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Gapped phases of matter Chen, Gu, & Wen, PRB 82, 155138 (2010).

Quantum phases: A family of ground states that can be smoothly connected with each other by continuous
deformations of the Hamiltonian.

H |1,) = E, [Yn) (Fp < E1 <FEy<--+) 170g) : Ground state of Hamiltonian [
Energy eigenvalues

1. We focus on Hamiltonians with short-range interactions = local Hamiltonians.

H = Z h; : Sum of Hermitian operators on finite supports
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2. We assume a spectral gap above the ground state. Ez
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GapPEd phases Of matter Wen, Rev. Mod. Phys. 89, 041004 (2017).

Gapped quantum phase

Symmetry breaking? YV \No

Symmetry breaking phase Topological phase
Fractionalized quasiparticles_\%s
Short-range entangléd (invertible) phase Long-range entangled (noninvertible) phase
Fully mobile excitations? Yes / No
Topologically c:rdered phase Fracton phase
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1 Nandkishore & Hermele, Ann. Rev. Cond. Mat. Phys. 10, 295 (2019).
Fracton topological order e e Ao sasbe0s (2020

Conventional topological order Fracton topological order
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Planons Lineons Fractons
Shape of quasiparticles (3d) Particle or loop Particle
Mobility of quasiparticles Full space Lower-dimensional subspaces
Degeneracy on torus Constant Roughly exp(L) with linear size L
Emergent symmetry Higher-order symmetries Subsystem or fractal symmetries
Quantum field theory Topological QFT (TQFT) Something beyond TQFT

E.g., Seiberg & Shao, SciPost Phys. 10, 003 (2021).



Vijay, Haah, & Fu, PRB 94, 235157 (2016).

Example: X-cube model

X-cube model is defined on the 3d cubic lattice: H = — Z (Ac+ B, + BY* + B.")
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--- Ground state satisfies A. |®) = B, |®) = |P)

--- Quasiparticles mobile only in 0d (fraction), 1d (lineon), or 2d (planon) subspaces.




Vijay, Haah, & Fu, PRB 94, 235157 (2016).

Example: X-cube model

X-cube model is defined on the 3d cubic lattice: H = — Z (Ac+ B, + BY* + B.")

Ac X
P X 7 Z

--- Ground state satisfies A. |®) = B, |®) = |P)

--- Quasiparticles mobile only in 0d (fraction), 1d (lineon), or 2d (planon) subspaces.
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Example: X-cube model

X-cube model is defined on the 3d cubic lattice: H = — Z (Ac+ B, + BY* + B.")
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X
--- Ground state satisfies A. |®) = B, |®) = |P)

--- Quasiparticles mobile only in 0d (fraction), 1d (lineon), or 2d (planon) subspaces.

--- Nonlocal operators commuting with Hamiltonian (subsystem symmetry generators)

> Subextensive GS degeneracy 22(Lx+Ly+Lz)=3 o T3 robust against local perturbations.

Vijay, Haah, & Fu, PRB 94, 235157 (2016).




Lattice models for topological or fracton order

Why are lattice Hamiltonians important?

--- To understand basic properties of topological or fraction orders X

--- To seek experimentally feasible models

--- To derive effective QFT via appropriate continuum limit.

There are some fundamental limitations:

--- No commuting-projector or frustration-free Hamiltonians for 2d chiral topological orders.

- Kapustin & Fidkowski, Commun. Math. Phys. 373, 763 (2020)
Kapustin & Spodyneiko, PRB 101, 045137 (2020).
Lemm & Mozgunov, J. Math. Phys. 60, 051901 (2019).
Gapless chiral edge mode
-t

--- There might be similar limitations for 3d topological orders with gapless surface states.




Kane, Mukhopadhyay, & Lubensky, PRL 88, 036401 (2002).

CO U p I Ed -Wi re CO n St rU Cti O n Meng, Eur. Phys. J. Special Topics 229, 527 (2020).

Hamiltonians from arrays of quantum wires: hybrid of lattice and continuum

2d coupled-wire model 3d coupled-wire model
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--- Exactly solvable models for various 2d topological phases including chiral ones

--- Applications to some 3d topological phases

ladecola, Neupert, Chamon, & Mudry, PRB 93, 195136 (2016). Models related to infinite-layer Chern-Simons theory:
Fuji & Furusaki, PRB 99, 241107 (2019). Sullivan, Dua, & Cheng, Phys. Rev. Res. 3, 02323 (2021).
Sullivan, ladecola, & Cheng, PRB 99, 245138 (2021)... Sullivan, Dua, & Cheng, arXiv:2109.13267.

--- Investigation for microscopic lattice models



Wen, Phys. Rev. Res. 2, 033300 (2020).

Ce I I u I a r CO n St ru Ct i O n Aasen, Bulmash, Prem, Slagle, & Williamson, Phys. Rev. Res. 2, 043165 (2020).

Wang, Phys. Rev. Res. 4, 023258 (2022).

Cellular topological state Topological defect network
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--- Decompose the 3d space into 0d,1d, 2d, and 3d cells.
--- Place topological orders on each cell.

--- Couple cells via gapped interfaces/topological defects.

- Nontrivial quasiparticle dynamics leads to various 3d topological order or fracton order.

--- Not immediately provide Hamiltonians.



Bridge between cellular and coupled-wire constructions

Cellular topological states Coupled-wire models
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Input:
Cellular topological states built from 2d Abelian topological orders and their 1d gapped interfaces.
Output:

Coupled-wire Hamiltonian for 3d topological order or fracton order.
--- They can have fully chiral gapless surface states.

--- They can (in principle) be written in terms of lattice degrees of freedom such as spins or electrons.
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Bridge between cellular and coupled-wire constructions

Cellular topological states Coupled-wire models
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Input:

Cellular topological states built from 2d Abelian topological orders and their 1d gapped interfaces.

To be more specific, we need:

1. Cellular structure —> Cells of thin 2d strips extended along the x axis
2. 2d Abelian topological orders - K matrix

3. 1d gapped interfaces - Lagrangian subgroup



K matrix formalism for 2d Abelian topological order

Let K an N X N symmetric integer matrix, which is called the K matrix. Wen, Adv. Phys. 44, 405 (1995).
Bulk theory: Chern-Simon theory Edge theory: free boson theory
YK
£CS = — 1J EMV)\GJI{LayGJ'){ edge = /d.’L’ Z V1 faac(bfaac(bf
41 1,J=1
I,J=1

(021 (), by (a")] = 2miK 7 6(x — o)

Local boson or fermion excitations

l

Quasiparticles: Integer vectors m € 7N Identification: m ~ m + KZY

All topological properties are encoded in the K matrix:

Topological angle: 0, — 27rm3;K—1ma Vacuum: 1y = 0
Mutual statistics: (,;, — ngK—lmb

Chiral central charge: c_ = (# of positive eigenvalues of K) — (# of negative eigenvalues of K)



Levin, PRX 3, 021009 (2013).

The0ry Of gappEd inte rfa ces Barkeshli, Jian, & Qi, PRB 88, 235103 (2013).

Folding trick: Gapped interfaces between TOs = Gapped boundary of a stack of TOs

Gapped interface is described by a subset of quasiparticles (Lagrangian subgroup) [ = {l} C 7N

1. All quasiparticles in L have bosonic or fermionic self statistics laTKglla € 7
2. Any two quasiparticles in L have trivial mutual statistics nge_llb c 7

3. Quasiparticles not in L have nontrivial mutual statistics with at least one quasiparticle in L

n' K ',¢7Zforn¢L

— Quasiparticles in L are condensed at the interface.



Levin, PRX 3, 021009 (2013).

ThEOry Of gappEd inte rfa ces Barkeshli, Jian, & Qi, PRB 88, 235103 (2013).

Lagrangian subgroup [ € [, - Gapping potential (Sine-Gordon Hamiltonian)

In general, we need to add 2/ extra quantum wires.

br = (! ot ¢¥)T  --- Edge modes from the four strips and additional wires.

™°

1t
r,a

K = (Ke % ) --- Extended 2N X 2N K matrix (a)
(I)$3N0+a E@

\

0 1 0 1
--- If L contains only bosons. 2 K, = X®" = (1 g)® "®(1 O)

gblr a ® /®\:,2N0+a
. . QN 1 0 1 0 F—® /® ®:(‘. ®
-—-If L contains at least one fermion. > Kw.=2""=(, @@ {, RN N
N z ng a ¢¥’V,No—|—a,
Gapping potential is specified by a set of integer vectors {A;} i}_'y E
xr

= —g/daf:Zcos ATKqﬁ

General algorithm can be found in Barkeshli, Jian, & Qi, PRB 88, 235103 (2013).



Derivation of coupled-wire models

Cellular topological state Coupled-edge model
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@ Given 2d Abelian TOs K and gapped interfaces L - Integer vectors {K;} for a gapping potential

We obtain a “coupled-edge” Hamiltonian, but this is not a “coupled-wire” Hamiltonian that we want.

--- Microscopic origin of edge modes is not immediately clear.

- We need one more step.



Derivation of coupled-wire models

Cellular topological state Coupled-edge model
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@ Given 2d Abelian TOs K and gapped interfaces L - Integer vectors {K;} for a gapping potential

~ _ - I
@ We can find integer vectors {Ar} of a special form (Al e A2N) - (XN>

— Edge modes are coupled only through additional quantum wires.



Derivation of coupled-wire models

Cellular topological state Coupled-edge model Coupled-wire model
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@ Given 2d Abelian TOs K and gapped interfaces L - Integer vectors {K;} for a gapping potential

@ We can find integer vectors {A;} of a special form (IL o KQN) = (Iif)
— Edge modes are coupled only through additional quantum wires.

--- In the thin strip limit, quasiparticle tunnelings across the strip become dominant. " ® AN >
- A coupled-wire Hamiltonian is derived from 2nd-order perturbation theory. | ®Z@ ®Z@

—> Shrinking and removing the strips yields coupled-wire model!



3d coupled-wire models

Koy
. . i K, :
Input: 2d Abelian topological orders k. = ! K, and gapped interfaces L
7B’O Z [
Ly
xr
Output: Coupled-wire Hamiltonian
(b)
1 4N
Ho = A /dﬂ: z Z vgﬁawqb;y,oza:cqbg,ﬁ: @‘:+e.u/2ea - (D\::?NJFG- T (I)mrey-»“’ ®©©
re aff:l @Lez/?,a = (DVrV,SNm + ¢’$+ez,N+aa ¥
(—)\: e;/2,a
Vi = —Q/dfﬂ Z Z(COS O te, /2,0 T COS (—)VTV+6;/2,(L)7 Py o = A\?\:,QKqu:"V‘ | 5
reZ? a=1 ®®@

--- Quasiparticles are always mobile along the x axis.

--- Mobility of quasiparticles in the yz plane is dictated by L.

We classify gapped interfaces between U(1), topological orders (Laughlin states) for small K, = k.

— Construct 3d coupled-wire models for topological orders and (type-I) fracton orders.
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Sorting fracton orders

Dua, Kim, Cheng, & Williamson, PRB 100, 155137 (2019).

TQFT [D 5] Foliated type I [D 4] Fractal type I [D 2] Type II [D 1]
Mobilities 3 0, 1,2 01,2 0
of particles
Scaling of constant subextensive subextensive + fluctuations or fluc with

number of qubits

checkerboard model
X-cube model
Chamon’s model

3D toric code
(with bosonic or
fermionic charge)

Examples

fluctuating with subextensive envelope

Sierpinski FSL model
cubic codes 0,5,6,9,11-17

subext nvelope

cubic codes 1-4,7,8,10
Hsieh-Halsz-II model®

AOur results are consistent with fractal type I or type II.

Our models always have quasiparticles moving along strips. = Presence of lineons

--- Foliated type-I fracton order with lineons and planons

--- Hybrid of TQFT-type topological order and foliated type-| fracton order

--- Fractal type-I fracton order

i)




Foliated type-| fracton order with lineons and planons

4
my = (1,0,3,2)7,
Input: K, = 4 1= )T
_4 mo = (07 1; 27 3) ’
—4
Aw,l — (_17 15072)T3
A-W - 01 _21_171 T:
Output: 2= )T
AW,S - (1: 711 7270) )
Awa=(2,0,1,-1)7

---[ = 1 QPs are lineons.

--- [ = 2 QPs are planons in the [010] or [001] planes.

--- Dipoles of [ = 1 lineons are also planons.
GSD = 22 . 4Ly tl==2

--- Negative constant part in log(GSD) = Nontrivial fracton order




Hybrid of topological and fracton orders

my, = (17 1: 71 7)T7
mo = (2703630)T1
ms = (47 41010)T7

8
_ B 8
Input: Ke( g )
—8

Output:

--- [ = 4 QPs are point-like bosons in 3d.
-l = 2 QPs are planons in the [010] or [001] planes.

--- 1 = 1 QPs form a loop-like excitation in yz plane.

--- Extensive degeneracy arising from local plaquette loops.

GSD = 4 . 2bvletly+Lz
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Hybrid of topological and fracton orders

Extensive degeneracy can be lifted by adding local perturbations

Vi, = —g / dz 37 [XP(z) + (XPR ()],

rcz?

- Resulting GSD becomes constant + subextensive. GSD’ = 23 . 2Lv L=
— Hybrid of Z2 gauge theory and fracton order with planons

Not a simple stack of topological and fracton orders!

Point-loop braiding
- Mutual 1t statistics

Planon-loop braiding
- Mutual /2 statistics




Fractal type-| fracton order with lineons
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Lagrangian subgroup does not contain pairs of quasiparticles.

— Conjecture: No 3d point-like excitations or planons, but only lineons.

Sparse membrane operators = Quasiparticles are created at boundaries of fractal-like operators?

®



Fractal type-| fracton order with lineons

Dynamics of quasiparticles in yz plane = 2d classical seven-state Potts model

U7 2 o V' =(02.)" =1,
Potts =—J Z O_i+ey,1 ( T:J) ( ’1"_3')
rez? I { oz, Lok, (rg) = (r',])
+ (U$11)2(Ji’2)50—i+8272 + HC} . A Of_, ’ar_] ( ) # ( )

Ground-state degeneracy on L, X L X L torus can be computed from the classical model.

log; GSD log, GSD
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Fractal-like structure = Fractal type-I| fracton order?



Summary and outlooks

Coupled-wire construction provides exactly solvable models for cellular topological states.
They describe a variety of novel 3d topological and fracton orders:

--- 3d TQFT-type topological order
--- Foliated type-| fracton order
--- Hybrid of TQFT-type topological order and foliated type-I fracton order

--- Fractal type-I fracton order

Future directions:

--- Cellular topological states from 2d non-Abelian topological orders
--- Applications to microscopic lattice systems via bosonizations
--- Effective quantum field theories for fracton orders

--- Entanglement diagnostics of fracton orders



