Furthermore, the residual rotational symmetry prohibits unequal renormalization of

coefficients of C12 and C34 in �̄x(MH)xy�y. These facts mean that this two-flavor central-branch

fermion is stable in a sense that the additive mass renormalization for each of the two tastes at

the central branch is prohibited and the central branch cannot be split by quantum effects. It is

clear difference from the two-flavor central-branch Wilson fermion in Sec. III, but is consistent with

the property of the eight-flavor central-branch fermion in Sec. IV, which is reduced to the central-

branch staggered-Wilson fermion by spin diagonalization. Indeed, the numerical calculation for this

case in [27] indicates the absence of additive mass renormalization for the two tastes at the central

branch. We can rephrase this property that the mixed ’t Hooft anomaly of the symmetries of the

central-branch staggered-Wilson fermion prohibits a trivially gapped phase.

It is notable that the absence of sign problem is also proved in this formulation, where we have

C 0
T instead of the Z2 part of U(1)V in the central-branch Wilson fermion and this C 0

T leads to the

pairing of nonzero eigenvalues in the spectrum of H ⌘ ✏xDcb

H
. As long as the number of lattice

sites is even, the determinant of Dirac operator is positive semi-definite. When we introduce a mass

shift, we can bypass the sign problem easily by quenching the sign of the determinant as proposed

in [27].

Although this two-flavor formulation is free from the necessity of the mass parameter fine-tuning,

we need the one-parameter tuning for restoration of Euclidean Lorentz symmetry. However, this

situation is better than those in the known classes of minimally doubled fermions, where the two-
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basic properties including �5 hermiticity (precisely speaking, ✏x ⇠ �5 ⌦ ⇠5 hermiticity). In spin-

taste representation there are only two types of flavored-mass terms satisfying the �5 hermiticity,

corresponding to 1 ⌦ ⇠5 and 1 ⌦ �µ⌫ . These terms are realized as four- and two-hopping terms in

the one-component staggered action up to O(a) errors.

The four-hopping flavored-mass term [17, 20] is given by

MA = ✏
X

sym

⌘1⌘2⌘3⌘4C1C2C3C4 = (1⌦ ⇠5) +O(a) , (88)

with (✏)xy = (�1)x1+...+x4�x,y and Cµ = (Tµ + T †
�µ)/2. Here we hide the factor 1/24 in the

symmetric sum
P

sym.. With this flavored-mass term, the four tastes (species) fall into the ⇠5 = +1

two-taste subspace and the ⇠5 = �1 two-taste subspace. As a consequence, the corresponding Dirac

spectrum has two branches [21, 23]. By introducing a mass parameter m = m�x,y and a Wilson

parameter r = r�x,y as with the Wilson fermion, the four-hopping staggered-Wilson fermion is

expressed as

SA =
X

xy

�̄x(DA)xy�y =
X

xy

�̄x[⌘µDµ + r(1 +MA) +m]xy�y . (89)

We note that (88) is derived from the four-hopping flavored-mass term for naive fermions which

split sixteen species into two eight-species branches [24, 28, 29, 90]. It is schematically expressed as

 ̄x[C1C2C3C4]xy y ! ±�̄x[✏⌘1⌘2⌘3⌘4C1C2C3C4]xy�y . (90)

The two-hopping flavored-mass term [22] is given by

MH = i(⌘12C12 + ⌘34C34) = [1⌦ (�12 + �34)] +O(a) , (91)

with (⌘µ⌫)xy = ✏µ⌫⌘µ⌘⌫�x,y, (✏µ⌫)xy = (�1)xµ+x⌫�x,y, Cµ⌫ = (CµC⌫ + C⌫Cµ)/2. This flavored

mass splits four tastes into three branches, including one-flavor, two-flavor and the other one-flavor

branches. By introducing a mass parameter and a Wilson parameter, the two-hopping staggered-

Wilson fermion is

SH =
X

xy

�̄x(DH)xy�y =
X

xy

�̄x[⌘µDµ + r(2 +MH) +m]xy�y . (92)

Eq. (91) is derived from the two-hopping flavored-mass term in Eq. (82) for naive fermions which

split sixteen species into three branches, including four-species, eight-species and the other four-

species branches [24, 28, 29, 90]. It is expressed as

 ̄x[C12 + C34]xy y ! ±�̄x[i(⌘12C12 + ⌘34C34)]xy�y. (93)
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The properties of these staggered-Wilson fermions have been studied in terms of index theo-

rem [20], overlap kernel [21, 23], symmetries [28, 29, 91], numerical costs [23, 27], parity phase

structure [24, 25, 28], taste-breaking and hadron spectrum [28, 29, 91]. We here concentrate on

their symmetries in order to study the central-branch staggered-Wilson fermions. The four-hopping

flavored-mass in Eq. (88) breaks the staggered symmetry in Eq. (87) to

{C0,⌅
0
µ, Rµ⌫} , (94)

where we define ⌅0
µ ⌘ ⌅µIµ. Since the action is invariant under the transformation ⌅4Is ⇠ (�4⌦1),

the physical parity invariance P remains. Furthermore, C0 is also unbroken in this case, therefore

the physical charge conjugation C at the two-flavor branch can be formed in a similar way to

the staggered fermions. Regarding Euclidean Lorentz symmetry, a combination of the staggered

rotation Rµ⌫ and the shifted-axis reversal ⌅0
µ forms the hypercubic group as with the staggered

fermion. These facts indicate that the four-hopping staggered-Wilson action (89) possesses enough

discrete symmetries for a correct continuum limit.

On the other hand, the symmetry of the two-hopping staggered fermion in (98) is smaller than

that of the four-hopping one, which is given by

{CT ,⌅
0
µ, R12, R34, R24R31} . (95)

Although C0 is broken in this action, it is invariant under another special charge conjugation CT ⌘

R21R2

13
C0 [28, 29]. Due to CT and ⌅0

µ, the invariances under physical parity and physical charge

conjugation are guaranteed at each of the three branches. However, the breaking of the staggered

rotation symmetry leads to the necessity of one-parameter tuning to restore Lorentz symmetry,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
[91].

It is a consequence of the fact that the two-hopping staggered-Wilson fermion is derived from the

flavored-mass term with the breaking of hypercubic symmetry in (82) via the spin diagonalization.

B. Central-branch staggered-Wilson fermion

The symmetry of the four-hopping staggered-Wilson fermion in (89) is enhanced with the con-

dition m+ r = 0. The symmetry of SA in (89) with this condition is

{C0, C 0
T⌅µ, C 0

T Is, Rµ⌫} , (96)

where C 0
T is given as the other special charge conjugation [28, 29, 91]

C 0
T : �x ! �̄T

x , �̄x ! �T
x , Ux,µ ! U⇤

x,µ. (97)
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(1,3,3,2,3,3,1) splitting

・2-flavor fermion

the mass parameter. The problem is, however, that it produces 6 flavors.
The question is whether or not two-flavor central-branch fermions can be
constructed.

We note this case corresponds to the central cusp of the Aoki phase
diagram in Fig. 2, at which six fermion modes with momentum shift, p =
(π, π, 0, 0), (π, 0,π, 0), (π, 0, 0, π), (0,π, π, 0), (0,π, 0,π) and (0, 0, π, π), are
expected to appear in the continuum limit.

2 2-flavor central branch

In this section, we discuss 2-flavor central-branch fermions. For example, we
consider a simple modification of the usual Wilson flavored-mass as

4∑

µ=1

Cµ →
3∑

j=1

Cj + 3C4. (4)

where Cµ ≡ (T+µ + T−µ)/2 with T±µψn = Un,±µψn±µ In this case the action
(1) is modified for a free case as

SW2 =
1

2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂)

− r

2

∑

n

ψ̄n

[
3∑

j=1

(
ψn+ĵ + ψn−ĵ

)
+ 3ψ̄n(ψn+4̂ + ψn−4̂)

]
. (5)

The schematic Dirac spectrum is depicted in Fig. 3. The 16 species are split
into seven branches with 1, 3, 3, 2, 3, 3 and 1 flavors. The central branch
corresponds to the two zeros of the Dirac operator (0, 0, 0,π) and (π, π, π, 0).
We note this fermion action explicitly breaks hypercubic symmetry into cubic
symmetry while it does not break any of C, P and T symmetry. The emer-
gence of the dimension-3 operator is forbidden by these invarinces, thus what
we need to care regarding Lorentz symmetry restoration is the dimension-4
operator as ψ̄γ4∂4ψ.

In five dimensions, we can take a parallel procedure to have two-flavor
central-branch fermions. The deformation from the 5d Wilson is given as

5∑

µ=1

Cµ →
4∑

j=1

Cj + 4C5. (6)

4
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Figure 3: 4-dimensional two-flavor central branch with
∑

j Cj + 3C4.
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]
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The schematic Dirac spectrum is depicted in Fig. 3. The 16 species are split
into seven branches with 1, 3, 3, 2, 3, 3 and 1 flavors. The central branch
corresponds to the two zeros of the Dirac operator (0, 0, 0,π) and (π, π, π, 0).
We note this fermion action explicitly breaks hypercubic symmetry into cubic
symmetry while it does not break any of C, P and T symmetry. The emer-
gence of the dimension-3 operator is forbidden by these invarinces, thus what
we need to care regarding Lorentz symmetry restoration is the dimension-4
operator as ψ̄γ4∂4ψ.

In five dimensions, we can take a parallel procedure to have two-flavor
central-branch fermions. The deformation from the 5d Wilson is given as

5∑

µ=1

Cµ →
4∑

j=1

Cj + 4C5. (6)
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FIG. 8. Free Dirac spectrum of the four-dimensional eight-flavor central branch fermion (r = 1) on a 204

lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond

to the eight zeros of the Dirac operator p = (0, 0, 0,⇡), (0, 0,⇡, 0), (0,⇡, 0, 0), (⇡, 0, 0, 0), (⇡,⇡,⇡, 0),

(⇡,⇡, 0,⇡), (⇡, 0,⇡,⇡), (0,⇡,⇡,⇡) in the momentum space.

Among the flavor-chiral symmetries of the naive fermion, this setup keeps a relatively large

subgroup as

�(+)

X 2

⇢
14 , (�1)n1+...+n4�5 , (�1)n1,2

i [�1 , �2]

2
, (�1)n3,4

i [�3 , �4]

2

�
, (84)

�(�)

X 2

⇢
(�1)ň1,3

i [�1 , �3]

2
, (�1)ň2,4

i [�2 , �4]

2
, (�1)ň1,4

i [�1 , �4]

2
, (�1)ň2,3

i [�2 , �3]

2

�
. (85)

It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.



◆Use of extra U(1) symmetry

This procedure shows semi-positivity  

Semi-positivity of det(D)

So far, we have seen a generic feature of any Wilson fermion by �3-hermiticity. The
existence of the site-dependent U(1) symmetry, U(1)V , is the special feature of the central-
branch Wilson fermion. This means that the central-branch Wilson-Dirac operator satisfies

D(�)x+y = �(�)x+yD. (2.18)

Using this anti-commutation relation, we obtain

D(�)x+y|R�i = ��(�)x+y|R�i, (2.19)
hL�|(�)x+yD = ��hL�|(�)x+y. (2.20)

This shows that if � 2 C \ {0} is in the Dirac spectrum so is ��. These symmetries explain
why Fig. 1 is symmetric under Re(�) 7! �Re(�) and Im(�) 7! �Im(�).

Now, we would like to show that the central-branch Wilson fermion has no sign problem,
i.e.

det(D) � 0. (2.21)

We emphasize that this is an important property of this fermion when we consider the Monte
Carlo simulation of lattice gauge theory. In order to prove this, it is useful to introduce the
hermitian Wilson-Dirac operator,

H = �3D. (2.22)

The �3-hermiticity of D ensures that H† = H, so its spectrum is in real values. The U(1)V
symmetry gives H(�)x+y = �(�)x+yH, so the non-zero spectrum forms the pair with the
opposite sign. When there are no zero eigenvalues, we can label the spectrum as

{±"i}i=1,...,NxNy . (2.23)

Since NxNy is an even integer, we obtain that

det(D) = det(H) =

NxNyY

i=1

"i(�"i) = (�1)NxNy

NxNyY

i=1

"2i > 0. (2.24)

If there are some zero eigenvalues, det(D) = 0. We have shown the semi-positivity of det(D).
We note that the same argument can be used for 4d central-branch Wilson fermion, too,

and the Dirac determinant is again positive semi-definite.

3 Analytical study of low-energy effective theory

In this section, we study the property of low-energy effective theory of the lattice Schwinger
model with the central-branch Wilson fermion. By using the low-energy approximation, we
make the connection between the lattice gauge theory and the continuum field theory. Using
this approximation, we can translate the exact symmetry on lattice into the emergent internal
symmetry on continuum, and we compute the ’t Hooft anomaly of the symmetry.

– 6 –

Figure 1. Schematic plot of distribution of the 2d free Wilson Dirac spectrum � with MW = m+2r = 0
in the complex plane. The central branch crosses the origin. The number in each branch stands for
numbers of species at the branch.

On each site, there is a two-component spinor, so D is regarded as the linear operator, D :

C2NxNy ! C2NxNy . We consider the eigenvalue problem,

D|R�i = �|R�i, (2.11)
hL�|D = �hL�|, (2.12)

where � 2 C is called the Dirac eigenvalue, and |R�i and hL�| are the corresponding right-
and left-eigenvectors, respectively. For the free theory, we can diagonalize D by Fourier trans-
formation, and we obtain that

�(px, py) = ±i
q

sin2 px + sin2 py � r(cos px + cos py), (2.13)

where (px, py) mod 2⇡ denotes the lattice momentum. Blue shaded region of Fig. 1 shows the
distribution of this �(px, py) in the complex plane. We note that �(px, py) = 0 only has the
two solutions,

(px, py) = (⇡, 0), (0,⇡), (2.14)

so there are two gappless fermions at the central branch.
Let us go back to the discussion for the Dirac operator with gauged link variables. As a

consequence of U †
n,µ = Un+µ̂,�µ, we obtain T †

µ = T�1
µ = T�µ. This ensures the �3-hermiticity

of the Wilson-Dirac operator,
�3D�3 = D†. (2.15)

Therefore, by taking the adjoint of the eigenvalue equations, we get

D�3|L�i = �⇤�3|L�i, (2.16)
hR�|�3D = �⇤hR�|�3, (2.17)

This shows that when � 2 C \ R is in the Dirac spectrum so is �⇤.
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Pair of +ε and -ε

◆Use of hermitian Dirac operator

It shows that +λ and -λ make a pair.

Tanizaki, TM (19)

12

The central-branch Wilson fermion has further property to restrict the quark determinant. The

U(1)V symmetry specific to the central-branch condition can be expressed as

D(�1)
P

µ nµ = �(�1)
P

µ nµD, (22)

which means the pairing of nonzero eigenvalues �,�� in the Dirac spectrum. This property is

reflected by the point-symmetric Dirac spectrum of the central branch Wilson fermion. We now

define the hermitian Dirac operator as

H = �5D. (23)

The �5-hermiticity of D guarantees H† = H and its spectrum should be real. The U(1)V symmetry

is expressed for this operator as

H(�1)
P

µ nµ = �(�1)
P

µ nµH, (24)

which leads to the pairing of nonzero eigenvalues ",�" in the spectrum of H. We here ignore zero

eigenvalues for a while and label the spectrum of eigenvalues as
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2D Central-branch Wilson

・Flavor-chiral symmetry for central-branch Wilson fermion

Dirac eigenvalue distributionFigure 1. Schematic plot of distribution of the 2d free Wilson Dirac spectrum � with MW = m+2r = 0
in the complex plane. The central branch crosses the origin. The number in each branch stands for
numbers of species at the branch.

On each site, there is a two-component spinor, so D is regarded as the linear operator, D :

C2NxNy ! C2NxNy . We consider the eigenvalue problem,

D|R�i = �|R�i, (2.11)
hL�|D = �hL�|, (2.12)

where � 2 C is called the Dirac eigenvalue, and |R�i and hL�| are the corresponding right-
and left-eigenvectors, respectively. For the free theory, we can diagonalize D by Fourier trans-
formation, and we obtain that

�(px, py) = ±i
q

sin2 px + sin2 py � r(cos px + cos py), (2.13)

where (px, py) mod 2⇡ denotes the lattice momentum. Blue shaded region of Fig. 1 shows the
distribution of this �(px, py) in the complex plane. We note that �(px, py) = 0 only has the
two solutions,

(px, py) = (⇡, 0), (0, ⇡), (2.14)

so there are two gappless fermions at the central branch.
Let us go back to the discussion for the Dirac operator with gauged link variables. As a

consequence of U †
n,µ = Un+µ̂,�µ, we obtain T †

µ = T�1
µ = T�µ. This ensures the �3-hermiticity

of the Wilson-Dirac operator,
�3D�3 = D†. (2.15)

Therefore, by taking the adjoint of the eigenvalue equations, we get

D�3|L�i = �⇤�3|L�i, (2.16)
hR�|�3D = �⇤hR�|�3, (2.17)

This shows that when � 2 C \ R is in the Dirac spectrum so is �⇤.
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2 Central-branch Wilson fermion

In this section, we first give a brief review on Wilson fermion and central-branch Wilson
fermion. We begin with looking into flavor-chiral symmetry of naive fermions by following
Ref. [51]. After that, using this knowledge, we discuss the symmetry of the Dirac spectrum for
the central-branch Wilson fermion. Using this symmetry, we prove that the Dirac determinant
of the central-branch Wilson fermion is positive definite on even-sites lattice. This shows that
the numerical Monte Carlo simulation is possible.

2.1 Wilson fermion and central branch

The 2d Wilson fermion action is

SW =
X

n

X

µ=1,2

 n�µDµ n

| {z }
naive kinetic term

+
X

n

m n n

| {z }
mass term

+ r
X

n

X

µ=1,2

 n(1� Cµ) n

| {z }
Wilson term

, (2.1)

where Dµ ⌘ (T+µ � T�µ)/2, Cµ ⌘ (T+µ + T�µ)/2 with T±µ n = Un,±µ n±µ, respectively.
The sum,

P
n, stands for the summation over spacetime lattice sites, n = (x, y) 2 Z ⇥ Z.

Because of the Wilson term, the degeneracy of four species in naive fermion is lifted into three
branches, where one, two and one flavors lives.

The 2d massless naive action possesses U(2) ⇥ U(2) flavor-chiral symmetries, which is a
remnant of the whole flavor-chiral symmetry of 4 species. (See [51] for the symmetries in 4d.)
The symmetries are invariances under

 n ! exp
h
i
X

X

⇣
✓(+)
X �(+)

X + ✓(�)
X �(�)

X

⌘ i
 n ,

 n !  n exp
h
i
X

X

⇣
�✓(+)

X �(+)
X + ✓(�)

X �(�)
X

⌘ i
, (2.2)

where �(+)
X and �(�)

X are site-dependent 2⇥ 2 matrices:

�(+)
X 2

�
12 , (�1)n1+n2�3 , (�1)ňµ�µ

 
, (2.3)

�(�)
X 2

�
(�1)n1+n212 , �3 , (�1)nµ�µ

 
, (2.4)

with ňµ = n⌫ 6=µ. The on-site mass term  ̄n n breaks this U(2)⇥U(2) symmetries to the U(2)

subgroup, generated by �(+)
X . In the presence of the Wilson term the U(2)⇥ U(2) invariance

is broken to the U(1) invariance under 12 in Eq. (2.3). This generator is vector-type, which
means that the Wilson fermion loses all the axial symmetry.

As discussed above, the 2d Wilson term lifts four species into three branches in the Dirac
spectrum in Fig. 1, and we shall discuss its details in Sec. 2.2. In Ref. [50, 51], it has been
shown that the Wilson fermion with the condition,

MW ⌘ m+ 2r = 0, (2.5)
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This extra U(1) symmetry to prohibit mass term

Extra U(1) for 2 flavors!

has an extra U(1) symmetry besides the usual U(1) vector symmetry. The Wilson fermion
with this condition gives the two-flavor massless fermions, which correspond to the central
branch of the Wilson Dirac spectrum as shown in Fig. 1. The fermion lattice action for this
case is given by

SCB =
X

n,µ

�
 ̄n�µDµ n � r ̄nCµ n

�
. (2.6)

This action is invariant under the ordinary U(1)V transformation generated by �(+) = 12,

U(1)V :  n 7! ei↵ n,  n 7!  ne
�i↵, (2.7)

and furthermore there is the extra U(1) symmetry generated by �(�) = (�)n1+n212,

U(1)V :  n 7! ei(�1)n1+n2� n,  n 7!  ne
i(�1)n1+n2� . (2.8)

The usual Wilson fermion has only the vector symmetry (2.7). The invariance under (2.8)
is restored only with the central-branch condition1 m + 2r = 0. It is notable that this
extra symmetry prohibits the on-site mass term  ̄n n, and eventually prohibits additive mass
renormalization as the chiral symmetry in staggered fermion does [50–52]. This formulation is
regarded as another realization of lattice fermions with the remnant of chiral symmetry, which
means we do not need fine-tuning of the mass parameter. It is also notable that such symmetry
enhancement on the central branch is generic with the flavored-mass fermions [54]. The other
symmetries of this central-branch fermion are common with those of the usual Wilson fermion,
including hypercubic symmetry, charge conjugation, parity, time reversal, �3-hermiticity and
reflection positivity. Since we will use the lattice translation and rotational symmetry, let us
write them down explicitly: The lattice translation, Z2, is generated by  (x, y) 7!  (x+1, y)

and  (x, y) 7!  (x, y + 1). The lattice ⇡
2 rotation is given by

 (x, y) 7! ei
⇡
4 �3 (y,�x),  (x, y) 7!  (y,�x)e�i⇡4 �3 . (2.9)

The 4d central-branch fermion is summarized in Appendix. A, where 4d two-flavor central-
branch fermion is also discussed.

2.2 Symmetry of the Dirac spectrum at central branch

Armed with the knowledge about central-branch Wilson fermions, we discuss the symmetry
property of the Dirac spectrum, and we shall show that the Dirac determinant is positive
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(Z2)lat.trans. :

(Z2)� :As a result, we have the following internal symmetry in the continuum description for the
central-branch Wilson fermion,

GCB fermion =
U(1)V ⇥ [U(1)V o (Z2)lat. trans.]

(Z2)F
⇥ (Z2)�, (3.23)

and this originates from the exact lattice symmetry. We gauge the U(1)V symmetry by
introducing the link variables, and then the global symmetry is divided by U(1) and becomes

G = GCB fermion/U(1)V =
U(1)V o (Z2)lat. trans.

(Z2)F
⇥ (Z2)�. (3.24)

3.3 Flavor singlet and non-singlet mass terms

We will show that the symmetry G has the ’t Hooft anomaly and gives an important constraint
on non-perturbative low-energy physics. Especially, its existence prohibits to create the mass
gap without having degenerate ground states. This condition would be obviously violated if
we could write down the fermion bilinear mass terms, because we can obtain the single gapped
ground state by sending such mass parameters to infinite. As a corollary, we cannot write
down the mass term that is invariant under G. Since we can find this conclusion in a more
elementary way than computing ’t Hooft anomaly, let us give a detailed discussion about it
in this section.

The fermion bilinear operator with U(1)V symmetry has the form4,

 (x+ n1, y + n2)�i (x, y). (3.25)

In order to have the U(1)V symmetry, we must set n1 + n2 an odd integer. The lattice
translational symmetry forbids to multiply the staggering phases, such as (�)x,y. We further
can use the lattice ⇡

2 rotation to constrain the possible terms. For example, if �i = 1, these
constraints require that it should appear in the combination,

⇥
 (x+ n1, y + n2) +  (x+ n2, y � n1) +  (x� n1, y � n2) +  (x� n2, y + n1)

⇤
 (x, y).

(3.26)

Substituting the low-energy expression (3.2) and (3.3), we obtain the leading term as

2((�1)n1 + (�1)n2)
�
 1 1 �  2 2

�
. (3.27)

Since n1+n2 has to be an odd integer, this leading term cancels as (�1)n1 +(�1)n2 = 0, and
it starts from the second-order derivatives in the low-energy limit. For other gamma matrices,
it is straightforward to check that the leading term also starts from the derivatives, so we
cannot obtain the mass term that is invariant under all the symmetries. This argument shows
that the symmetry G prohibits any type of fermion bilinear mass terms.

4
When we dynamically gauge U(1)V , we have to insert the Wilson lines for gauge invariance. Just for

notational simplicity, we consider the free fermion case.
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2 rot.
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◆ XXZ spin chain
In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.45)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW

X

(x,y)

  (x, y) +
g2

2

X

(x,y)

h�
  (x, y)

�2
+
�
 i�3 (x, y)

�2i
. (3.47)
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Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW
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2
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same symmetry structure 
as CB-Wilson Schwinger model

Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.43)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.

In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):
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Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:
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spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.
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gapless phase with spin-wave or spinon 

Z2 SSB : ferromagnetic or anti-ferromagnetic

consistent to our mixed anomaly !

CB-Wilson Schwinger enables us to simulate Heisenberg spin chain

◆ Known facts on the system

Anomaly matching for QED with CB



2.  Lattice fermions as spectral graphs



Lattice fermion as spectral graph
Yumoto, TM (21)
cf.) Ohta, Sakai (20)
Ohta, Matsuura (21)

Definition 1.  A graph G is a pair G = (V, E). V is a set of vertices and E is a set of edges. 

Definition 2.  A directed graph is a pair (V, E) of sets of vertices and edges together with 
two maps init : E → V and ter : E → V. The two maps are assigned to every edge eij with an 
initial vertex init(eij) = vi ∈ V and a terminal vertex ter(eij) = vj ∈ V.  If init(eij) = ter(eij), the 
edge eij is called a loop. 

Definition 3.  A weighted graph has a value (weight) for each edge in a graph. 

Definition 4.  A adjacency matrix A of a graph is the |V| × |V| matrix given by 

where wij is the weight of an edge from i to j. 

6

edge can not be commutated {i, j} != {j, i}.

FIG. 3. A digraph with two loops.

Definition. 3 (weighted graph). The weighted graph has a value (the weight) for each edge in a

graph or a digraph.

As an example, we show a digraph in Fig. 4. It is a weighted graph, each of whose edge has a

weight.

FIG. 4. This digraph is a weighted graph. Blue edges in the graph are those with positive weights, while

red edges are those with negative weights.

Definition. 4 (adjacency matrix). The adjacency matrix A of a graph is the |V |× |V | matrix given

by

Aij =











wij if there is a edge from i to j

0 otherwise
, (1)

where wij is the weight of an edge from i to j.
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As an example we exhibit an adjacency matrix A of a graph in Fig. 4

A =

















0 1 0 −1

−4 0 2 0

0 0 0 0

3 0 −2 0

















. (2)

This matrix is asymmetric. In general, the adjacency matrix of a directed graph is asymmetric

since the existence of an edge from i to j does not necessarily imply that there is also an edge from

j to i.

The lattice fermion has common properties with the spectral graph we have introduced here. In

the next sections, we will show that the lattice fermion can be identified as the spectral graph.

III. NAIVE FERMION

In this section we discuss the Dirac operator matrix of Naive fermion in terms of SGT. Through

this example, we will find a Dirac operator of lattice fermions is identified as a matrix of the spectral

graph corresponding to the lattice fermion. We also show how to find the number of zero modes

(the number of fermion species) by use of discrete Fourier transformation (DFT). This technique

can be applied to any kind of matrices arising from the non-regular lattices. By use of DFT, we

will correctly derive the sixteen fermion species in the naive fermion.

A. Dirac matrix of naive fermion

The lattice naive fermion action in four dimensions is

S =
∑

n

4
∑

µ=1

ψ̄nγµDµψn , (3)

where Dµ ≡ (T+µ − T−µ)/2 with T±µψn = Un,±µ̂ψn±µ̂ and µ̂ is a unit vector. In a free theory,

we just set Un,±µ̂ = 1. The sum
∑

n is the summation over lattice site n = (n1, n2, n3, n4) and

those intervals are 1 ≤ nµ ≤ N . Note that the spacetime where the fermion is defined is a four-

dimensional torus because we usually impose periodic boundary conditions in each direction. To

derive the corresponding matrix of the lattice Dirac operator in a free theory, we introduce a vector

of fermion fields. Namely, a vector ψ is defined ψ =
∑

n ψnen where en are standard basis which
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◆ Naive fermion
10

FIG. 5. This graph corresponds to the Dirac matrix of one dimensional naive fermion with periodic boundary

condition. This graph schematically shows a circle S1.

FIG. 6. This graph corresponds to the Dirac matrix of two-dimensional naive fermion with periodic

boundary condition. This graph schematically represents the two-dimensional torus T 2. The weight for

each edge from n to n+ µ̂ is +γµ/2 and the one for each edge from n to n− µ̂ is −γµ/2.

C. Diagonalization of Dirac matrix D

In this subsection, we discuss how to diagonalize Dirac matrix D and find the number of zero

eigenvalues for a free four-dimensional naive fermion. Firstly, we will diagonalize E in order to

diagonalize the whole Dirac matrix. We introduce the discrete Fourier transform (DFT) matrix X,

which is consisted of Xjk ≡ ξ(k−1)(j−1)/
√
N with ξ = e−

2πi
N for j, k = 1, 2, · · · , N . It is clear that

DFT matrix is unitary. Then, E and E† satisfy EX = XΛ and E†X = Λ†X, where Λ is a diagonal

matrix as Λ = Diag
[

1, ξ, ξ2, · · · , ξN−1
]

. Since PN = E − E†, the diagonalized PN is given as

PNX = iDiag

[

0, sin
2π

N
, sin

4π

N
, · · · , sin

2(N − 1)π

N

]

X ≡ ΛPN
X. (10)
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and E and E† are similarly represented as

E =





































0 1 0 0 0 0

0 0 1 · · · 0 0 0

0 0 0 0 0 0
...

. . .
...

0 0 0 0 1 0

0 0 0 · · · 0 0 1

1 0 0 0 0 0





































, E† =





































0 0 0 0 0 1

1 0 0 · · · 0 0 0

0 1 0 0 0 0
...

. . .
...

0 0 0 0 0 0

0 0 0 · · · 1 0 0

0 0 0 0 1 0





































. (7)

Note that the matrix PN is the matrix representing the periodic boundary condition of one direction.

This matrix is the circulant matrix.

B. Graphs corresponding to naive fermion

In this subsection, based on the matrix representations we have obtained in the previous sub-

section, we see how the spectral graphs correspond to the naive lattice fermions on low- and high-

dimensional lattices. Although in the cases of non-torus lattice fermions we obtain the Dirac matrix

from the spectral graph, we now derive “the graph from the matrix" conversely.

Firstly, we consider the one dimensional lattice. In this case, the Dirac matrix of the free naive

fermion is

D1d = PN ⊗ γ1. (8)

Now, the graph corresponding to this Dirac matrix is depicted in Fig. 5. This graph schematically

represents a circle S1, where we impose a periodic boundary condition. This is called a circulant

graph in graph theory.

In the case of two-dimensional naive fermion, the Dirac matrix is

D2d = 1N ⊗ PN ⊗ γ1 + PN ⊗ 1N ⊗ γ2 , (9)

and the graph, who schematically represents two-dimensional torus T 2, is expressed as Fig. 6, where

each direction is independent, leading to S1 × S1 ∼ T 2. There are both an edge with the positive

weight and an edge with the negative weight between each vertex. It is notable that the weight for

edges from n to n+ µ̂ is +γµ and the one for edges from n to n− µ̂ is −γµ.

In three and four dimensions, the procedures are parallel. The corresponding graphs schemat-

ically represent S1 × S1 × S1 ∼ T 3 and S1 × S1 × S1 × S1 ∼ T 4, respecctively. For the cases of

non-torus lattice fermions, we conversely obtain the Dirac matrix from the spectral graph.
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FIG. 5. This graph corresponds to the Dirac matrix of one dimensional naive fermion with periodic boundary

condition. This graph schematically shows a circle S1.

FIG. 6. This graph corresponds to the Dirac matrix of two-dimensional naive fermion with periodic

boundary condition. This graph schematically represents the two-dimensional torus T 2. The weight for

each edge from n to n+ µ̂ is +γµ/2 and the one for each edge from n to n− µ̂ is −γµ/2.

C. Diagonalization of Dirac matrix D

In this subsection, we discuss how to diagonalize Dirac matrix D and find the number of zero

eigenvalues for a free four-dimensional naive fermion. Firstly, we will diagonalize E in order to

diagonalize the whole Dirac matrix. We introduce the discrete Fourier transform (DFT) matrix X,

which is consisted of Xjk ≡ ξ(k−1)(j−1)/
√
N with ξ = e−

2πi
N for j, k = 1, 2, · · · , N . It is clear that

DFT matrix is unitary. Then, E and E† satisfy EX = XΛ and E†X = Λ†X, where Λ is a diagonal

matrix as Λ = Diag
[

1, ξ, ξ2, · · · , ξN−1
]

. Since PN = E − E†, the diagonalized PN is given as

PNX = iDiag

[

0, sin
2π

N
, sin

4π

N
, · · · , sin

2(N − 1)π

N

]

X ≡ ΛPN
X. (10)

1D

2D
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8

satisfy orthonormal en′en = δn′n ≡
∏4

i=1 δn′
ini

. δkl is the Kronecker delta. Here we specify that

the order of components ψn in the vector is (1, 1, 1, 1) → · · · → (N, 1, 1, 1) → (1, 2, 1, 1) → · · · →

(N,N, 1, 1) → (1, 1, 2, 1) → · · · → (N,N,N,N) in descending order. Namely,

ψ =

















































ψ(1,1,1,1)

...

ψ(N,1,1,1)

ψ(1,2,1,1,1)

...

ψ(N,N,1,1)

ψ(1,1,2,1)

...

ψ(N,N,N,N)

















































(4)

in term of the vector. Thus, the action of naive fermion can be rewritten as S = ψ̄Dψ =
∑

m

∑

n ψ̄mDmnψn where D is Dirac matrix having Dmn as (m,n) component. For later use, we

now introduce the tensor-product representation: By the tensor product (or Kronecker product),

this matrix can be represented as

D = 1N ⊗ 1N ⊗ 1N ⊗ PN ⊗ γ1

+ 1N ⊗ 1N ⊗ PN ⊗ 1N ⊗ γ2

+ 1N ⊗ PN ⊗ 1N ⊗ 1N ⊗ γ3

+ PN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4
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FIG. 5. This graph corresponds to the Dirac matrix of one dimensional naive fermion with periodic boundary

condition. This graph schematically shows a circle S1.

FIG. 6. This graph corresponds to the Dirac matrix of two-dimensional naive fermion with periodic

boundary condition. This graph schematically represents the two-dimensional torus T 2. The weight for

each edge from n to n+ µ̂ is +γµ/2 and the one for each edge from n to n− µ̂ is −γµ/2.

C. Diagonalization of Dirac matrix D

In this subsection, we discuss how to diagonalize Dirac matrix D and find the number of zero

eigenvalues for a free four-dimensional naive fermion. Firstly, we will diagonalize E in order to

diagonalize the whole Dirac matrix. We introduce the discrete Fourier transform (DFT) matrix X,

which is consisted of Xjk ≡ ξ(k−1)(j−1)/
√
N with ξ = e−

2πi
N for j, k = 1, 2, · · · , N . It is clear that

DFT matrix is unitary. Then, E and E† satisfy EX = XΛ and E†X = Λ†X, where Λ is a diagonal

matrix as Λ = Diag
[

1, ξ, ξ2, · · · , ξN−1
]

. Since PN = E − E†, the diagonalized PN is given as

PNX = iDiag

[

0, sin
2π

N
, sin

4π

N
, · · · , sin

2(N − 1)π

N

]

X ≡ ΛPN
X. (10)

× 4
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There exist two zero eigenvalues in ΛPN
at most when N is an even number. Now, the Dirac matrix

D can be diagonalized as

U†DU = 1N ⊗ 1N ⊗ 1N ⊗ ΛPN
⊗ γ1

+ 1N ⊗ 1N ⊗ ΛPN
⊗ 1N ⊗ γ2

+ 1N ⊗ ΛPN
⊗ 1N ⊗ 1N ⊗ γ3

+ ΛPN
⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(11)

where U is a unitary matrix defined as U =
⊗4

µ=1 X ⊗ 14. It is easy to see the number zero

eigenvalues of the Dirac matrix by introducing eigenvectors of E. We denote eigenvectors of E as

|k〉 for k = 1, 2, · · · , N . They satisfy E |k〉 = ξk−1 |k〉 and 〈k′|k〉 = δk′k. Then, the unitary matrix

U is written as U =
∑

k4,k3,k2,k1
|k4, k3, k2, k1〉 〈k4, k3, k2, k1|⊗ 14, where eigenvectors |k4, k3, k2, k1〉

mean |k4〉 ⊗ |k3〉 ⊗ |k2〉 ⊗ |k1〉. Thus the diagonalization of the Dirac matrix is expressed as

U†DU =
∑

k4,k3,k2,k1



i
4

∑

µ=1

sin

(

2π(kµ − 1)

N

)

γµ



 |k4, k3, k2, k1〉 〈k4, k3, k2, k1| . (12)

If U†DU has zero eigenvalues, Eq. (12) must satisfy an equation below

4
∑

µ=1

sin

(

2π(kµ − 1)

N

)

γµ = 0. (13)

However, since γ matrices are linearly independent, the coefficient of each γ matrices must be zero.

Finally, the conditions for the diagonalized Dirac matrix to have zero eigenvalues are

sin

(

2π(kµ − 1)

N

)

= 0. (14)

The solutions of Eq. (14) are kµ = 1, N2 + 1. In this case, we do not need to take a continuum and

a thermodynamic limit as long as we take an even number as N . Therefore, the number of zero

eigenvalues are 24 since the number of zero eigenvalues is equal to the number of combination of

the solutions in four dimensions. This result is consistent with the well-known number of doublers

in four-dimensional naive fermion.

In the end of this section, we comment on the meaning of kµ. This kµ can be interpreted as a

“shifted momentum" in this case. However, it is not necessarily equivalent to the momentum since

it can be defined also on the lattice in which the momentum cannot be defined. Thus, kµ should

be simply interpreted as a variable for the diagonalization in general.
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FIG. 7. This digraph corresponds to the Dirac matrix of one-dimensional Wilson fermion. The weight of

the loop is M = m+ r. The weight ± for each edge stand for ±(γ1 ∓ r14)/2.

FIG. 8. This digraph corresponds to the Dirac matrix in two-dimensional Wilson fermion. The shape of

this graph is topologically equivalent to two-dimensional torus T 2. The weight for each edge from n to n+ µ̂

is +(γµ − r14)/2 and the one for each edge from n to n− µ̂ is −(γµ + r14)/2. The weight for each loop is

M = m+
∑

µ r.

Furthermore, the weight for each edge from n to n+ 1̂ is +(γ1 − r14)/2 and the one for each edge

from n to n− 1̂ is −(γ1 + r14)/2. In other direction µ = 2, we just replace γ1 by γ2.

The shape of the graph corresponding to Wilson fermion in four dimensions is again topologically

a four-dimensional torus T 4. Furthermore, there is a loop for each vertex, which has the weight

M = m +
∑

µ r. The weight for each edge from n to n + µ̂ is +(γµ − r14)/2 while the wight for

each edge from n to n− µ̂ is −(γµ + r14)/2.

C. Diagonalization of Dirac matrix DW

Firstly, we will diagonalize the mass matrix MW so as to diagonalize the whole Dirac matrix

DW . As with the discussion of naive fermion, we use the DFT matrix X. By using the matrix X

12

IV. WILSON FERMION

A. Dirac matrix of Wilson fermion

In this section we discuss the Dirac operator matrix of Wilson fermion in terms of SGT. The

lattice Wilson fermion action in four dimensions is expressed as

SW =
∑

n

∑

µ

ψ̄nγµDµψn +m
∑

n

ψ̄nψn + r
∑

n

∑

µ

ψ̄n (1− Cµ)ψn , (15)

with Cµ ≡ (T+µ+T−µ)/2. m is a mass parameter and r is a Wilson-fermion parameter. The periodic

boundary condition is imposed on each direction and those intervals are given as 1 ≤ nµ ≤ N .

By investigating the action in a manner similar to Sec. III, it is written as SW = ψ̄DWψ ≡

ψ̄ (D +MW )ψ, where DW is the Dirac matrix of Wilson fermion and MW is mass matrix consisting

of the Wilson term. The mass matrix MW is represented by use of tensor products as

MW = m · 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

+ r ·
{

1N ⊗ 1N ⊗ 1N ⊗MW ⊗ 14 + 1N ⊗ 1N ⊗MW ⊗ 1N ⊗ 14

+ 1N ⊗MW ⊗ 1N ⊗ 1N ⊗ 14 +MW ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14
}

(16)

where MW = 1N − (E + E†)/2 and the product · stands for scalar product.

B. Graphs corresponding to Wilson fermion

As with the case in Sec. III B, we begin with the one-dimensional lattice. For one-dimensional

Wilson fermion, the Dirac matrix is given by

D1d
W = PN ⊗ γ1 +m1N ⊗ 14 + rMW ⊗ 14, (17)

and the graph corresponding to this matrix is depicted in Fig. 7. This graph again represents the

circle S1. However, the difference from the case of naive fermions in Fig. 6 is that Fig. 7 has a loop

with the weight M = m+ r for each vertex.

In two dimensions, the Dirac matrix is

D2d
W = 1N ⊗ PN ⊗ γ1 + PN ⊗ 1N ⊗ γ2

+m (1N ⊗ 1N ⊗ 14) + r (1N ⊗MW +MW ⊗ 1N )⊗ 14

(18)

and the graph corresponding to this matrix is given by Fig. 8. The shape of the graph is topologically

a two-dimensional torus T 2 however there is a loop with the weight M = m+
∑

µ r for each vertex.
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and the graph corresponding to this matrix is depicted in Fig. 7. This graph again represents the

circle S1. However, the difference from the case of naive fermions in Fig. 6 is that Fig. 7 has a loop

with the weight M = m+ r for each vertex.

In two dimensions, the Dirac matrix is

D2d
W = 1N ⊗ PN ⊗ γ1 + PN ⊗ 1N ⊗ γ2

+m (1N ⊗ 1N ⊗ 14) + r (1N ⊗MW +MW ⊗ 1N )⊗ 14

(18)

and the graph corresponding to this matrix is given by Fig. 8. The shape of the graph is topologically

a two-dimensional torus T 2 however there is a loop with the weight M = m+
∑

µ r for each vertex.

14

we can diagonalize MW as

MWX = Diag

[

0, 1− cos
2π

N
, 1− cos

4π

N
, · · · , 1− cos

2(N − 1)π

N

]

X ≡ ΛMW
X. (19)

There is only a single zero eigenvalue in ΛMW
at most if N is even number. As a result the

diagonalization is expressed as

U†MW U = m · 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

+ r ·
{

1N ⊗ 1N ⊗ 1N ⊗ ΛMW
⊗ 14 + 1N ⊗ 1N ⊗ ΛMW

⊗ 1N ⊗ 14

+ 1N ⊗ ΛMW
⊗ 1N ⊗ 1N ⊗ 14 + ΛMW

⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14
}

(20)

where U =
⊗4

µ=1 X ⊗ 14. Since the Dirac matrix of naive fermion D can be diagonalized with

the unitary matrix U , the Dirac matrix of Wilson fermion can be diagonalized as U†DW U =

U†DU + U†MW U . We introduce the eigenvectors |k〉 of E to see the number of zero eigenvalues

in the diagonalized Dirac matrix U†DW U . The diagonalized mass matrix U†MW U is written as

U†MW U =
∑

k4,k3,k2,k1



m14 + r
4

∑

µ=1

{

1− cos

(

2π(kµ − 1)

N

)}

14





× |k4, k3, k2, k1〉 〈k4, k3, k2, k1| .

(21)

Thus the diagonalized Dirac matrix U†DW U is

U†DW U =
∑

k4,k3,k2,k1

[

i
∑

µ

sin

(

2π(kµ − 1)

N

)

γµ + r
∑

µ

{

m

4r
+ 1− cos

(

2π(kµ − 1)

N

)}

14

]

× |k4, k3, k2, k1〉 〈k4, k3, k2, k1| .

(22)

If the diagonalized Dirac matrix U†DW U has zero eigenvalues, Eq. (22) must satisfy a equation

i
∑

µ

sin

(

2π(kµ − 1)

N

)

γµ + r
∑

µ

{

m

4r
+ 1− cos

(

2π(kµ − 1)

N

)}

14 = 0 (23)

Since γ matrices and 14 are linearly independent, the conditions for the diagonalized Dirac matrix

to have zero eigenvalues are given as

sin

(

2π(kµ − 1)

N

)

= 0 (24)

m+ 4r − r
∑

µ

cos

(

2π(kµ − 1)

N

)

= 0 . (25)

1D
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FIG. 9. This digraph corresponds to the Dirac matrix and mass matrix in the two-dimensional domain-wall

fermion. The left graph is equivalent to one-dimensional Wilson fermion. On the other hand, the right

graph corresponds to the extra direction s. The weight +s means +(γ3−14)/2 and −s means −(γ3+14)/2.

! stands for the Cartesian product.

for kµ = 1, 2, · · · , N . As a result, the solutions of kµ for the Dirac matrix DDW to have zero

eigenvalues are given by kµ = 1, 1 +N/2.

Secondly, we will diagonalize the mass matrix MDW . The diagonalized mass matrix is

[

U†MDW U
]

st
= U†

(

M(L)
st ⊗ PL

)

U + U†
(

M(R)
st ⊗ PR

)

U

=
∑

k4,k3,k2,k1

[{

W (k)δst −
N−1
∑

i=1

δsiδi+1 t

}

PL +

{

W (k)δst −
N
∑

l=2

δslδl−1 t

}

PR

]

× |k4, k3, k2, k1〉 〈k4, k3, k2, k1|

(39)

where W (k) ≡ 1 − M0 +
∑

µ

{

1− cos
(

2π(kµ−1)
N

)}

. We now impose conditions, |W (k)| < 1and

Ns = ∞ so that mass matrix MDW has zero eigenvalues. We can determine the range of mass

parameter M0 from |W (k)| < 1.Using the solutions of kµ, W (k) can be classified as

W (k) =























































1−M0 any kµ = 1 in k.

3−M0 one kµ = 1 +N/2 otherwise kµ = 1 in k.

5−M0 two kµ = 1 +N/2 otherwise kµ = 1 in k.

7−M0 three kµ = 1 +N/2 otherwise kµ = 1 in k.

9−M0 any kµ = 1 +N/2 in k.

(40)

Therefore, the relation between the solutions of kµ, the range of mass parameter M0, and the

16

Based on a similar discussion in Sec. III, the action of a free domain-wall fermion can be rewritten

as SDW =
∑

s,t ψ̄s [DDW +MDW ]st ψt for s, t = 1, 2, · · · , Ns, where DDW is the Dirac matrix of

domain-wall fermion and MDW is a mass matrix of domain-wall fermion from four-dimensional

viewpoints. The Dirac matrix DDW is

[DDW ]st =δst ·
(

1N ⊗ 1N ⊗ 1N ⊗ PN ⊗ γ1 + 1N ⊗ 1N ⊗ PN ⊗ 1N ⊗ γ2

+ 1N ⊗ PN ⊗ 1N ⊗ 1N ⊗ γ3 + PN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4
)

(28)

and the mass matrix MDW is

[MDW ]st =
1

2
∆(−)

st · 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ5

+ δst
(

−M0 · 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

+ 1N ⊗ 1N ⊗ 1N ⊗MW ⊗ 14 + 1N ⊗ 1N ⊗MW ⊗ 1N ⊗ 14

+ 1N ⊗MW ⊗ 1N ⊗ 1N ⊗ 14 +MW ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14
)

+
1

2

(

2δst −∆(+)
st

)

· 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

(29)

where ∆(±)
st =

∑N−1
i=1 δsiδi+1 t ±

∑N
l=2 δslδl−1 t. Note that we specify the order of components (ψn)s

in the vector ψs as (1, 1, 1, 1; s) → · · · → (N, 1, 1, 1; s) → (1, 2, 1, 1; s) → · · · → (N,N, 1, 1; s) →

(1, 1, 2, 1; s) → · · · → (N,N,N,N ; s) in a descending order. For simplicity, we introduce the chiral

projection PR and PL for the mass matrix MDW . The matrix MDW can then be rewritten as

[MDW ]st = M(L)
st ⊗ PL +M(R)

st ⊗ PR (30)

M(L)
st =δst

{

(1−M0) · 1N ⊗ 1N ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N−1
∑

i=1

δsiδi+1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(31)

M(R)
st =δst

{

(1−M0) · 1N ⊗ 1N ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N
∑

l=2

δslδl−1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(32)

where PR ≡ (14+γ5)/2 is a projection matrix into right-handed components and PL ≡ (14−γ5)/2

is into left-handed components.
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δsiδi+1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(31)

M(R)
st =δst

{
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+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
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∑

l=2
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(1, 1, 2, 1; s) → · · · → (N,N,N,N ; s) in a descending order. For simplicity, we introduce the chiral

projection PR and PL for the mass matrix MDW . The matrix MDW can then be rewritten as

[MDW ]st = M(L)
st ⊗ PL +M(R)

st ⊗ PR (30)

M(L)
st =δst

{

(1−M0) · 1N ⊗ 1N ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N−1
∑

i=1

δsiδi+1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(31)

M(R)
st =δst

{

(1−M0) · 1N ⊗ 1N ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N
∑

l=2

δslδl−1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(32)

where PR ≡ (14+γ5)/2 is a projection matrix into right-handed components and PL ≡ (14−γ5)/2

is into left-handed components.
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FIG. 9. This digraph corresponds to the Dirac matrix and mass matrix in the two-dimensional domain-wall

fermion. The left graph is equivalent to one-dimensional Wilson fermion. On the other hand, the right

graph corresponds to the extra direction s. The weight +s means +(γ3−14)/2 and −s means −(γ3+14)/2.

! stands for the Cartesian product.

for kµ = 1, 2, · · · , N . As a result, the solutions of kµ for the Dirac matrix DDW to have zero

eigenvalues are given by kµ = 1, 1 +N/2.

Secondly, we will diagonalize the mass matrix MDW . The diagonalized mass matrix is

[

U†MDW U
]

st
= U†

(

M(L)
st ⊗ PL

)

U + U†
(

M(R)
st ⊗ PR

)

U

=
∑

k4,k3,k2,k1

[{

W (k)δst −
N−1
∑

i=1

δsiδi+1 t

}

PL +

{

W (k)δst −
N
∑

l=2

δslδl−1 t

}

PR

]

× |k4, k3, k2, k1〉 〈k4, k3, k2, k1|

(39)

where W (k) ≡ 1 − M0 +
∑

µ

{

1− cos
(

2π(kµ−1)
N

)}

. We now impose conditions, |W (k)| < 1and

Ns = ∞ so that mass matrix MDW has zero eigenvalues. We can determine the range of mass

parameter M0 from |W (k)| < 1.Using the solutions of kµ, W (k) can be classified as

W (k) =























































1−M0 any kµ = 1 in k.

3−M0 one kµ = 1 +N/2 otherwise kµ = 1 in k.

5−M0 two kµ = 1 +N/2 otherwise kµ = 1 in k.

7−M0 three kµ = 1 +N/2 otherwise kµ = 1 in k.

9−M0 any kµ = 1 +N/2 in k.

(40)

Therefore, the relation between the solutions of kµ, the range of mass parameter M0, and the
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2
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+ 1N ⊗ 1N ⊗ 1N ⊗MW ⊗ 14 + 1N ⊗ 1N ⊗MW ⊗ 1N ⊗ 14

+ 1N ⊗MW ⊗ 1N ⊗ 1N ⊗ 14 +MW ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14
)

+
1

2

(

2δst −∆(+)
st

)

· 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

(29)

where ∆(±)
st =

∑N−1
i=1 δsiδi+1 t ±

∑N
l=2 δslδl−1 t. Note that we specify the order of components (ψn)s

in the vector ψs as (1, 1, 1, 1; s) → · · · → (N, 1, 1, 1; s) → (1, 2, 1, 1; s) → · · · → (N,N, 1, 1; s) →

(1, 1, 2, 1; s) → · · · → (N,N,N,N ; s) in a descending order. For simplicity, we introduce the chiral

projection PR and PL for the mass matrix MDW . The matrix MDW can then be rewritten as

[MDW ]st = M(L)
st ⊗ PL +M(R)

st ⊗ PR (30)

M(L)
st =δst

{

(1−M0) · 1N ⊗ 1N ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N−1
∑

i=1

δsiδi+1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(31)

M(R)
st =δst

{

(1−M0) · 1N ⊗ 1N ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N
∑

l=2

δslδl−1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(32)

where PR ≡ (14+γ5)/2 is a projection matrix into right-handed components and PL ≡ (14−γ5)/2

is into left-handed components.
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number of zero eigenvalues are given in Table. I. The result is consistent with the known results of

the domain-wall fermion. It indicates that our method can be applied to the lattice fermion with

Dirichlet boundary conditions.

TABLE I. Classification of the number of zero eigenvalues in DW fermion

the solutions of kµ the range of M0 the number of zero eigenvalues

any kµ = 1 0 < M0 < 2 1

one kµ = 1 +N/2 otherwise kµ = 1 2 < M0 < 4 4

two kµ = 1 +N/2 otherwise kµ = 1 4 < M0 < 6 6

three kµ = 1 +N/2 otherwise kµ = 1 6 < M0 < 8 4

any kµ = 1 +N/2 8 < M0 < 10 1

VI. LATTICE FERMIONS ON FOUR DIMENSIONAL HYPERBALL

In Sec. III,IV,V, we show that there are the spectral digraphs corresponding to the Dirac

matrices of the naive fermion, Wilson fermion, and domain-wall fermion. Then, we find out the

number of fermion species based on the discrete Fourier transformation.

Our question is whether we can obtain the Dirac matrix when the spectral digraph corresponding

to a lattice fermion is given. In this section, we will construct the Dirac matrix from a digraph

corresponding to a certain lattice fermion and derive the number of fermion species by use of

DFT. Through this procedure, we can construct the Dirac matrix for a lattice fermion defined on

complicated lattices, where the momentum cannot be defined. Then, we can derive the number of

the species for fermions on such lattices.

From the next subsection we consider the discretized four-dimensional hyperball B4. This space

is obtaining by imposing the Dirichlet boundary condition on each direction of four dimensions.

A. Graphs corresponding to the Dirac matrix on hyperball

We discuss the graph corresponding to the fermion defined on the four-dimensional hyperball.

For simplicity, we first study a graph corresponding to lattice fermion on the discretized one-

dimensional ball B1 (or line segment). The digraph corresponding to the discretized B1 is given as

Fig. 10. Note that the hopping between two ends in position space is prohibited. The Dirac matrix

corresponding to this graph is given by

DB1 = QN ⊗ γ1 (41)
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FIG. 10. This digraph corresponds to the lattice fermion on the discretized B1.

where (QN )ab ≡
(

∑N−1
i=1 δaiδi+1 b −

∑N
l=2 δalδl−1 b

)

/2. This matrix QN is written as

QN =
1

2





































0 1 0 0 0 0

−1 0 1 · · · 0 0 0

0 −1 0 0 0 0
...

. . .
...

0 0 0 0 1 0

0 0 0 · · · −1 0 1

0 0 0 0 −1 0





































(42)

The prohibition of hopping in the two ends is represented by the two elements (1, N) and (N, 1)

which are zero in this case.

For the discretized two-dimensional ball B2 (or disk), the digraph is given as Fig. 11. The Dirac

matrix in two dimensions is given by

DB2 = 1N ⊗QN ⊗ γ1 +QN ⊗ 1N ⊗ γ2. (43)

As seen from Figs. 10 and 11, the translational symmetry is partially broken since there is a

boundary.

Through a parallel discussion, we find the shape of the digraph corresponding to fermions on

the discretized three dimensional ball B3 become a box, where the sites in this space is expressed

by (n1, n2, n3) whith 1 ≤ ni ≤ N . The Dirac matrix on the discretized B3 is given as

DB3 = 1N ⊗ 1N ⊗QN ⊗ γ1 + 1N ⊗QN ⊗ 1N ⊗ γ2 +QN ⊗ 1N ⊗ 1N ⊗ γ3. (44)
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FIG. 10. This digraph corresponds to the lattice fermion on the discretized B1.
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The prohibition of hopping in the two ends is represented by the two elements (1, N) and (N, 1)
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number of zero eigenvalues are given in Table. I. The result is consistent with the known results of

the domain-wall fermion. It indicates that our method can be applied to the lattice fermion with

Dirichlet boundary conditions.

TABLE I. Classification of the number of zero eigenvalues in DW fermion

the solutions of kµ the range of M0 the number of zero eigenvalues

any kµ = 1 0 < M0 < 2 1

one kµ = 1 +N/2 otherwise kµ = 1 2 < M0 < 4 4

two kµ = 1 +N/2 otherwise kµ = 1 4 < M0 < 6 6

three kµ = 1 +N/2 otherwise kµ = 1 6 < M0 < 8 4

any kµ = 1 +N/2 8 < M0 < 10 1

VI. LATTICE FERMIONS ON FOUR DIMENSIONAL HYPERBALL

In Sec. III,IV,V, we show that there are the spectral digraphs corresponding to the Dirac

matrices of the naive fermion, Wilson fermion, and domain-wall fermion. Then, we find out the

number of fermion species based on the discrete Fourier transformation.

Our question is whether we can obtain the Dirac matrix when the spectral digraph corresponding

to a lattice fermion is given. In this section, we will construct the Dirac matrix from a digraph

corresponding to a certain lattice fermion and derive the number of fermion species by use of

DFT. Through this procedure, we can construct the Dirac matrix for a lattice fermion defined on

complicated lattices, where the momentum cannot be defined. Then, we can derive the number of

the species for fermions on such lattices.

From the next subsection we consider the discretized four-dimensional hyperball B4. This space

is obtaining by imposing the Dirichlet boundary condition on each direction of four dimensions.

A. Graphs corresponding to the Dirac matrix on hyperball

We discuss the graph corresponding to the fermion defined on the four-dimensional hyperball.

For simplicity, we first study a graph corresponding to lattice fermion on the discretized one-

dimensional ball B1 (or line segment). The digraph corresponding to the discretized B1 is given as

Fig. 10. Note that the hopping between two ends in position space is prohibited. The Dirac matrix

corresponding to this graph is given by

DB1 = QN ⊗ γ1 (41)
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FIG. 11. This digraph corresponds to fermions on the discretized B2. As with the one-dimensional case,

the weight of blue edge is +γµ/2 and the one of the red edge is −γµ/2.

In a similar manner we can construct the digraph and the corresponding Dirac matrix on the

discretized four dimensional hyperball B4. In the next subsection, we will investigate the lattice

action on the discretized B4.

B. Lattice action on four-dimensional hyperball

The free naive fermion action on four-dimensional discretized hyperball B4 is

SB4 =
∑

n

∑

µ

ψ̄nγµDµψn , (45)

where the lattice sites are n = (n1, n2, n3, n4) for 1 ≤ ni ≤ N and Dirichlet boundary conditions

are imposed on each direction. This action is also expressed as SB4 = ψ̄DB4ψ. The Dirac matrix

DB4 is

DB4 = 1N ⊗ 1N ⊗ 1N ⊗QN ⊗ γ1

+ 1N ⊗ 1N ⊗QN ⊗ 1N ⊗ γ2

+ 1N ⊗QN ⊗ 1N ⊗ 1N ⊗ γ3

+QN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4.

(46)

C. Number of species on four-dimensional hyperball

Firstly, we will discuss diagonalization of the matrix QN so as to derive the number of species on

B4. This matrix can be diagonalized by use of a unitary matrix Y defined as (Y )ab = αib sin
(

abπ
N+1

)

,
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C. Number of species on four-dimensional hyperball

Firstly, we will discuss diagonalization of the matrix QN so as to derive the number of species on

B4. This matrix can be diagonalized by use of a unitary matrix Y defined as (Y )ab = αib sin
(

abπ
N+1

)

,

1D

2D



Lattice fermion as spectral graph Yumoto, TM (21)

◆ Naive fermion on 4D hyperball
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where α is a normalization coefficient [75, 76]. By using the unitary matrix, the diagonalized matrix

is given as

QNY = iDiag

[

cos

(

π

N + 1

)

, cos

(

2π

N + 1

)

, · · · , cos
(

Nπ

N + 1

)]

≡ ΛQN
X . (47)

Note that there is a single zero eigenvalue in ΛQN
at most when the number of sites in each direction

N is odd number. The Dirac matrix DB4 is diagonalized as

V†DB4 V = 1N ⊗ 1N ⊗ 1N ⊗ ΛQN
⊗ γ1

+ 1N ⊗ 1N ⊗ ΛQN
⊗ 1N ⊗ γ2

+ 1N ⊗ ΛQN
⊗ 1N ⊗ 1N ⊗ γ3

+ ΛQN
⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(48)

where V is a unitary matrix defined as V ≡
⊗4

µ=1 Y ⊗14. To study eigenvalues in the Dirac matrix

DB4 , we introduce eigenvector |λ〉 satisfying QN |λ〉 = i cos
(

λπ
N+1

)

|λ〉 for λ = 1, 2, · · · , N . The

diagonalized Dirac matrix is then written

V†DB4 V =
∑

λ1,λ2,λ3,λ4



i
4

∑

µ=1

cos

(

λµπ

N + 1

)

γµ



 |λ1,λ2,λ3,λ4〉 〈λ1,λ2,λ3,λ4| (49)

where |λ1,λ2,λ3,λ4〉 = |λ1〉 ⊗ |λ2〉 ⊗ |λ3〉 ⊗ |λ4〉. For the diagonal matrix V†DB4 V to have zero

eigenvalues, the following equation must be satisfied,

∑

µ

cos

(

λµπ

N + 1

)

γµ = 0 . (50)

Furthermore, since γ matrices is linearly independent, this equation is rewritten as

cos

(

λµπ

N + 1

)

= 0. (51)

The solution of Eq. 51 is λµ = N+1
2 . If the number of sites in the each direction is even, there

is no zero eigenvalues in the Dirac matrix. As a result, there are no solutions λµ both satisfying

Eq. 51 and belonging to the set of integer, {1, 2, · · · , N}. On the other hand, when N is the odd

number, there is a single zero eigenvalue. Therefore, there is one physical pole on the bulk of four-

dimensional hyperball when the number of sites in each direction is the odd number. If we take a

thermodynamical limit for even N , one of the non-zero eigenvalue approaches to zero. This result

is true in any dimensional lattice since γ matrices in any dimension is linearly independent. Thus,

lattice fermions on the finite-volume lattice of d-dimensional hyperball Bd have one physical pole

on the bulk.
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dimensional hyperball when the number of sites in each direction is the odd number. If we take a

thermodynamical limit for even N , one of the non-zero eigenvalue approaches to zero. This result
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1 species in bulk !
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◆ Naive fermion on sphere

している．ここでは非トーラス 格子である S2格子上においても，no-go定理が適用不可能であ
ることを 2つの構成方法から確認していく．
まず S2格子を構成するにあたり，構成方法について位相幾何学的手法から考察していく．構成

方法として 2つの方法が考えられる．

2つのD2によって構成される 2次元球面

まず一つ目の構成方法として，2つのD2格子の境界のみを同一視する方法を考える．これを格
子離散化した 9個の格子点を持つ格子は図 3.5である．この構成方法では北極と南極が顕に生じ
ていることがわかる．

1 2 3 2 1

4
5 6 5′

4

7 8 9 8 7

図 3.5: 2次元ディスクD2の境界を張り合わせて構成される S2格子．数字は各格子点の番地を表
し，5, 5′は S2上の北極と南極に対応している．

この格子から得られる格子フェルミオン作用は次の通りである．

SF = ψ̄1 {σ1ψ2 + σ2ψ4}+ ψ̄2 {σ1 (ψ3 − ψ1) + σ2 (ψ5 − ψ5′)}
+ ψ̄3 {−σ1ψ2 + σ2ψ6}+ ψ̄4 {σ1 (ψ5 − ψ5′) + σ2 (ψ7 − ψ1)}
+ ψ̄5 {σ1 (ψ6 − ψ4) + σ2 (ψ8 − σ2ψ2)}+ ψ̄5′ {σ1 (ψ4 − ψ6) + σ2 (ψ8 − ψ2)}
+ ψ̄6 {σ1 (ψ5′ − ψ5) + σ2 (ψ9 − ψ3)}+ ψ̄7 {σ1ψ8 − σ2ψ4}
+ ψ̄8 {σ1 (ψ9 − ψ7) + σ2 (ψ5′ − ψ5)}+ ψ̄9 {−σ1ψ8 − σ2ψ6}

(3.12)

この作用におけるDirac演算子は以下のようになる．

Dsphere1 =




Υ1 Υ2 0

ΥT
4 Υ3 Υ4

0 ΥT
2 Υ1



 (3.13)

34

-1.0 -0.5 0.0 0.5 1.0

-2
-1

0
1

2

Re

Im

図 3.6: 2つのD2によって構成される S2上のDirac演算子の固有値分布図．このときゼロ固有値
は 2重に縮退してる．

このとき，Dirac演算子のゼロ固有値は 2つ出現し，これらの固有状態の chiralityは正と負が
対となっていた．この固有値の分布図は図 3.6となる．この結果から，D2格子と同様に S2格子
でも no-go定理と矛盾することがわかる．したがって S2格子上においても no-go定理は適用でき
ないことが示された．さらに注目すべき点としてゼロ固有値が 2重に縮退している点であり，こ
れは最小の doubler数（2個）であるminimal doublingとなっている．
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3次元に埋め込まれた 2次元球面

0 1 2

1

2

1
2

図 3.7: 26個の格子点を持つ 3次元に埋め込まれた S2格子．3方向の数字はそれぞれの次元の成
分を表す．

次の構成方法として，3次元ボックスの中身を抜いた 2次元球面を格子離散化した格子につい
て考える．具体的に 26個の格子点を持つ S2格子は図 3.7である．このときの格子フェルミオン
作用やDirac演算子の詳細は付録D.1に載せている．
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図 3.8: 3次元に埋め込まれた S2上の Dirac演算子の固有値分布図．このときゼロ固有値は 2重
に縮退している．

この格子上におけるDirac演算子のゼロ固有値は 2つ出現し，またその固有状態の chiralityは
正と負が対となっていた．この固有値の分布図は図 3.8となる．この結果は前述の 2つのD2格子
の境界のみを張り合わせた S2格子と同じ結果となった．このことから構成方法に依らず，S2格
子上においても no-go定理を適用することは不可能であるという結論が得られた．さらに異なる
2つの構成方法において，doublerの個数は 2個という結果から doublerの個数は Euler数とは別
のの topologyに依存しているという理解が得られた．
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Empirically 
2 species !

2 zero modes

2 zero modes



Lattice fermion as spectral graph Yumoto, TM (21)

Lattice field theory Spectral graph theory

Lattice fermion Directed and Weighted 
spectral graph

# of Fermion species Nullity of 
spectral matrix

We can use known theorems to study lattice field theory.



3.  New conjecture on fermion doubling



Nielsen-Ninomiya’s no-go theorem is just no-go theorem.
It never tells us how many fermion species emerge

given a lattice fermion formulation.

Is there a theorem which informs us of # of species?



Reconsider Naive and Wilson Yumoto, TM (22)
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)
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What is the meaning of the numbers?

3D Wilson
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(π,0) (π,π)(0,0)
Figure 1. Schematic plot of distribution of the 2d free Wilson Dirac spectrum � with MW = m+2r = 0
in the complex plane. The central branch crosses the origin. The number in each branch stands for
numbers of species at the branch.

On each site, there is a two-component spinor, so D is regarded as the linear operator, D :

C2NxNy ! C2NxNy . We consider the eigenvalue problem,

D|R�i = �|R�i, (2.11)
hL�|D = �hL�|, (2.12)

where � 2 C is called the Dirac eigenvalue, and |R�i and hL�| are the corresponding right-
and left-eigenvectors, respectively. For the free theory, we can diagonalize D by Fourier trans-
formation, and we obtain that

�(px, py) = ±i
q
sin2 px + sin2 py � r(cos px + cos py), (2.13)

where (px, py) mod 2⇡ denotes the lattice momentum. Blue shaded region of Fig. 1 shows the
distribution of this �(px, py) in the complex plane. We note that �(px, py) = 0 only has the
two solutions,

(px, py) = (⇡, 0), (0, ⇡), (2.14)

so there are two gappless fermions at the central branch.
Let us go back to the discussion for the Dirac operator with gauged link variables. As a

consequence of U †
n,µ = Un+µ̂,�µ, we obtain T †

µ = T�1
µ = T�µ. This ensures the �3-hermiticity

of the Wilson-Dirac operator,
�3D�3 = D†. (2.15)

Therefore, by taking the adjoint of the eigenvalue equations, we get

D�3|L�i = �⇤�3|L�i, (2.16)
hR�|�3D = �⇤hR�|�3, (2.17)

This shows that when � 2 C \ R is in the Dirac spectrum so is �⇤.

– 5 –

1 12

What is the meaning of the numbers?

2D Wilson

(0,π)
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What is the meaning of the numbers?
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Intro Construction Index Overlap Improvements Concl.

Construction

• Idea # 1: Nf = 4 → 2
Include taste-dependent mass term: ±ρ for left-/right-handed tastes
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Then add mass (ie. shift spectrum) to make Nf = 2 massless flavors!
Drawback: additive mass renormalization, ie. fine-tuning for mq → 0

Ph. de Forcrand QCDNA, Sept. 2010 Overlap staggered fermions
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The reason why p=π becomes zero of Dirac 
operator is "periodicity"
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It means these numbers are related to certain 
topological invariants
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・Topological invariant

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)  =  rank of Hn(M)=Ker∂n/Im∂n+1

・4D torus

β0(M) = 1 β1(M) = 4 β2(M) = 6 β3(M) = 4 β4(M) = 1

Sum of Betti numbers is 16 → # of naive fermion species !
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・Topological invariant

・3D torus

β0(M) = 1 β1(M) = 3 β2(M) = 3 β3(M) = 1

Sum of Betti numbers is 8 → # of naive fermion species !

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)  =  rank of Hn(M)=Ker∂n/Im∂n+1
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・Topological invariant

・2D torus

β0(M) = 1 β1(M) = 2 β2(M) = 1

Sum of Betti numbers is 4 → # of naive fermion species !

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)  =  rank of Hn(M)=Ker∂n/Im∂n+1
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・Topological invariant

・D-dim hyperball

β0(M) = 1 β1(M) = 0 β2(M) = 0  …..

Sum of Betti numbers is 1 → # of bulk fermion species !

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)  =  rank of Hn(M)=Ker∂n/Im∂n+1



Yumoto, TM (22)

・Topological invariant

β0(M) = 1

Sum of Betti numbers is 1 → # of bulk fermion species !

Topological invariants 20

FIG. 10. This digraph corresponds to the lattice fermion on the discretized B1.

where (QN )ab ≡
(

∑N−1
i=1 δaiδi+1 b −

∑N
l=2 δalδl−1 b

)

/2. This matrix QN is written as

QN =
1

2





































0 1 0 0 0 0

−1 0 1 · · · 0 0 0

0 −1 0 0 0 0
...

. . .
...

0 0 0 0 1 0

0 0 0 · · · −1 0 1

0 0 0 0 −1 0





































(42)

The prohibition of hopping in the two ends is represented by the two elements (1, N) and (N, 1)

which are zero in this case.

For the discretized two-dimensional ball B2 (or disk), the digraph is given as Fig. 11. The Dirac

matrix in two dimensions is given by

DB2 = 1N ⊗QN ⊗ γ1 +QN ⊗ 1N ⊗ γ2. (43)

As seen from Figs. 10 and 11, the translational symmetry is partially broken since there is a

boundary.

Through a parallel discussion, we find the shape of the digraph corresponding to fermions on

the discretized three dimensional ball B3 become a box, where the sites in this space is expressed

by (n1, n2, n3) whith 1 ≤ ni ≤ N . The Dirac matrix on the discretized B3 is given as

DB3 = 1N ⊗ 1N ⊗QN ⊗ γ1 + 1N ⊗QN ⊗ 1N ⊗ γ2 +QN ⊗ 1N ⊗ 1N ⊗ γ3. (44)

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)  =  rank of Hn(M)=Ker∂n/Im∂n+1

・D-dim hyperball
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・Topological invariant

・T4 × R1

Sum of Betti numbers is 16 → maximal # of species !

β0(M) = 1 β1(M) = 4 β2(M) = 6 β3(M) = 4 β4(M) = 1 β5(M) = 0

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)  =  rank of Hn(M)=Ker∂n/Im∂n+1
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・Topological invariant

・T2 × R2

Sum of Betti numbers is 4 → maximal # of species !

β0(M) = 1 β1(M) = 2 β2(M) = 1 β3(M) = 0 β4(M) = 0

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)  =  rank of Hn(M)=Ker∂n/Im∂n+1
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・Topological invariant

・2D Spheres

Sum of Betti numbers is 2 → # of fermion species !

β0(M) = 1 β1(M) = 0 β2(M) = 1

Kamata, Matsuura, TM, Ohta (16)
Yumoto, TM (21)

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)  =  rank of Hn(M)=Ker∂n/Im∂n+1
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1+1

sum of βn(M) 

1D torus

maximum # of species

2D torus

3D torus

4D torus

Hyperball

Sphere

TD × Rd

2

1+2+1 4

1+3+3+1 8

1+4+6+4+1 16

1+0+0+…. 1    for bulk

1+0+0+…+1 2

2D + 0 2D

Topological invariants

TD (1+1)D 2D



Conjecture on fermion species Yumoto, TM (22)

A sum of Betti numbers of background space is 

a maximal number of fermion species 


when the fermion is defined on the discretized space.

・Conjecture

How can we prove it?



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent 
to each of nullity of the Dirac matrix on 1D torus or 1D 
ball by regarding lattice fermion as chain complex.

By use of Künneth theorem, elevate the above argument to 
higher dimensional space such as 4D Torus and Hyperball.

Classify necessary conditions and complete proof.

キネットの公式・チェイン複体のホモロジー
普遍係数定理・コホモロジー群

キネットの公式の証明
キネットの公式は次のものである。C∗, C′

∗を自由加群からなるチェイン複体とする。

Hn(C∗ ⊗ C′
∗) ∼=

⊕

p+q=n

Hp(C∗) ⊗ Hq(C′
∗) ⊕

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C′
∗))

証明は

0 −→
⊕

p+q=n

Hp(C∗)⊗Hq(C
′
∗)

I−−−→ Hn(C∗ ⊗ C′
∗) −→

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗)) −→ 0

が分裂する完全系列であることを示す。
まず、Zp = ker(∂ : Cp −→ Cp−1)とし、Bp = im(∂ : Cp −→ Cp−1)とする（普通は

Bp は Bp−1 と書かれる）。このとき、

0 −→ Z∗
i−→ C∗

∂−→ B∗ −→ 0

は自由加群からなるチェイン複体の短完全系列である。よって、sp : Bp −→ Cp で
∂ ◦ sp = idBp

となるもの、あるいは rp : Cp −→ Zpで、rp ◦ ∂ = idZp となるものが存
在する（このことを「分裂する」という）。とくに Cp

∼= Zp ⊕ Bp である。
B∗ は自由加群だから、完全系列

0 −→ Z∗ ⊗ C′
∗

i−→ C∗ ⊗ C′
∗

∂−→ B∗ ⊗ C′
∗ −→ 0

が得られる。（ここで p : C∗ ⊗C′
∗ −→ Z∗ ⊗C′

∗で p ◦ i = idC∗⊗C′
∗ となるものがある。）

このチェイン複体の短完全系列から、ホモロジー群の長完全系列が得られる。

Hn+1(B∗ ⊗ C′
∗)

∂−→ Hn(Z∗ ⊗ C′
∗) −→ Hn(C∗ ⊗ C′

∗) −→ Hn(B∗ ⊗ C′
∗)

∂−→ Hn−1(Z∗ ⊗ C′
∗)

ここで、
#

Zp−1 ⊗ C′
q

0←−−− Zp ⊗ C′
q#(−1)p∂′′

Zp ⊗ C′
q−1

#

Bp−1 ⊗ C′
q

0←−−− Bp ⊗ C′
q#(−1)p∂′′

Bp ⊗ C′
q−1

であり F が自由加群のときH∗(F ⊗ C′
∗) ∼= F ⊗ H∗(C′

∗)となるから、
⊕

p+q=n+1

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)

∂ の定義をみると、∂ = j ⊗ id (j : Bp+1 = Bp ⊂ Zp)であることがわかる。
⊕

p+q=n

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n−1

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)



Sketch of proof Yumoto, TM (22)

・1D torus lattice fermion as Chain complex 

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
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N−1∑

l=1
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)
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}

=
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k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
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k=1
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∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: 1-simplices of complex           →  edges (links) 

: simplical complex   →  graph (1D lattice) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: boundaries of simplices   →  vertices (lattice points) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: coefficients of simplices (should be abelian ring) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
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k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
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k=1
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∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1
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∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)





−1

0

·

·

1

0





(12)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)





−1

0

·

·

1

0





(12)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)





−1

0

·

·

1

0





(12)

1



Sketch of proof Yumoto, TM (22)

・1D torus lattice fermion as Chain complex 

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)
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(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is
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where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
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defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1
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where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as
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(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is
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since ∂1c′1 = a
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N ). It is denoted by βn(L
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β1(L
(p)
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N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =
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σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1
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σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
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(
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=
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the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1
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)
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even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)
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1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)





−1

0

·

·

1

0





(12)

1



Sketch of proof Yumoto, TM (22)

・1D torus lattice fermion as Chain complex 

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1

………

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1

represented as

linearly


independent vectors

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)
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N is
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This result that βn(L
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

・prove β1=1 is equivalent to degeneracy of Dirac matrix

β1(M)  =  rank of H1(M)=Ker∂1
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(1)
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where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is
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since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
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N ). It is denoted by βn(L
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This result that βn(L
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N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · ·+ wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. ?? is a = 1
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where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.
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C1(L(p)
N ) ≡

{
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k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
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where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is
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where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑
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〈vk, vk+1〉 (6)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L
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N ). By this definition, the first Betti number is
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N ) = 1 since H1(L

(p)
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This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · ·+ wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. ?? is a = 1
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σ1 for
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0 = ∂1c
′
1 =
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where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.
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(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
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N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with
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= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is
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since ∂1c′1 = a
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k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is
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N ). It is denoted by βn(L
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This result that βn(L
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where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,
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Im ∂1 ≡
{
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(
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) ∣∣∣∣∣ an,n+1 ∈ Q

}

=
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)
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1 Periodic boundary condition

1.1 The first Betti number
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}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as
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= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)
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since ∂1c′1 = a
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∑N
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This result that βn(L
(p)
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N since one of the linear dependents
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where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

・prove β1=1 is equivalent to degeneracy of Dirac matrix
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= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.
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・prove β1=1 is equivalent to degeneracy of Dirac matrix



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.
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We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
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= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
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k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
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N ). It is denoted by βn(L
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N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.
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N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
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= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

D1D =
1

2

(
w1, w2 · · · wN

)
(10)
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・prove β1=1 is equivalent to degeneracy of Dirac matrix



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(10)
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(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
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(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is
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N ) = 1 since H1(L
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N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is
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N ). It is denoted by βn(L
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D1D =
1

2

(
w1, w2 · · · wN

)
(10)
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satisfy orthonormal en′en = δn′n ≡
∏4

i=1 δn′
ini

. δkl is the Kronecker delta. Here we specify that

the order of components ψn in the vector is (1, 1, 1, 1) → · · · → (N, 1, 1, 1) → (1, 2, 1, 1) → · · · →

(N,N, 1, 1) → (1, 1, 2, 1) → · · · → (N,N,N,N) in descending order. Namely,

ψ =
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






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








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










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



ψ(1,1,1,1)

...

ψ(N,1,1,1)

ψ(1,2,1,1,1)

...

ψ(N,N,1,1)

ψ(1,1,2,1)

...

ψ(N,N,N,N)


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

(4)

in term of the vector. Thus, the action of naive fermion can be rewritten as S = ψ̄Dψ =
∑

m

∑

n ψ̄mDmnψn where D is Dirac matrix having Dmn as (m,n) component. For later use, we

now introduce the tensor-product representation: By the tensor product (or Kronecker product),

this matrix can be represented as

D = 1N ⊗ 1N ⊗ 1N ⊗ PN ⊗ γ1

+ 1N ⊗ 1N ⊗ PN ⊗ 1N ⊗ γ2

+ 1N ⊗ PN ⊗ 1N ⊗ 1N ⊗ γ3

+ PN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(5)

where 1N is an identity matrix of order N and PN is a square matrix of order N [72–74]. The

components of the matrix PN is defined as (PN )ab ≡ (Eab −E−1
ab )/2 where Eab ≡

∑N−1
i=1 δaiδi+1 b +

δaNδ1b and E−1
ab ≡ δa1δNb +

∑N
i=2 δaiδi−1 b for a, b = 1, 2, · · · , N . PN is explicitly written as

PN =
1

2
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

0 1 0 0 0 −1

−1 0 1 · · · 0 0 0

0 −1 0 0 0 0
...

. . .
...
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0 0 0 · · · −1 0 1

1 0 0 0 −1 0
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
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(6)

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

D1D =
1

2

(
w1, w2 · · · wN

)
(10)
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·

·
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
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1

・prove β1=1 is equivalent to degeneracy of Dirac matrix



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number
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{
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k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
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= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
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where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (6)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · ·+ wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. ?? is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(7)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(8)
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We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
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N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with
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= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is
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since ∂1c′1 = a
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N is
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N ). It is denoted by βn(L
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This result that βn(L
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where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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The zero dimensional chain complex C0 is given as C0 ≡
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) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=
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We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
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This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1
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σ1 for
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(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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zero mode 

(fermion species)



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

・prove β0=1 is equivalent to degeneracy of Dirac matrix

degeneracy (nullity) 
of Dirac matrix

↓
zero mode 

(fermion species)

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)





−1

0

·

·

1

0





(12)

1

β0(M)  =  rank of H0(M)=ker∂0/Im∂1



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent 
to each of nullity of the Dirac matrix on 1D torus or 1D 
ball by regarding lattice fermion as chain complex.

By use of Künneth theorem, elevate the above argument to 
higher dimensional space such as 4D Torus and Hyperball.

Classify necessary conditions and complete proof.

キネットの公式・チェイン複体のホモロジー
普遍係数定理・コホモロジー群

キネットの公式の証明
キネットの公式は次のものである。C∗, C′

∗を自由加群からなるチェイン複体とする。

Hn(C∗ ⊗ C′
∗) ∼=

⊕

p+q=n

Hp(C∗) ⊗ Hq(C′
∗) ⊕

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C′
∗))

証明は

0 −→
⊕

p+q=n

Hp(C∗)⊗Hq(C
′
∗)

I−−−→ Hn(C∗ ⊗ C′
∗) −→

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗)) −→ 0

が分裂する完全系列であることを示す。
まず、Zp = ker(∂ : Cp −→ Cp−1)とし、Bp = im(∂ : Cp −→ Cp−1)とする（普通は

Bp は Bp−1 と書かれる）。このとき、

0 −→ Z∗
i−→ C∗

∂−→ B∗ −→ 0

は自由加群からなるチェイン複体の短完全系列である。よって、sp : Bp −→ Cp で
∂ ◦ sp = idBp

となるもの、あるいは rp : Cp −→ Zpで、rp ◦ ∂ = idZp となるものが存
在する（このことを「分裂する」という）。とくに Cp

∼= Zp ⊕ Bp である。
B∗ は自由加群だから、完全系列

0 −→ Z∗ ⊗ C′
∗

i−→ C∗ ⊗ C′
∗

∂−→ B∗ ⊗ C′
∗ −→ 0

が得られる。（ここで p : C∗ ⊗C′
∗ −→ Z∗ ⊗C′

∗で p ◦ i = idC∗⊗C′
∗ となるものがある。）

このチェイン複体の短完全系列から、ホモロジー群の長完全系列が得られる。

Hn+1(B∗ ⊗ C′
∗)

∂−→ Hn(Z∗ ⊗ C′
∗) −→ Hn(C∗ ⊗ C′

∗) −→ Hn(B∗ ⊗ C′
∗)

∂−→ Hn−1(Z∗ ⊗ C′
∗)

ここで、
#

Zp−1 ⊗ C′
q

0←−−− Zp ⊗ C′
q#(−1)p∂′′

Zp ⊗ C′
q−1

#

Bp−1 ⊗ C′
q

0←−−− Bp ⊗ C′
q#(−1)p∂′′

Bp ⊗ C′
q−1

であり F が自由加群のときH∗(F ⊗ C′
∗) ∼= F ⊗ H∗(C′

∗)となるから、
⊕

p+q=n+1

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)

∂ の定義をみると、∂ = j ⊗ id (j : Bp+1 = Bp ⊂ Zp)であることがわかる。
⊕

p+q=n

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n−1

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)



Summary

• Wilson fermion has an unknown aspect charming in both 
theoretical and practical terms.

• CB Wilson Schwinger model is in the same universality class of 
XXZ spin chain.

• Lattice fermions are interpreted as spectral graphs. It means we 
can study them in terms of topology of graphs.

• New conjecture on fermion doubling is proposed:
   The maximal number of doublers is the sum of Betti numbers.



• Wilson fermion has an unknown aspect charming in both 
theoretical and practical terms.

• CB Wilson fermion is in the same universality class of XXZ 
spin chain.

• Lattice fermions are interpreted as spectral graphs. It means we 
can study them in terms of topology of graphs.

• New conjecture on fermion doubling is proposed:
   The maximal number of doublers is the sum of Betti numbers

Summary

I hope you join Yumoto’s talk too!



・G-Symmetry Protected Topological phase (SPT)

1. Unique ground state with trivial gap as long as G is unbroken
2. Gap should be closed when moving to another SPT
3. Massless modes at boundary btwn two different SPTs
4. ’t Hooft anomaly cancelled btwn bulk & boundary with gauged G

All ’t Hooft anomalies are (expected to be) classified by SPTs.

Kapustin (14), Witten (15), Yonekura (16), Yonekura, Witten (19) 

Wen, et.al., (13)

Symmetry-protected 
topological phase



Symmetry-protected 
topological phase

ex.) (2+1)-dim free massive Dirac fermion = U(1) SPT = IQHS

m < 0 m > 0

Z = 1Z = e�2⇡i⌘

= e
i

4⇡

R
AdA

Zbndry

(η: APS η-invariant                 )⌘
X

i

sgn[�i]

2-dim chiral fermions



Symmetry-protected 
topological phase

ex.) (2+1)-dim free massive Dirac fermion = U(1) SPT = IQHS

m < 0 m > 0

Z = 1

2-dim chiral fermions

Z = e�2⇡i⌘

= e
i

4⇡

R
AdA

Zbulke
i

4⇡

R
F · Zbndrye

� i
4⇡

R
F = ZtotalZtotal = Zbulk · Zbndry

Zbndry

’t Hooft anomaly is cancelled between bulk and boundary

APS index theorem

cf.)Fukaya, Onogi, 

  Yamaguchi,et.al.(17-19)
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The free action is just given by

S5dW2 =
1

2

X

n

5X

µ=1

 ̄n�µ( n+µ̂ �  n�µ̂)

�
r

2

X

n

 ̄n

2

4
4X

j=1

⇣
 n+ĵ +  n�ĵ

⌘
+ 4( n+5̂

+  n�5̂
)

3

5 . (A2)

The 32 species are split into nine branches with 1, 4, 6, 4, 2, 4, 6, 4 and 1 flavors. The central

branch corresponds to the two zeros of the Dirac operator (0, 0, 0, 0,⇡) and (⇡,⇡,⇡,⇡, 0). We note

that this fermion action explicitly breaks 5d hypercubic symmetry, while it keeps 4d hypercubic

symmetry and other requisite discrete symmetries.

Appendix B: Staggered and staggered-Wilson symmetries

In this appendix, we list the staggered discrete symmetries including, staggered charge conjuga-

tion, shift, axis reversal and staggered rotation [17, 19]. We also discuss their explicit breaking in

staggered-Wilson fermions [28, 29, 91]

The staggered charge-conjugation transformation is given by

C0 : �x ! ✏x�̄
T
x , �̄x ! �✏x�

T
x , Ux,⌫ ! U⇤

x,⌫ . (B1)

The four-hopping flavored-mass term is invariant under this transformation, but the two-hopping

flavored-mass term is not invariant.

The shift transformation is given by

⌅µ : �x ! ⇣µ(x)�x+µ̂, �̄x ! ⇣µ(x)�̄x+µ̂, Ux,⌫ ! Ux+µ̂,⌫ , (B2)

with ⇣1(x) = (�1)x2+x3+x4 , ⇣2(x) = (�1)x3+x4 , ⇣3(x) = (�1)x4 and ⇣4(x) = 1. This transformation

flips the sign of the both types of flavored-mass terms.

The axis reversal transformation is given by

Iµ : �x ! (�1)xµ�x0 , �̄x ! (�1)xµ�̄x0 , Ux,⌫ ! Ux0,⌫ , (B3)

where x ! x0 means xµ ! �xµ, x⇢ ! x⇢ with ⇢ 6= µ. In particular, we denote the spatial inversion

as Is = I1I2I3. It flips the signs of the both flavored-mass terms.

The staggered rotational transformation is given by

R⇢� : �x ! SR(R̃
�1x)�R̃�1x, �̄x ! SR(R̃

�1x)�̄R̃�1x, Ux,⌫ ! UR̃x,⌫ , (B4)
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The four-hopping flavored-mass term is invariant under this transformation, but the two-hopping

flavored-mass term is not invariant.

The shift transformation is given by

⌅µ : �x ! ⇣µ(x)�x+µ̂, �̄x ! ⇣µ(x)�̄x+µ̂, Ux,⌫ ! Ux+µ̂,⌫ , (B2)

with ⇣1(x) = (�1)x2+x3+x4 , ⇣2(x) = (�1)x3+x4 , ⇣3(x) = (�1)x4 and ⇣4(x) = 1. This transformation

flips the sign of the both types of flavored-mass terms.

The axis reversal transformation is given by

Iµ : �x ! (�1)xµ�x0 , �̄x ! (�1)xµ�̄x0 , Ux,⌫ ! Ux0,⌫ , (B3)

where x ! x0 means xµ ! �xµ, x⇢ ! x⇢ with ⇢ 6= µ. In particular, we denote the spatial inversion

as Is = I1I2I3. It flips the signs of the both flavored-mass terms.

The staggered rotational transformation is given by

R⇢� : �x ! SR(R̃
�1x)�R̃�1x, �̄x ! SR(R̃

�1x)�̄R̃�1x, Ux,⌫ ! UR̃x,⌫ , (B4)

Staggered symmetry


