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Nielsen-Ninomiya theorem

• Nielsen-Ninomiya theorem in D = 1 + 1 states that there are no
lattice regulators for a free chiral fermion.

• The underlying assumptions are: (1) The interaction is local. (2)
The chiral symmetry is exact at the lattice scale.

• All known examples of lattice constructions of a chiral fermion
violates one of the assumptions. (No wonder. It’s a mathematical
theorem.)

• The Ginsparg-Wilson fermion satisfies (1) but not (2).
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Original proof of the Nielsen-Ninomiya theorem (1)

• The original proof of the theorem by Nielsen and Ninomiya goes like
this.

• The general class of lattice Hamiltonian cannot flow to a chiral
fermion

H =
∑
i,j

f (i − j)ψiψj ,

on condition that (1) It is quadratic in the fermion fields. (2) It is
translation invariant. (3) The interaction is local.
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Original proof of the Nielsen-Ninomiya theorem (2)

• We can Fourier transform the Hamiltonian

H =
∑
i,j

f (i − j)ψiψj =

∫ 2π

0
dp ω(p)ψpψ−p.

ω(p) is defined on a circle (i.e., Brillouin zone).

• At a → 0, or in the low-energy limit, zero energy modes (ω = 0) are
only relevant. Here, dω/dp determines the direction at which a low
energy excitation moves.

• Since the Brillouin zone is a circle, there must accompany a
left-moving mode for every right-moving mode.

• This completes the proof of the Nielsen-Ninomiya theorem.

3



Original proof of the Nielsen-Ninomiya theorem (3)
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Today’s topics

• The proof that I showed only applies to free theories.

• (1) I will therefore give a new proof of the Nielsen-Ninomiya
theorem. This proof generalises the Nielsen-Ninomiya theorem to
any strongly-coupled theoires.

• As it turns out, any theories with non-zero gravitational anomaly
(cL − cR , same as the chiral anomaly) cannot have a lattice
regulator.

• (2) The proof uses boundary conditions as an intermediate step. I
will discuss general relations between boundary, lattice, and the
anomaly.
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New proof of the Nielsen-Ninomiya theorem

• We prove that the existence of the lattice regulator implies the
vanishing gravitational anomaly (i.e., cL − cR = 0).

• The sketch of the proof: (a) Any lattice theories can have a
boundary condition and can be defined on a half-space. (b) This
flows to a boundary CFT. (c) A boundary CFT always has
cL − cR = 0.

• Take the contrapositive: A 2D CFT with non-vanishing gravitational
anomaly cannot have a lattice regulator.
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New proof of the Nielsen-Ninomiya theorem (a)

• (a) Any lattice theories can have a boundary condition and be
defined on a half-space.

• Take any lattice theory with bounded-neighbour interactions. Call
the interaction range nmax.

• We can always take a free boundary condition and define a theory
on a half-space (x > 0).

• Since the interaction is bounded, the difference of the theory on a
half-space is no different than a theory on a full space when
x > anmax.
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New proof of the Nielsen-Ninomiya theorem (b)

• (b) This theory defined on a half-space flows to a boundary CFT.

• The boundedness of the interaction means that the bulk of the
theory remains the same, when x > anmax.

• Take the IR limit, a → 0. The bulk simply flows to a CFT.

• At x = 0, we have a boundary condition of a CFT.

• The boundary condition also flows under the RG flow. It is
monotonic by virtue of the g -theorem (Boundary version of the
c-theorem). log g is called the boundary entropy.

• The RG flow is strongly believed to terminate at a conformal
boundary condition. The theory becomes a boundary CFT as a
whole.

• Exception: If the lattice had infinite entropy per site, the theory will
not flow to a BCFT.
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New proof of the Nielsen-Ninomiya theorem (c)

• (c) A boundary CFT always has cL − cR = 0.

• cL,R means a left- or right-moving dof, so this is very intuitive.

• To prove this formally, use the boundary Ward identity
T (x)− T̄ (x) = 0 on x ∈ R.

• One can modular transform to define a boundary state,

(Ln − L̄−n) |B⟩ = 0

and then Virasoro algebra gets us cL = cR .
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Generalised Nielsen-Ninomiya theorem

• To summarise, we have proven that

existence of the lattice regulator

existence of the boundary condition

vanishing gravitational anomaly

• We can take the contrapositive to prove the generalised
Nielsen-Ninomiya theorem: A theory with a non-zero gravitational
anomaly cannot have a lattice regulator.

• Of course it contains the original theorem. A left-moving free
fermion has cL = 1/2 and cR = 0.
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Comment

• We have not really used the assumption that “The chiral symmetry
is exact at the lattice scale”.

• Instead we used another assumption that “The lattice theory has
finite entropy per site”.

• This can also rule out the Ginsparg-Wilson fermion, as taking the
length of the extra dimension to be infinite, the effective entropy per
site in two dimensions becomes infinite.

• But I do not understand the precise relation between the two yet.

• This concludes the main part of my talk.
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Boundary and anomaly

• As an intermediate step, we have proven that a boundary condition
only exists for theories with vanishing gravitatonal anomalies.

• It has generalisations to other symmetries or to other dimensions.

• For example, for a continuous global continuous symmetry in 2D, we
have (Jn + J̃−n) |B⟩ = 0, implying the vanishing anomaly.

• More generally, it is proven by Thorngren and Wang for (1)
Gravitational anomaly in any dimensions. (2) Anomaly for any
continuous symmetries in any dimensions. (3) Anomaly for any
discrete symmetries in any dimensions.
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Lattice and anomaly

• Even then, this does not mean that we can generalise the
Nielsen-Ninomiya theorem to the case with global symmetries.

• There is a folklore that says that "Any anomalous symmetry cannot
be realised on-site". This is not true in general.

• Example: the Villain action for the free compact boson in 2D,

S =
β

2

∑
link

(∆µϕ− 2πnµ)2 + i
∑
plq

ϕ̃(∆xny −∆ynx)

where ϕ ∼ ϕ+ 2π and ϕ̃ ∼ ϕ̃+ 2π.

• Even though it has the mixed anomaly between the momentum
U(1)m and the winding U(1)w symmetry, they are both realised on
site, as ϕ 7→ ϕ+ cm and ϕ̃ 7→ ϕ̃+ cw on a closed manifold.
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Boundary condition of the Villain lattice

• It still should break either U(1)m or U(1)w at the boundary, even
though the Villain lattice realises both of them on-site.

• For example, place a free boundary condition at the boundary.

• We can insert an operator e iW ϕ̃ in the middle and computing the
partition function. They are non-zero for any W ∈ Z.

• The free boundary condition preserves U(1)m completely while
breaking U(1)w completely.

• It is an interesting future direction to study other symmetry
preserved at the boundary of the Villain lattice, such as ZM × ZW ,
where M and W coprime.
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Boundary condition and the entanglement entropy

• Entanglement entropy is a basic object in quantum information
theory. It can be combined with AdS/CFT to compute some
observables in quantum gravity, for example.

• In order to define entanglement, we separate the physical space into
two (L and R), with Hilbert space factorised as H = HL ⊗HR .

• This notion of factorisation is meaningless without a boundary
condition between L and R.

• This means that gravitational anomaly obstructs us from talking
about entanglement entropy of e.g., a chiral fermion.
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Summary

• We have proven the Nielsen-Ninomiya theorem: Any 2D theory with
non-vanishing gravitational anomaly cannot have a lattice regulator.

• We used the existence of the boundary condition to prove this.

• We argued that the following generalisation is not true: When a
global symmetry G is anomalous, G cannot be realised on-site.

• This was in spite of the fact that G -symmetric boundary conditions
do not exist when G is anomalous.

• It would be interesting to explore relation between boundary, lattice
and anomaly more. (1) Can we always find a boundary condition for
a non-anomalous theory? (2) Does the existence of the boundary
condition implies the lattice construction? (3)...
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