

Outline

Introduction

♦ HAL QCD method for baryon-baryon interaction
♦ Preliminary results of LN-SN potentials at $(m_{\pi}, m_{K}) \approx (145, 525)$ MeV

Single channel analysis for LN ==> central and tensor potentials
Phase shifts at low energy region below the SN threshold
LN-SN(I=1/2), central and tensor potentials

 Effective block algorithm for various baryonbaryon channels, CPC207,91(2016)[1510.00903]
New application of the algorithm

Summary

Multi-hadron on lattice i) basic procedure: asymptotic region --> phase shift ii) HAL's procedure: interacting region --> potential

Multi-hadron on lattice Lattice QCD simulation $L = -\frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu} + \bar{q}\gamma^{\mu}(i\partial_{\mu} - gt^{a}A^{a}_{\mu})q - m\bar{q}q$ $\langle O(\bar{q}, q, U) \rangle = \int dU d \bar{q} dq e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U)$ $= \int dU \det D(U) e^{-S_U(U)} O(D^{-1}(U))$ $= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_i))$ $\rightarrow \langle \underbrace{\mathbf{v}}_{p\Lambda}(t) \underbrace{\mathbf{v}}_{p\Lambda}(t_{0}) \rangle$ pΛ

Calculate the scattering state

Multi-hadron on lattice ii) HAL's procedure: make better use of the lattice output ! (wave function) interacting region --> potential

Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010).

NOTE:

> Potential is not a direct experimental observable.

> Potential is a useful tool to give (and to reproduce) the physical quantities. (e.g., phase shift)

Multi-hadron on lattice ii) HAL's procedure: make better use of the lattice output ! (wave function) interacting region --> potential

Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010).

> > Phase shift > Nuclear many-body problems

格子QCDによるポテンシャル導出の手順(超簡略版) (1) 4点相関関数を計算する。

$$F_{\alpha\beta,JM}^{\langle B_1B_2\overline{B_3B_4}\rangle}(\vec{r},t-t_0) = \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X}+\vec{r},t)B_{2,\beta}(\vec{X},t)\overline{\mathscr{J}_{B_3B_4}^{(J,M)}(t_0)} \right| 0 \right\rangle,$$
(2.3)

ρ

(2) 時間依存法を使うためにしきい値だけ時間相関をずらす $R_{\alpha\beta,JM}^{\langle B_1B_2\overline{B_3B_4}\rangle}(\vec{r},t-t_0) = e^{(m_{B_1}+m_{B_2})(t-t_0)}F_{\alpha\beta,JM}^{\langle B_1B_2\overline{B_3B_4}\rangle}(\vec{r},t-t_0)$ $= \sum_n A_n \sum_{\vec{X}} \langle 0 | B_{1,\alpha}(\vec{X}+\vec{r},0)B_{2,\beta}(\vec{X},0) | E_n \rangle e^{-(E_n-m_{B_1}-m_{B_2})(t-t_0)} + O(e^{-(E_{th}-m_{B_1}-m_{B_2})(t-t_0)})$ (2.4)

(3) チャネルごとにしきい値が異なるので、それを考慮した時間 依存型Schroedinger方程式からポテンシャルを求める

 $\left(\frac{\nabla^2}{2\mu_{\lambda}}-\frac{\partial}{\partial t}\right)R_{\lambda\varepsilon}(\vec{r},t)\simeq V_{\lambda\lambda'}^{(\mathrm{LO})}(\vec{r})\theta_{\lambda\lambda'}R_{\lambda'\varepsilon}(\vec{r},t), \text{ with } \theta_{\lambda\lambda'}=\mathrm{e}^{(m_{B_1}+m_{B_2}-m_{B_1'}-m_{B_2'})(t-t_0)}.$

(※) "moderately large imaginary time" で計算を行う (※※) 2種類の励起状態を区別している

¹The potential is obtained from the NBS wave function at <u>moderately large imaginary time</u>; it would be $t - t_0 \gg 1/m_{\pi} \sim 1.4$ fm. In addition, no single state saturation between the ground state and the excited states with respect to the relative motion, e.g., $t - t_0 \gg (\Delta E)^{-1} = ((2\pi)^2/(2\mu(La)^2))^{-1} \simeq 8.0$ fm, is required for the HAL QCD method[13].

An improved recipe for NY potential: © cf. Ishii (HAL QCD), PLB712 (2012) 437.

Take account of not only the spatial correlation but also the temporal correlation in terms of the R-correlator:

Almost physical point lattice QCD calculation using $N_F = 2 + 1$ clover fermion + Iwasaki gauge action

APE-Stout smearing (r=0.1, n_{stout}=6)

Non-perturbatively O(a) improved Wilson Clover

action at $\beta = 1.82$ on $96^3 \times 96$ lattice

1/a = 2.3 GeV (a = 0.085 fm)

Solume: $96^4 \rightarrow (8 \text{fm})^4$

 $m_{\mu} = 145 \text{MeV}, m_{\nu} = 525 \text{MeV}$

 DDHMC(ud) and UVPHMC(s) with preconditioning
K.-I.Ishikawa, et al., PoS LAT2015, 075; arXiv:1511.09222 [hep-lat].

Solution NBS wf is measured using wall quark source with Coulomb gauge fixing, spatial PBD and temporal DBC; #stat=207configs x 4rotation x 96src

In lattice QCD calculations, we compute the normalized four-point correlation function

$$R_{\alpha\beta}^{(J,M)}(\vec{r},t-t_0) = \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X}+\vec{r},t) B_{2,\beta}(\vec{X},t) \overline{\mathcal{J}_{B_3B_4}^{(J,M)}(t_0)} \right| 0 \right\rangle / \exp\{-(m_{B_1}+m_{B_2})(t-t_0)\},$$

$$p = \varepsilon_{abc} \left(u_a C \gamma_5 d_b \right) u_c, \qquad n = -\varepsilon_{abc} \left(u_a C \gamma_5 d_b \right) d_c, \qquad (2)$$

$$\Sigma^{+} = -\varepsilon_{abc} \left(u_a C \gamma_5 s_b \right) u_c, \qquad \Sigma^{-} = -\varepsilon_{abc} \left(d_a C \gamma_5 s_b \right) d_c, \qquad (3)$$

$$\Sigma^{0} = \frac{1}{\sqrt{2}} \left(X_{u} - X_{d} \right), \qquad \Lambda = \frac{1}{\sqrt{6}} \left(X_{u} + X_{d} - 2X_{s} \right), \tag{4}$$

$$\Xi^{0} = \varepsilon_{abc} \left(u_{a} C \gamma_{5} s_{b} \right) s_{c}, \qquad \Xi^{-} = -\varepsilon_{abc} \left(d_{a} C \gamma_{5} s_{b} \right) s_{c}, \qquad (5)$$

where

$$X_u = \varepsilon_{abc} \left(d_a C \gamma_5 s_b \right) u_c, \quad X_d = \varepsilon_{abc} \left(s_a C \gamma_5 u_b \right) d_c, \quad X_s = \varepsilon_{abc} \left(u_a C \gamma_5 d_b \right) s_c, \tag{6}$$

$$\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t}\right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{\rm LO}(\vec{r}) R(\vec{r}, t) + \cdot (8),$$

Effective mass plot of the single baryon's correlation function

Preliminary result of LN potential at the $(m_r, m_k) \approx (145, 525)$ MeV

Effective block algorithm for various baryon-baryon correlators HN, CPC207,91(2016), arXiv:1510.00903(hep-lat)

Numerical cost (# of iterative operations) in this algorithm

 $\frac{1+N_c^2+N_c^2N_\alpha^2+N_c^2N_\alpha^2+N_c^2N_\alpha^2+N_c^2N_\alpha+N_c^2N_\alpha}{\text{In an intermediate step:}}$ $(N_c! N_{\alpha})^B \times N_u! N_d! N_s! \times 2^{N_{\Lambda} + N_{\Sigma^0} - B} = 3456$ In a naïve approach: $(N_{c}! N_{g})^{2B} \times N_{u}! N_{d}! N_{s}! \neq 3,981,312$ p⁽¹⁾ p⁽²⁾ p⁽⁴⁾ $\Lambda^{(4)}$ A⁽¹⁾ p⁽⁵⁾ Λ⁽⁵⁾ $\Lambda^{(2)}$ A⁽⁶⁾ (ud)u (ds)u (-1)^o=(-) (-1)⁶=(-) $(-1)^{\sigma} = (+)$ $(-1)^{\sigma} = (+)$ (-1)^o=(+) (-1)^a=(-)

Generalization to the various baryon-baryon channels strangeness S=0 to -4 systems

$$\begin{array}{ll} \langle pn\overline{pn}\rangle, & (4.1) \\ \langle p\overline{\Lambda p\Lambda}\rangle, & \langle p\Lambda\overline{\Sigma^{+}n}\rangle, & \langle p\Lambda\overline{\Sigma^{0}p}\rangle, \\ \langle \Sigma^{+}n\overline{p\Lambda}\rangle, & \langle \Sigma^{+}n\overline{\Sigma^{+}n}\rangle, & \langle \Sigma^{+}n\overline{\Sigma^{0}p}\rangle, \\ \langle \Delta\Lambda\overline{\Lambda\Lambda}\rangle, & \langle \Lambda\Lambda\overline{p\Xi^{-}}\rangle, & \langle \Lambda\Lambda\overline{n\Xi^{0}}\rangle, & \langle \Lambda\Lambda\overline{\Sigma^{+}\Sigma^{-}}\rangle, & \langle \Lambda\Lambda\overline{\Sigma^{0}\Sigma^{0}}\rangle, \\ \langle p\overline{z}^{-}\overline{\Lambda\Lambda}\rangle, & \langle n\overline{\Delta}\overline{p\Xi^{-}}\rangle, & \langle p\overline{z}^{-}\overline{n\Xi^{0}}\rangle, & \langle p\overline{z}^{-}\overline{\Sigma^{+}\Sigma^{-}}\rangle, & \langle p\overline{z}^{-}\overline{\Sigma^{0}\Sigma^{0}}\rangle, & \langle p\overline{z}^{-}\overline{\Sigma^{0}\Lambda}\rangle, \\ \langle n\overline{z}^{0}\overline{\Lambda\Lambda}\rangle, & \langle n\overline{z}^{0}\overline{p\overline{z}^{-}}\rangle, & \langle n\overline{z}^{0}\overline{n\overline{z}^{0}}\rangle, & \langle n\overline{z}^{0}\overline{\Sigma^{+}\Sigma^{-}}\rangle, & \langle n\overline{z}^{0}\overline{\Sigma^{0}}\overline{\Sigma^{0}}\rangle, & \langle n\overline{z}^{0}\overline{\Sigma^{0}}\overline{\Lambda}\rangle, \\ \langle \Sigma^{+}\Sigma^{-}\overline{\Lambda\Lambda}\rangle, & \langle \Sigma^{+}\Sigma^{-}\overline{p\overline{z}^{-}}\rangle, & \langle \Sigma^{+}\Sigma^{-}\overline{n\overline{z}^{0}}\rangle, & \langle \Sigma^{+}\Sigma^{-}\overline{\Sigma^{+}\Sigma^{-}}\rangle, & \langle \Sigma^{0}\overline{\Sigma^{0}}\overline{\Sigma^{0}}\rangle, & \langle \Sigma^{+}\Sigma^{-}\overline{\Sigma^{0}}\Lambda\rangle, \\ \langle \Sigma^{0}\Sigma^{0}\overline{\Lambda\Lambda}\rangle, & \langle \Sigma^{0}\overline{\Sigma^{0}}\overline{p\overline{z}^{-}}\rangle, & \langle \Sigma^{0}\overline{\Sigma^{0}}\overline{n\overline{z}^{0}}\rangle, & \langle \Sigma^{0}\overline{\Sigma^{0}}\overline{\Sigma^{-}}\overline{\Sigma^{0}}\rangle, & \langle \Sigma^{0}\overline{\Lambda}\overline{\Sigma^{0}}\overline{\Lambda}\rangle, \\ \langle \overline{z}^{-}\overline{\Lambda}\overline{z}^{-}\overline{\Lambda}\rangle, & \langle \overline{z}^{-}\overline{\Lambda}\overline{\Sigma^{-}\overline{z}^{0}}\rangle, & \langle \overline{z}^{-}\overline{\Lambda}\overline{\Sigma^{0}}\overline{\overline{z}^{-}}\rangle, & \langle \overline{z}^{0}\overline{\Lambda}\overline{\overline{z}^{-}}\overline{\Sigma^{-}}\overline{\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{\Sigma^{0}}\overline{\overline{z}^{-}}\rangle, \\ \langle \overline{z}^{-}\overline{z}^{0}\overline{\overline{z}^{-}}\overline{\Lambda}\rangle, & \langle \overline{z}^{0}\overline{z}^{-}\overline{\overline{z}^{-}\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{z}^{-}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, & \langle \overline{z}^{0}\overline{\Lambda}\overline{\overline{z}^{0}}\overline{\overline{z}^{-}}\rangle, \\ \langle \overline{z}^{-}\overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{z}^{-}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, & \langle \overline{z}^{0}\overline{z}\overline{\overline{z}^{-}}\rangle, \\ \langle \overline{z}^{-}\overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{z}^{-}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, & \langle \overline{z}^{0}\overline{z}^{-}\overline{\overline{z}^{-}\overline{\overline{z}^{0}}}\rangle, \\ \langle \overline{z}^{-}\overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, & \langle \overline{z}^{0}\overline{z}^{-}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, \\ \langle \overline{z}^{-}\overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, \\ \langle \overline{z}^{-}\overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, & \langle \overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, \\ \langle \overline{z}^{-}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, \\ \langle \overline{z}^{-}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}}\rangle, & \langle \overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^{0}\overline{\overline{z}^{-}}}\rangle, & \langle \overline{z}^{0}\overline{\overline{z}^{-}}\overline{\overline{z}^$$

Make better use of the computing resources!

HN, CPC **207**, 91(2016) [arXiv:1510.00903[hep-lat]], (See also arXiv:1604.08346)

Classification of baryon blocks in the effective block algorithm

The number of declared blocks in terms of quark propagation form, i.e., from [111] to [222], in the simultaneous calculation of 4pt correlators from NN to EE

Ô	Proton:	18+	0+	31+	0+106+	16+121+	12 = 304
0	Σ^+ :	3+	0+	10+	0+ 52+	3+ 55+	1 = 124
0	Ξ ⁰ :	16+	19+	0+	0+118+1	02+ 29+	14 = 298
0	Λ (dsu):	242+3	18+4	36+4	08+290+2	266+376+2	248 = 2584
0	Λ (sud):	94 +1	64+1	02+1	32+130+1	64+102+	96 = 984
0	A(uds):	94+1	02+1	30+1	02+164+1	32+164+	96 = 984

(I-1) LN potentials (central, tensor) at $(m_{\pi}, m_{K}) \approx (145, 525)$ MeV.

phase shifts below the SN threshold

Both channels are attractive. (but weaker than empirical values) Spin dependence is very weak. Relatively large statistical uncertainty. (I-2) Effective block algorithm for the various baron-baryon interaction

Comput.Phys.Commun.207,91(2016) [arXiv:1510.00903(hep-lat)] Simultaneous calcs (NN to XiXi) is the point we have to take into account for the comprehensive perspective as well as energy-computingresource efficiency.

The algorithm will be applied to more wide range problems.

Future work:

(II-1) Physical quantities including the binding energies of fewbody problem of light hypernuclei with the lattice YN (and NN) potentials

(II-2) New application of effective baryon block algorithm for the various baron-baryon interaction from NN to $\Xi\Xi$.

> Classification of baryon blocks from NN to ΞΞ, which comprises 52
4pt-correlators (2639 diagrams)

In search of a better approach to conducting lattice nuclear physics.
Spin-orbit force.