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QCD Theory

e QCD Lagrangian: ¢ = (u,d,s,...) = Ng-quark, t* = SU(3)-color matrix

v

Locp = zﬁ(z”y“Du — )@b —tr FiF) /4 D, =0, —igt"Aj

~
quark Yang Mills

Fo, = 0,A% — 0,A% + gfac AL AL (a,b,c=1,2,...,8)
e Chiral transformation: For Ug/;, € SU(Ny)

o1 = VR = ”%%Um

Lqcp is invariant under the chiral transformation when m = 0.
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Effective (Low-Energy) Theory

A simplest effective theory: Nambu-Jona-Lasinio (NJL) model.

Lygn = Y(iy" D, — m) + g [(¥)* + (Yiys)?]  (without gluon)

J/

vV
4-fermion

L1 has the chiral symmetry when m = 0. B
In physics literature, it shows that the dynamical mass M ~ (1)) # 0 when g > g. —
Spontaneous breakdown of chiral symmetry ~ quark mass generation.

Main issue in this talk
Proof of mass generation in a mathematically rigorous way.

@ Lattice model: Some known results...



Staggered Fermion: Lattice NJL

We consider the staggered fermion + four-fermion interaction (NJL).
Two formalism:

e Lagrangian: 1,1: Grassmann
When m = 0, the action is invariant under

Y(x) = D), Do) = e DPr), e(r) = (=)=, aeR

Theorem (Salmhoter-Seiler '91)
In A — 7V, the mass generation (1)) # 0 occurs when v > 3.

@ Hamiltonian: ) : Fermion operator



Kogut-Susskind Hamiltonian

A=[-L+1,L" {¥(2),¥(y)} = 6sy, {¥(x),%(y)} =0, k7! = a = lattice spacing.

m) =ik 3 > (~D) O @@+ e,) — (@ + e)ib()]

TEA 1
1
+m Y (~1)Ze” +QZP plz+e,), plr)=!(a)p(r) - 5
1 —1
Qu(x) . x( ) + e + I(M ) for x(“) 7é L x(o) :: O
x(l) + e _|_ x(/‘*l) + 1 for x(ﬂ) — L7

e H(0) does not have chiral symmetry.

e H(0) is invariant under a certain discrete chiral transformation.
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Particle-Hole Symmetry and Mass Generation

U = [[[T(=D" "W @h () + d(2)) = Ulyto(2)Upn = ()

TEN y#x

UlyH(0)Upy = H(0) = (p(x))gmeo = 0, (A)gm = Z/g}n tr(Ae~PHm)

Theorem (in preparation)
Assume v > 3. For |k|/g < g., B > [. we can show that

m—0 A—7ZY
T

lim lim (On)s,, = <Z(—1)Zuz(“)p(gy)> £ 0.
B,m

@ Breaking the discrete symmetry

@ If we can take the continuum limit, then the chiral symmetry is broken.
6/9



Strategy of Proof 1: Reflection Positivity

@ Fermion Reflection Positivity (RP): Jaffe-Pedrocchi "15, Koma "21.
Divide A=A_UA, and take r s.t. r(Ay) = As.
Eg A ={2: —L+1<2W <0}, r(aW) = —x(l)
Define A = polynomials of ¥(x),¥(y), z,y € Ay, and anti-linear  : AL — A+
s.t. (0¢)(x) = (0(x)) etc.
In usual, RP is
tr(A0(A)e ) >0 Ac A
if H=H,+H_+ Hy, with Hy € Ay, Hy=)_, A0(A), A € A..
This fails for fermions.
Fermion RP: tr(A6(A)) > 0 holds for A € A..
For functions h,,, the modified interaction is defined as

Hi = Hini(h) =Y (p(@) + pla + €,) + (= 1= by (2))?.

= Gaussian domination: trexp(—SH (m,h)) < trexp(—FH(m)). /0



Strategy of Proof 2: Infrared Bound

@ Infrared Bound (IB): Dyson-Lieb-Simon for Heisenberg anti-ferro. '78.
Define the Duhamel two-point function:

1
(A,B) = Z5,, / dse1m) g=(1=s)3H ) g
0

Then for p, = |A|7Y23" _e®®p(x), we have the IB (~ BEC):
C dp
lim |A|™! s P—p) < / p =V — cosp¥ ~ |p
B Y ) <5 [ 3ol ~ of)

p#0
@ Long-Range Order: IB implies

hm mI(j}{)O = hm |A|~ 1<OA>1/2

> 0.

@ Mass Generation: By Koma—Tasakl '93

lim li > C lim mY) :
Jim, Ji, (On)sm = € lim mipo > 0



Summary and Other Problems

Kogut-Susskind (KS) Hamiltonian: Lattice version of NJL model.

@ KS Hamiltonian does not have chiral symmetry.

Mass term (p(x)) = 0 when m = 0 in KS Hamiltonian.

For a large coupling constant, we can show the mass generation in the
infinite-volume limit.

@ Fermion reflection positivity is crucial.

o If we can take the continuum limit, the chiral symmetry is broken.
| don't know

@ KS Hamiltonian <> Grassmann theory?

@ Proof of mass gap (spectral gap).

@ Existence of the continuum limit.
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