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In our previous paper, we reported the presence of a new resonance of an incompressible star orbiting a
spinning black hole and showed that it can set in before the tidal disruption limit if the star has an inclined
spherical orbit around the black hole. Using the affine model developed by Carter and Luminet, we extend
our result to the stars with polytropic equations of state. We give further credence to the result previously
found. We also derive the formula for the growth rate of the resonant motion, which is useful for checking
the results of hydrodynamics simulations.
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I. INTRODUCTION

Tides play an important role in numerous astrophysical
phenomena, ranging from tidal disruption events to the
dynamics of binary objects [1–3]. As such they have been
long studied [4,5], using both analytical and numerical
methods.
Tides are generally studied assuming Newtonian gravity.

Such studies have thus elucidated valuable effects of tides
in binary systems involving planets and main-sequence
stars, in particular on their orbits [1,6,7]. However in order
to understand the impact of tides on binary compact
objects, relativistic effects have to be taken into account.
Many articles have explored how a relativistic framework
modifies the tidal effects. For example, tides are known to
have an appreciable impact on the late inspiral of binary
compact stars [8–12]. The condition for the tidal disruption
is known to be modified appreciably by general relativistic
effects [13–17].
However, until quite recently, there have been few studies

delving into the case of a star orbiting a Kerr black hole (BH)
in a nonequatorial orbit [18], for which there is an orbital
precession with respect to the equatorial plane. This orbital
precession can be also induced for a star orbiting a highly
deformed companion with a quadrupole moment. To fully

understand the effects of tides in general binary systems, it is
necessary to investigate the impact of orbital precession.
Using the virial equations to model the star as an incom-
pressible fluid [19], we studied the influence of the tidal
forces of theBHon stars in a precessing spherical orbitwith a
small orbital separation [20] and found that resonances could
arise in such systems, giving a further example of tidal
resonances in astrophysics.
Tidal resonances are a particular class of tidal phenom-

ena which can play an important role in many astrophysical
systems, from planets to neutron stars. They typically
happen when the tidal forces acting on an object excites
one of its normal modes. Tidal resonances have been
encountered for f-modes, g-modes, as well as inertial
modes (relying on the Coriolis force) [21–29]. They could
modify the orbital evolution of binary systems. This
indicates that understanding their effects is paramount
for a better understanding of the dynamics of such systems.
Our previous study found the tidal resonance for stars in

precessing spherical orbits around Kerr BHs assuming an
incompressible fluid with which all the analyses can be
analytically carried out [20]. In this paper, we do not
assume this anymore. To enable us to derive important
formula analytically, we use the affine star model [30]
assuming a polytropic equation of state (EOS). This model
has already been widely used to study particular tidal
problems analytically but still quite precisely [31,32].
In [30], the authors also prove a conformal correspondence
theorem, which links the results found using the virial
equations, with more realistic models of stars. In this paper,
we use this theorem to extend our previous result, and
figure out whether we can see the previously found tidal
resonances in stars modeled with polytropic EOS.
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As in [20], we carry out a perturbative analysis for a star
of precessing spherical orbits using the result found for the
star with a circular orbit in the equatorial plane as the
zeroth-order solution. We show the presence of the same
resonances if the EOS is not extremely soft. This stems
from the similarity between the equations used in incom-
pressible and affine models. We also show that as the EOS
becomes softer, the resonant distance diminishes.
This paper is organized as follows: In Sec. II, we review

the affine model, and show how it describes our system. In
Sec. III, we present our method for a perturbative expansion
with respect to the inclination angle, which we apply up to
the second order. We also derive a formula for the growth
rate of the resonant motion. In Sec. IV, we compute the new
resonant distances of our system focusing on white dwarfs
orbiting massive BHs, and show how it changes for
polytropic EOSs with different polytropic indices. We also
indicate that in the presence of the resonance, mass ejection
is likely to be induced from the stellar surface. Throughout
this paper, we use the geometrical units of c ¼ G ¼ 1,
where c and G are the speed of light and gravitational
constant, respectively, and the Einstein summation
convention.

II. AFFINE MODEL

A. Setup

In our previous paper [20], wemodeled the orbiting star as
an incompressible ellipsoidal object onwhich the tidal forces
by the BH are exerted. Newtonian gravity was assumed for
the self-gravity part of the star. To go beyond the incom-
pressible hypothesis,we employ the affinemodel, whichwas
originally defined by Carter and Luminet [30,31].
The affine model was introduced in [31] to analytically

investigate stars which are tidally deformed by massive
BHs. This model was further developed in [30], which
allowed the authors to show that most of the properties of
the incompressible model could be carried over to stars
with more general EOSs. Our present purpose is to
investigate the presence of the resonance found in our
previous paper [20] changing the EOS from the incom-
pressible one to a softer one (changing the polytropic index
from n ¼ 0 to <3). The affine model enables us to extend
the aforementioned resonance to compressible EOSs.
The affine star model assumes that the position vector

ri in the center or mass frame of any material element is
given by

ri ¼ qiar̂a; ð1Þ

where indices from the middle of the Latin alphabet
i; j; k;… refer to spatial components in the physical frame,
while letters from the beginning of the alphabet a; b; c;…
refer to the spherical reference state. Whenever the same

subscript appears like qiar̂a, we assume to take the sum for
the three spatial components.
qia is the deformation matrix and is assumed to be

spatially uniform. The spherical reference state is the state
that the star should have if it is static and completely
isolated: In this case, the self-gravity of the fluid should
enforce the star to be spherical.
Since we assume that qia is spatially uniform, the affine

model applies a linear transformation to the reference state.
Hence the kinematics of the star is completely contained
within the nine components of the deformation matrix qia.
Furthermore, as the deformations are assumed to be linear,
the star has an ellipsoidal shape, and the surfaces of
constant density are self-similar ellipsoids as in the incom-
pressible case [19].
This idealized affine model can also be derived as

approximate equations of the full hydrodynamics equa-
tions. This can be seen by expanding the relative position
vector ri in a Taylor series of r̂a:

ri ¼ qiar̂a þ qiabr̂ar̂b þOðjr̂j3Þ: ð2Þ
From this perspective, it can be seen that neglected terms in
the Taylor expansion will be in general important in the
outer part of the star (unless qiab is extremely large), and
thus only for a small portion of the total mass. Overall the
affine model can be seen as a good approximation when
considering linear forces acting on a self-gravitating object.
As we assume only linear tidal forces acting on the star, we
may expect that the results found using this model should
be robust.
This model was shown to be suitable for exploring tidal

deformation of stars with moderate degrees of penetration
within the tidal disruption radius [31–33]. However, when
the penetration is too deep, the nonlinear deformation of the
star becomes so important that the affine model breaks
down. We can also expect it to fail in other scenarios. For
example, if the star gets quite close to the black hole,
we have to consider nonlinear contributions to the tidal
tensor [17]. Another case would be when the star gets past
the Roche limit, i.e., when stellar matter gets ejected from
the star. In this paper we do not consider these cases.
We neglect the general relativistic effect for the self-

gravity of the star, so there could be an error of order
Gmstar=c2Rstar. However, for typical-mass white dwarfs
with mstar ¼ 0.6–0.7M⊙ which we consider in this paper,
such a correction is minor.
As we already mentioned, we assume that the EOS of

the star is polytropic, P ¼ κρΓ ¼ κρ1þ1=n, with P being the
pressure, ρ being the rest-mass density, Γ ¼ 1þ 1=n, n
being the polytropic index, and κ being the polytropic
constant. The spherical reference state is then computed by
solving the Lame-Emden equation [34]:

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
þ θn ¼ 0; ð3Þ
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where ξ and θ are related to the radial coordinate r and the
density of the spherical reference state ρ̂ by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þκρ1=n−1c

4π

s
ξ; ð4Þ

ρ̂ ¼ ρcθ
n; ð5Þ

and ρc is the central density of the star. θ is unity at the
stellar center and zero at the surface.
The hydrodynamics equation for self-gravitating stars

subject to tidal forces in an inertial frame is written as

ρr̈i ¼ −ρ∂iΦ − ∂iP − ρCijrj; ð6Þ

where Φ is the self-gravitational potential, determined by
the Poisson equation, ΔΦ ¼ 4πρ, and Cij is the tidal tensor
determined by a BH, which is appropriately defined in the
local inertial frame [35]. ṙi denotes the derivative of ri with
respect to the timelike affine parameter that characterizes
the motion of the inertial frame.
The first step to obtain the basic equations satisfied by

the affine model is to recover the tensor virial equation. For
this, we take the tensor product of the preceding hydro-
dynamics equation with the position vector and then
integrate over the volume of the star V asZ
V
ρðrÞr̈irkd3r ¼ −

Z
V
ρðrÞ∂iΦðrÞrkd3r −

Z
V
∂iPðrÞrkd3r

−
Z
V
ρðrÞCijrjrkd3x: ð7Þ

By introducing the following integral quantities

Mik ¼
Z
V
ρðrÞrirkd3r; ð8Þ

Jik ¼
1

2

Z
V
ρðrÞðriṙk − ṙirkÞd3r; ð9Þ

Tik ¼
1

2

Z
V
ρðrÞṙiṙkd3r; ð10Þ

Ωik ¼
Z
V
ρðrÞ∂iΦrkd3r; ð11Þ

Π ¼
Z
V
Pd3r; ð12Þ

we obtain the tensor virial equation [36]

1

2
M̈ik þ J̇ik − 2Tik ¼ Ωik þ Πδik − CijMjk; ð13Þ

where δik is the Kronecker delta.

In the spherical reference state, we haveZ
V
ρ̂ðrÞr̂ar̂bd3r̂ ¼ M�δab; ð14Þ

where

M� ¼
1

3

Z
V
ρ̂ðr̂Þr̂2d3r̂: ð15Þ

As we apply the linear transformation qia, the mass of an
infinitesimal material element is conserved, and hence, we
have the relation ρ̂ðr̂Þd3r̂ ¼ ρðrÞd3r. We then obtain the
following relations for the integral quantities:

Mik ¼ M�qiaqka; ð16Þ

Jik ¼
M�
2

ðqiaq̇ka − q̇iaqkaÞ; ð17Þ

Tik ¼
M�
2

q̇iaq̇ka; ð18Þ

and thus,

M�q̈ia ¼ q−1ak ðΩik þ ΠδikÞ − CijM�qja: ð19Þ

If we introduce Bij by

M�Bij ¼ q−1ai q
−1
ak ðΠδkj þΩkjÞ; ð20Þ

the equation for qia becomes

q̈ia ¼ ðBij − CijÞqja: ð21Þ

Bij thus encodes the internal forces of the star, namely the
pressure and the self-gravity. In particular, if we set Cij to
zero, the resulting equation describes the evolution for an
isolated star. As we assume that the self-gravity is
Newtonian, we have

Ωij ¼ −
Z
V

Z
V

ðri − r0iÞðrj − r0jÞρðrÞρðr0Þd3rd3r0
2jrk − r0kj3

: ð22Þ

We then define the matrix S as Sij ¼ qiaqja. By denoting
the identity matrix as 1, we introduce the dimensionless
matrix Aij:

Aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSÞ

p Z
∞

0

ðSþ u1Þ−1ij duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSþ u1Þp : ð23Þ

From the theory of incompressible fluids [19,30], we have

Ωij ¼
Ω�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSÞp AikSjk; ð24Þ
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where Ω� is the self-gravitational energy in the spherical
reference state given by

Ω� ¼ −
Z
V�

Z
V�

ρðr̃Þρðr̃0Þd3r̃d3r̃0
2jr̃k − r̃0kj

; ð25Þ

and V� designates the volume of the star in the spherical
reference state.
If we also introduce the integral of the pressure in the

spherical reference state Π� by

Π� ¼
Z
V�
Pðr̃Þd3r̃; ð26Þ

we must have

Π� ¼ −
Ω�
3
: ð27Þ

This is equivalent to the virial relation for isolated spherical
stars. We can now rewrite Bij as

Bij ¼
Π�
M�

�
−

3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSÞp Aij þ

Π
Π�

q−1ai q
−1
aj

�
: ð28Þ

Then the equation of qia is written as

q̈ia ¼
�
Π�
M�

�
−

3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSÞp Aij þ

Π
Π�

q−1bi q
−1
bj

�
− Cij

�
qja:

ð29Þ

B. Equations in a rotating frame

In the affine model, we assume that all the degrees of
freedom of the system are contained within the deformation
matrix qia. Thus in the most general case, we have nine free
variables.
For any qia that satisfies detðqiaÞ ≠ 0, we can find

two independent orthogonal matrices Pij and Qab, i.e.,
Pij ¼ P−1

ji and Qij ¼ Q−1
ji , and write

qib ¼ PijbjaQba: ð30Þ

This defines bja as a new deformation matrix written in a
new frame. This frame is defined through a rotation in real
space Pij, and a rotation in the spherical reference state
Qab. Since we do not impose any constraint on bia at this
stage, it has the same nine degrees of freedom as qia.
To relate quantities between the inertial frame and our

new frame, we define the rotation rate of the inertial frame

wij ¼ PkiṖkj: ð31Þ

Likewise we define the vorticity inside the star through

λab ¼ QcaQ̇cb: ð32Þ

Both of them are anti-symmetric matrices, i.e., wij ¼ −wji

and λab ¼ −λba, and thus, each of them has three degrees of
freedom.
We then have the relations

Pjiq̈jbQba ¼ b̈ia þ 2wijḃja − 2ḃibλba þ ẇijbja − bibλ̇ba

þ wijwjkbka − 2wijbjbλba þ bicλcbλba: ð33Þ

Thus the equation of the affine model becomes

b̈ia þ 2wijḃja − 2ḃibλba þ ẇijbja − bibλ̇ba þ wijwjkbka

− 2wijbjbλba þ bicλcbλba

− τ−2�

0
B@Π
Π�

b−1ia −
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðS̃Þ

q Ãijbja

1
CA ¼ −C̃ijbja; ð34Þ

where τ−2� ¼ Π�=M�, S̃ij ¼ biabja, C̃ij is the tidal tensor
Cij in the new frame, and Ãij has the same expression as Aij

but with Sij replaced by S̃ij in Eq. (23). The new
equation (34) explicitly shows the contribution of rotation
and vorticity on the star through the terms containing wij

and λab. τ� approximately denotes the sound crossing time
in the spherical reference star.
If we choose a frame in which bia is diagonal, i.e.,

bia ¼ biδia, this promotes wij and λab to dynamical vari-
ables which always enforce the relation qib ¼ PijbjaQba.
We still have nine degrees of freedom, but in this case each
of bi, wij and λab has three degrees of freedom.
We introduce the rotation vector Ωk and the vorticity

vector Λc such that wij ¼ ϵijkΩk and λab ¼ ϵabcΛc, where
ϵijk is the completely antisymmetric tensor. We can then
decompose Eq. (34) as

b̈i − bi½ðΛ2
j þ Λ2

kÞ þ ðΩ2
j þ Ω2

kÞ� þ 2ðbjΛkΩk þ bkΛjΩjÞ

− τ−2�

�
Π

Π�bi
−

3

2b1b2b3
biÃii

�
¼ −C̃iibi; ð35Þ

2ḃiΛk − 2ḃjΩk þ biΛ̇k − bjΩ̇k þ biΛiΛj þ bjΩjΩi

− 2bkΛiΩj ¼ −C̃ijbj; ð36Þ

where we suspended the summation convention, and
assumed i ≠ j ≠ k. Using bi, Ãij is written as

Ãij ¼ b1b2b3

Z
∞

0

δijduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb21 þ uÞðb22 þ uÞðb23 þ uÞp ðb2i þ uÞ :

ð37Þ
It is found that Ãij is written in a form well-known in
the incompressible case [19]. Equations (35) and (36)

MATTEO STOCKINGER and MASARU SHIBATA PHYS. REV. D 111, 123044 (2025)

123044-4



correspond to the evolution equations for the diagonal and
off-diagonal components of Eq. (34), respectively. Thus
rewritten, we have similar equations to the ones of the
Dirichlet problem as shown in [19].

C. Equatorial plane: order 0

Our purpose in this paper is to study the tidal effect on a
polytropic star orbiting a Kerr BH using the affine model.
Apart from using a compressible EOS, our setup com-
pletely mirrors the one presented in [20].
As such, we assume that the star has a geodesic orbit

around a spinning BH of mass m and of spin parameter a.
To reference the position of the star relative to the BH, we
will use the Boyer-Lindquist coordinates. The metric and
the geodesic equations are written down in Appendix A.
We will assume spherical orbits of the star; the star stays at
constant radius r of the BH, but its orbital plane slightly
precesses around the equatorial plane. We assume that the
mass ratio between the two objects as mstar=m ≪ 1

(typically 10−5 in this paper). Thus, we can safely treat
the spacetime as fixed because the modification of the main
results by changing the equations of state (see Figs. 1 and 2)

is much more significant than the correction from the
mass ratio.
The equation of the affine model (29) is valid in a local

inertial frame. Thus, we need to use Fermi-normal coor-
dinates on the geodesics, such as the ones found in [35].
In this inertial frame, we refer to the axes of the

corresponding orthonormal basis as 1, 2, and 3. We assume
that the axis 3 points in the same direction as the orbital
angular momentum of the fluid or in other words, the
direction of−ð∂=∂θÞμ. Note that our 2 and 3 axes agree with
the 3 and 2 axes of [35], and that we changed the direction
of our 2 axis. In this case, the tidal tensor has the form given
in Appendix B.
As the zeroth-order solution, we need to obtain the

solution of a star with an equatorial orbit. As in [15], we
assume that the semiaxes of our ellipsoidal star point in the
frame rotating at the orbital frequency and put ourselves in
this frame. We thus use as ansatz

bja ¼ baδja; ð38Þ

wij ¼ wϵij3; ð39Þ

where w is the orbital angular velocity which satisfies
w2 ¼ m=r3. For equatorial orbits, we then have ẇij ¼ 0. In
this paper, we pay attention only to the case that the star has
no vorticity; thus λab ¼ 0, i.e., the corotating case.
We can assume that bia is constant in time for the

equatorial orbits case. Then, Eq. (34) reduces to

FIG. 1. Ω̃2 ¼ Ω2=ðπρ̄Þ as a function of r=m for the first- and
second-order resonances, along with the tidal disruption limit Ω̃2

crit

as well as the orbital frequency of Ω̃2 for a typical value of
supermassive BH-white dwarf binary, namely a 104 km large,
0.6M⊙ white dwarf orbiting a 105M⊙ BH (red curve with arrow).
The orange and green curves denote the location of the first- and
second-order resonances, respectively (see Sec. IV for details). For
all the plots, we assumed a=m ¼ 0.8 and prograde orbits. The
upper panel shows the results for the incompressiblemodel, and the
lower panel the result for compressible stars with n ¼ 1 (Γ ¼ 2).

FIG. 2. Same curves as Fig. 1, but the upper and lower panels
show the results for compressible stars with n ¼ 3=2 and 2
(Γ ¼ 5=3 and 3=2), respectively.
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wijwjkbka − τ−2�

�
Π
Π�

b−1ia −
3

2b1b2b3
Ãijbja

�
¼ C̃ijbja:

ð40Þ

To utilize the results previously found [20], we introduce
the conformal correspondence theorem [30]. This theorem
relates the result of the equation previously written to the
results found in the incompressible hypothesis. For this, we
first rescale the variables as

α ¼ ðb1b2b3Þ1=3; ð41Þ

bia ¼ αb̂ia; ð42Þ

wij ¼ α−3=2τ−1� ŵij: ð43Þ

We then obtain

ŵijŵjkb̂ka −
�
P̂b̂−1ia −

3

2
Ãijb̂ja

�
¼ C̃ijb̂ja; ð44Þ

where αΠ=Π� ¼ P̂. In a polytropic EOS [30], we have
α ¼ P̂1=ð4−3ΓÞ. Due to this expression, we cannot extend
this formalism to the particular case Γ ¼ 4=3.
To solve the equation verified by a compressible star, we

thus need to find a solution for the virial equations of an
incompressible one. By solving these equations, we get the
values of b̂1; b̂2, and b̂3. This allows us to compute P̂which
gives us α. We can then rescale the star appropriately.
It is also worth noting how rescaling affects the density

of the compressible star. If the spherical reference state of
our compressible star has a central density of ρc;� in its
physical state, it will have a density of ρc ¼ α−3ρc;�.
However if we want to actually find the right physical

values, we need to proceed carefully. Indeed when we
rescale the angular velocity w, we change the separation
of the star to the BH, r. As in the incompressible case, we
take w2 ¼ m=r3, and thus, by rescaling w, we rescale r
as r ¼ ατ2=3� r̂.
Here, in our equation, C̃ij depends on r. In particular, we

can write it as C̃ij ¼ w2c̃ijðrÞ. When rescaling, we have

Ĉij ¼ ŵ2c̃ijðατ2=3� r̂Þ. Thus we cannot fully remove all α
and τ� from the rescaled equations. More specifically we
cannot compute all the equations all at once. Therefore, we
can solve the equations only by using an iterative scheme.
At the beginning of the iteration, we fix c̃ijðrÞ using

the actual separation r between the star and the BH.
Furthermore τ� is fixed from the spherical reference state
of the star for which we want to solve the equations. Then,
we assume α ¼ 1. This fixes ŵ, and we can then solve
Eq. (44), in the same way as in [15]. Indeed as we assumed
that the only nonzero components of bia are diagonal, we
have the equations

0 ¼ −
3

2
b̂1Ã11 þ

P̂

b̂1
− b̂1C̃11 − ŵ2b̂1; ð45Þ

0 ¼ −
3

2
b̂2Ã22 þ

P̂

b̂2
− b̂2C̃22 − ŵ2b̂2; ð46Þ

0 ¼ −
3

2
b̂3Ã33 þ

P̂

b̂3
− b̂3C̃33: ð47Þ

From these equations, we can compute P̂, which yields a
new value for αnew ¼ P̂1=ð4−3ΓÞ. In general this new value
will be different from the one used previously.
Thus we change the value for α accordingly, and this

changes the value for ŵ. We then solve again the equations.
We continue this process until there is a good agreement
between the value of α used to solve the equations and the
one we get from P̂.
As in previous works [13,15,16], we find a distance

below which there is no more possible solution. This will
correspond to the Roche limit. We plot the maximum
angular velocity Ω̃2 ¼ Ω2=ðπρ̄Þ as a function of the
separation between the star and the BH in Figs. 1 and 2
(line delimiting the shaded region from the non-shaded
one), where ρ̄ is the average density of the star. If a star is
more compact than another one, then its value for Ω̃ will be
lower. Thus it will reach the Roche limit at a closer
distance.
Figure 1 shows the results for stiff EOSs, i.e., the

incompressible EOS and polytropic EOS with Γ ¼ 2,
and Fig. 2 for the soft EOSs with Γ ¼ 5=3, and 3=2. We
note that for higher angular velocity, i.e., when entering the
gray zone, there is no solution. This gives us the Roche
limit for different EOSs. As we already noted, the maxi-
mum angular velocity in terms of Ω̄ increases for softer
EOSs. Indeed as the EOS gets softer, the core of the star
gets more compact, and hence, the star becomes less
susceptible to tidal disruption.
The meaning of the other curves in Figs. 1 and 2 will be

described in Sec. IV.

III. PERTURBATIVE EXPANSION

A. Framework

We then consider a star in a slightly inclined spherical
orbit around Kerr BHs. As before [20] we study this case
using a perturbative expansion assuming that the inclina-
tion angle of the orbital plane with respect to the equatorial
plane is small. For this, we write

bia ¼ b0;ia þ εβia þOðε2Þ; ð48Þ

where b0;ia is the equilibrium solution for equatorial
circular orbits and βia is the perturbation. ε is our small
parameter for the expansion (see Appendix A).
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To facilitate the subsequent computations, we assume
that α stays constant and equal to ðb1b2b3Þ1=3. Thus, we
have at first order

b̂ia ¼ α−1ðb0;ia þ εβiaÞ ¼ b̂0;ia þ εβ̂ia: ð49Þ

Then by expanding Eq. (34) and rescaling it in the same
way as seen in the conformal correspondence theorem, we
obtain the order 1 equation:

τ2�α3
̈β̂iab̂0;ja þ 2τ�α3=2ŵik

˙̂βkab̂0;ja

þ ŵikŵklðβ̂lab̂0;ja þ b̂0;laβ̂jaÞ

þ 3

2
ðdÃikðβ̂laÞb̂0;kbb̂0;jb þ Ãikðβ̂kab̂0;ja þ b̂0;kaβ̂jaÞÞ

¼ −Ĉ0;ilðβ̂lab̂0;ja þ b̂0;laβ̂jaÞ − Ĉ1;ilb̂0;lab̂0;ja þ δP̂δij;

ð50Þ

where dAikðβ̂laÞ is the differential of Aij and a linear
function in its argument β̂la. The linear function dAik is
computed using the deformation matrix of the unperturbed
star b̂0;ia. The exact expression of dAikðβ̂laÞ is given in
Appendix C. Ĉ0;ij and Ĉ1;ij are the zeroth- and first-order
forms of the rescaled tidal tensor.
As of now, we have 9 equations for 10 unknowns, the

nine components of β̂ia and δP̂. Contrary to the incom-
pressible case, we cannot assume that the star has a fixed
volume. We thus need one more equation. For this, we
assume an adiabatic transformation from the equilibrium
state to the perturbed state. Thus,

δP
P

¼ Γ
δρ

ρ
; ð51Þ

and we have at first order

δP ¼ −ΓPb̂−10;iaβ̂ia: ð52Þ

Using this, we can compute the difference of the integral Π
between the equilibrium and perturbed states as

εδΠ ¼ Π1 − Π0

¼
Z
Vε

ðPðr0Þ þ εδPðr0ÞÞd3r0 −
Z
V0

PðrÞd3r

¼ −εðΓ − 1Þ
Z
V0

PðrÞb̂−10;iaβ̂iad3r; ð53Þ

where Vε designates the volume enclosed by the perturbed
star and V0 the equilibrium one. Note that this last equation
can be seen to be equivalent to the conservation of volume

b̂−10;iaβ̂ia ¼ 0; ð54Þ

when Γ → ∞. This corresponds indeed to the incompress-
ible case.
We expect to be able to split the equations in two parts:

one will describe the normal oscillations of the star, and the
other the feedback of the perturbed geodesics and the lower
order perturbations of the star. The equations can then be
seen as an excitation process of the latter term on the
former one.

B. Case of an inclined orbit: order 1

Since ε varies in time (see Appendix A), we assume the
form of εðτÞ ¼ ε0eiωθτ, where ε0 is the maximum precess-
ing angle of the perturbed orbit and only the real part in ϵ
has the physically relevant value. Thus, we can also write
Ĉ1;ijðτÞ ¼ Ĉ0

1;ije
iωθτ, where

Ĉ0
1;13 ¼ 3aε0

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ K0

p
ðr2 þ 5K0Þffiffiffiffiffiffi

K0

p
r6

; ð55Þ

withK0 being the Carter constant of the equatorial orbit. As
the time varying period of C̃1;ij is fixed as 2π=ωθ, which we
rescale as ωθ ¼ α−3=2τ−1� ω̂θ, Eq. (50) is written as

− ω̂2
θβ̂iab̂0;ja þ 2iω̂θŵikβ̂kab̂0;ja

þ ŵikŵklðβ̂lab̂0;ja þ b̂0;laβ̂jaÞ

þ 3

2
ðdÃiklmðβ̂mab̂0;la þ b̂0;maβ̂laÞb̂0;kbb̂0;jb

þ Ãilðβ̂lab̂0;ja þ b̂0;laβ̂jaÞÞ
¼ −Ĉ0;ilðβ̂lab̂0;ja þ b̂0;laβ̂jaÞ − Ĉ1;ilb̂0;lab̂0;ja þ δP̂δij:

ð56Þ

Thanks to the rescaling, we obtain similar equations as in
the incompressible case. In particular, as Ĉ0

1;ij only contains
off-diagonal terms, we only need to look at the equations
for the off-diagonal terms with i ≠ j, which are the same
as the ones for the incompressible model. We thus expect
the first-order resonance to be present as in [20], although
the resonant orbital distance may differ from those in the
incompressible star.
If we introduce λ such that ω2

θ ¼ ð1þ λÞΩ2
0, where λ

is a purely relativistic correction [see Eq. (A8)], we have
C̃11 ¼ ð−2 − λÞΩ2

0, C̃22 ¼ Ω2
0, and C̃33 ¼ ð1þ λÞΩ2

0.
Then, similarly to the result in [20], we find the first-order
resonance when

α3=2τ�Ω2 ¼ 3B13λ

ð3þ λÞð1þ λÞ ; ð57Þ

where B13 is defined in Eq. (C7).
Next, we derive a formulation for analyzing the growth

rate of the resonant motion. We notice that Eq. (50) can be
written as linear ordinary differential equations of the first
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order. For this, we introduce ðeij; fijÞ such that fij ¼
τ�α3=2ėij and eij ¼ β̂iab̂0;ja. Equation (50) then becomes

τ�α3=2ḟij þ 2ŵikfkj þ ŵikŵklðelj þ ejlÞ

þ 3

2
ðdÃiklmðelm þ emlÞb̂0;kbb̂0;jb þ Ãikðekj þ ejkÞÞ

¼ −Ĉ0;ilðelj þ ejlÞ − Ĉ1;ilb̂0;lab̂0;ja þ δP̂δij: ð58Þ

If we introduce a state vector Eα which encodes all the
variables of the system ðeij; fij; δPÞ, the preceding equa-
tion can be schematically written as

τ�α3=2Ėα þMαβEβ ¼ Cα; ð59Þ

where Cα encodes the tidal perturbation. From this equa-
tion, we can see that the eigenvalues of the matrix Mαβ

correspond to the normal modes of the star.
At the resonance, we have iω̂θEα þMαβEβ ¼ 0. We then

need to assume another ansatz for the time dependence of
the perturbation as

Eα ¼ μρατeiω̂θτ þ ναeiωθτ; ð60Þ

where μ; ρα, and να are constants, and μ denotes the growth
rate of the resonant motion. While at some point the first
term will be large enough that our linear analysis is not
valid anymore, this ansatz allows us to compute the growth
rate as the star is at or near the resonance.
The equations satisfied by these constants can be

decomposed into two systems of equations, one depending
on time as τeiωθτ, and the other as eiωθτ. The one depending
as τeiωθτ reflects the resonance condition, i.e., one the
normal modes of the star ωn coincide with ωθ, and involves
only ρα:

iω̂θρα þMαβρβ ¼ 0: ð61Þ

This implies that ρα is an eigenvector of the matrix Mαβ,
which we will assume to be normalized to one. Then we
find that μ can be interpreted as the growth rate of the
perturbation at the resonance.
By replacing ωθ with any ω, one can find the normal

modes ωn with their associated eigenvectors En
α. From this

one can deduce the existence of Pαβ a projection operator
such that Pαβρβ ¼ ρα and PαβEn

β ¼ 0 for any value of n.
One can then write να ¼ σ0ρα þ

P
n σnE

n
α. The equa-

tions for να are

μρα þ iω̂θνα þMαβνβ ¼ Cα: ð62Þ

Then by applying the projection operator Pαβ, we obtain the
equation

μρα ¼ PαβCβ; ð63Þ

from which we can obtain the growth rate of the perturba-
tion μ at the resonance. σn can then be determined from the
initial conditions.
Using similar notations, we can also study the growth

rate of a perturbation when the star is nearby the resonance.
In this case, there is a normal mode ω̂0 in our system
whose value is close to ω̂θ. If we assume that the response
to the tidal disruption is mainly dominated by oscillations
of frequency ω̂0 and ω̂θ, we can assume that Eα ¼
μ0ρ0;αeiω̂0τ þ μθρ0;αeiω̂θτ, where ρ0;α is the eigenvector of
Mαβ with the eigenvalue iω̂0. As before, we can construct
the projection operator Pαβ associated with ρ0;α. We must
then have iðω̂θ − ω̂0Þμθρ0;α ¼ PαβCβ. If we assume that
our initial conditions are Eαðτ ¼ 0Þ ¼ 0, we have
μθ ¼ −μ0. Thus for τ ≪ 1, near the resonance, we obtain
Eα ≈ PαβCβτeiω̂θτ.

C. Order 2

In the previous paper, we also found resonances at the
second order of perturbation in ε [20]. To identify this, we
extend our perturbation equations by one order further.
For the second-order equations, two types of contribu-

tion, which did not appear at the first order, are present.
First, one needs to add second-order contributions to the
rotation rate wij. For this, we write

wij ¼ w0;ij þ ε2w2;ij þOðε4Þ: ð64Þ

ŵ2;ij like ŵ0;ij is a rotation around the axis 3. Second,
quadratic terms in β̂ia are necessary. However, it is soon
found that these terms are not relevant for the condition of
the resonances.
We write the deformation matrix up to the second

order as

bia ¼ b0;ia þ εβia þ ε2γia þOðε3Þ: ð65Þ

As before, we rescale them by α as

b̂ia ¼ b̂0;ia þ εβ̂ia þ ε2γ̂ia þOðε3Þ: ð66Þ

Then the basic equations are written in the form
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τ2�α3ð ̈γ̂iab̂0;ja þ ̈β̂iaβ̂jaÞ þ 2τ�α3=2ŵ0;ikð ˙̂γkab̂0;ja þ ˙̂βkaβ̂jaÞ þ ŵ0;ikŵ0;klðγ̂lab̂0;ja þ b̂0;laγ̂ja þ β̂laβ̂jaÞ

þ 3

2
ðdÃiklmðγ̂mab̂0;la þ b̂0;maγ̂la þ β̂laβ̂maÞb̂0;kbb̂0;jb þ Ãilðγ̂lab̂0;ja þ b̂0;laγ̂ja þ β̂laβ̂jaÞ

þ d2Ãiklmnoðβ̂mab̂0;la þ b̂0;maβ̂laÞ × ðβ̂nbb̂0;ob þ b̂0;nbβ̂obÞb̂0;kcb̂0;jc þ dÃiklmðβ̂mab̂0;la þ b̂0;maβ̂laÞ
× ðβ̂ibb̂0;kb þ b̂0;kbβ̂ibÞÞ ¼ Ĉ0;ikðγ̂kab̂0;ja þ b̂0;kaγ̂ja þ β̂kaβ̂jaÞ þ Ĉ1;ikðβ̂kab̂0;ja þ b̂0;kaβ̂jaÞ
þ Ĉ2;ikb̂0;kab̂0;ja þ δ2P̂δij − ˙̂w2;ikb̂0;kab̂0;ja − 2ŵ2;ikŵ0;klb̂0;lab̂0;ja: ð67Þ

d2Aiklmno is the second derivative of Aij computed from the
unperturbed state. The explicit form for it is given in
Appendix C.
For the second-order change of the pressure δ2P̂, we

proceed as before:

δ2P̂ ¼ ðΓ − 1ÞP̂
�
−b̂−10;iaγ̂ia −

1

2
ðb̂−10;iaβ̂iaÞ2

þ 1

2
b̂−10;iaβ̂jab̂

−1
0;jbβ̂ib þ Γðb̂−10;iaβ̂iaÞ2

�
: ð68Þ

In the incompressible limit, Γ → ∞, we have

− b̂−10;iaγ̂ia −
1

2
ðb̂−10;iaβ̂iaÞ2 þ

1

2
b̂−10;iaβ̂jab̂

−1
0;jbβ̂ib

þ Γðb̂−10;iaβ̂iaÞ2 ¼ 0: ð69Þ

Here, Γðb̂−10;iaβ̂iaÞ2 vanishes in the incompressible limit.
Indeed, from Eq. (53), Γb̂−10;iaβ̂ia¼−δP=P, and b̂−10;iaβ̂ia → 0

as Γ → ∞, as established in Eq. (54), and thus,
Γðb̂−10;iaβ̂iaÞ2 → 0. The equation then becomes

b̂−10;iaγ̂ia ¼
1

2
b̂−10;iaβ̂jab̂

−1
0;jbβ̂ib: ð70Þ

Each source term can be decomposed in two parts as in
our previous paper [20], depending on its time dependence.
The first component is constant in time, and the second one
varies as e2iωθτ. One then has to solve the equations for each
of those time dependencies. However, we only want to find
the resonant distances. As seen in the previous paper, we
thus need to solve the equations for the time dependence in
e2iωθτ. Then by looking at the contributions linear in γ̂ia,
one should recast the equations in matrix form and identify
the orbital separation at which its determinant vanishes.

D. Correspondence between affine equations
and virial equations

In order to clarify the continuity between the previous
paper and current work, we now make the link between the
current formalism and the virial equations clearer.
In the incompressible hypothesis, our starting point is an

ellipsoid. We then assume that a displacement is written in

the form of xi → xi þ ξijxj, where ξij denotes the dis-
placement tensor. This is equivalent to performing a linear
transformation Lij on our equilibrium state: xi → Lijxj,
with Lij ¼ δij þ ξij.
In the affine model, on the other hand, every variable is

defined in relation to the spherical reference state. We apply
a linear transformation from this reference state. Our
perturbative expansion then concerns the transformation
bia. In particular at first order, we apply the transformation
bia ¼ b0;ia þ εβia ¼ ðδij þ εβibb−10;bjÞb0;ja. This is equiva-

lent to applying a transformation L̃ij ¼ ðδij þ εβibb−10;bjÞ to
the equilibrium state which is defined using b0;ia.
By comparing the two formalisms, we thus deduce that

the displacement of the incompressible formalism can be
written as

ξij ¼ βibb−10;bj: ð71Þ

In the previous paper [20], we mainly used the variables

Vð1Þ
i;j ¼ mstarξijb2j=5. Its correspondence in the affine for-

malism is then given as

Vð1Þ
i;j ¼ mstar

5
βibb0;bj: ð72Þ

This can be also extended to higher orders, in particular for
the second order as

Vð2Þ
i;j ¼ mstar

5
γibb0;bj: ð73Þ

IV. RESULTS

A. Resonance orbital distance

In our previous paper [20], we showed that when the
frequency of a normal mode of an incompressible star
coincides with the geodesic oscillation, a resonance is
triggered. As the overall equations have not essentially
changed, it is unsurprising to find the same resonances even
in compressible stars. There are, however, a couple of
noteworthy changes, which will be reported in this section.
Specifically, we here consider a white dwarf of mass

mWD in precessing spherical orbits around a Kerr BH of
mass m ¼ 105M⊙ ≫ mWD and spin parameter a=m ¼ 0.8.
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We compute the resonances for polytropic EOSs with
indices of n ¼ 1, 3=2, and 2 (Γ ¼ 2; 5=3, and 3=2,
respectively). We note that the resonance, which we will
show below, appears irrespective of the BH spin.
In Figs. 1 and 2 we plot Ω̃2 ¼ Ω2=ðπρ̄Þ of the first- and

second-order resonances (orange and green curves, respec-
tively) in addition to that of the Roche limit as functions of
the separation of the star r=m. Here, using Ω̃ allows us to
compare the result found in the affine model with the ones
from the incompressible model. In the following we
consider the case of mWD ¼ 0.6M⊙ and the white dwarf
radius R ¼ 104 km.
For both types of resonances, for a given value of r=m,

we observe that the value of Ω̃ for the resonances increases
in the polytropic EOS compared to the incompressible case.
Moreover, with the increase of the polytropic index
(decrease of the adiabatic index Γ), Ω̃ at the resonances
increases, approaching the curve of the Roche limit. In the
case of the second-order resonance, it even disappears for
n ¼ 2 (Γ ¼ 3=2). This implies that this resonance is absent
for high-mass white dwarfs for which the EOS should be
soft with n≳ 2 [34].
For the larger values of n (smaller values of Γ), the core

of the star becomes more compact. Thus as we noted when
we discussed the Roche limit, the star is less easily tidally
disrupted (for given values ofmWD and R), and this fact can
be seen in the increase of Ω̃ at the Roche limit as the EOS
becomes softer (n becomes larger). This change in the
phenomenology of the stars is also reflected in the
resonances. In particular, we observe that white dwarfs,
which may be approximated by a polytrope of n ¼ 3=2–2
for mass ≲1M⊙, are tidally disrupted only at a very close
orbital distance to the BH. Likewise, the resonances are
triggered closer to the BH.
The first-order resonance comes from the coincidence of

the geodesic oscillation with a mode driven by the Coriolis
force [19]. It is thus a r-mode resonance. Both of them have
at every point a value of the same order as Ω. As the
perturbative equations were the same for the polytropic and
incompressible stars, we could indeed find it again. For
different stellar structures, we might have slightly different
resonant frequencies, and thus the resonance might be
triggered at a different separation. However as the mecha-
nism of this resonance relies mainly on the Coriolis force,
we should always observe this resonance unless the EOS is
not very soft.
As we saw in Sec. II C, a less compact white dwarf will

reach one of the resonances at a more distant orbit. As long
as the white dwarf is less than or as compact as our
reference case with mWD ¼ 0.6M⊙ and R ¼ 104 km, then
it will hit the first-order resonance. However if the white
dwarf is more compact, it may hit the second-order
resonance instead.
We highlight this behavior in Fig. 3, where we plot the

resonant distance for relatively low-mass (low density)

white dwarfs as a function of its mass. We still assume that
the central BH has a mass m ¼ 105M⊙. Since our focus is
in particular on relatively low-mass white dwarfs, we take
Γ ¼ 5=3. For this case the radius and mass of white dwarfs
are approximately written in terms of the central density ρc
as [e.g., [37] ]

R ¼ 1.122 × 104
�

ρc
106 g cm−3

�
−1=6

km; ð74Þ

mWD ¼ 0.4964

�
ρc

106 g cm−3

�
1=2

M⊙: ð75Þ

Figure 3 shows that for white dwarfs of mass
mWD ≳ 0.68M⊙, there will not be a first-order resonance.
Thus for such massive white dwarfs, there would only be a
second-order resonance, triggered close to the Roche limit.
In these cases, we might observe a fairly typical tidal
disruption.
Before closing this subsection, it is worth noting that

r-mode resonances have already been described for rela-
tivistic binary systems [25,27]. However, these come from
a gravitomagnetic tidal field, whereas the one we presented
comes from a gravitoelectric field. In the case of a tidally
locked star, the gravitomagnetic force is of Oðm2R2=r5Þ,
whereas the off-diagonal gravitoelectric force is of
OðmaR=r4Þ. Therefore for rapidly spinning BHs, the
gravitomagnetic force is subdominant.

B. Growth rate of the resonant motion
in the first-order resonance

In Fig. 4, we plot the maximum velocity induced by the
BH tidal force for a white dwarf of mWD ¼ 0.6M⊙ and
R ¼ 104 km with Γ ¼ 5=3 at different separation r=m of
the BH, ofm ¼ 105M⊙ and a ¼ 0.8 m.We assume that the
amplitude of the perturbation of the inclination is ε0 ¼ 0.5.

FIG. 3. Resonant distance for low density WD as a function of
its mass, orbiting a m ¼ 105M⊙ BH. We assume Γ ¼ 5=3 for the
EOS of low density WD. We detail its EOS more in Sec. IVA.
The gray zone corresponds to the separation for which the star is
tidally disrupted. We further add a red dashed line to separate the
masses, below which the star first hits the first-order resonance.
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The maximum velocity induced by the perturbation is
computed by first solving for the variable eij in Eq. (58).
We can then compute the associated displacement tensor
ξij ¼ βibb−10;bj ¼ eikb̂

−1
0;bkb̂

−1
0;bj from the first-order tidal per-

turbation. This displacement tensor induces a velocity field
ui ¼ iωθξijxj which takes its maximum value at the sur-
face. Here we plot umax ¼ Rωθ maxijðξijÞ.
We compare the resulting velocity with the escape

velocity at the surface of the star which is of the orderffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mWD=R

p
. When the induced perturbation is of the same

order as this limit, we know that the linear approximation
breaks down: In reality, at this stage, the growth of the
perturbation would be saturated. This allows us to identify
the resonant window of the separations r for which the
perturbation becomes large. We observe that the resonance
window is narrow as Δr ∼ 0.15 m (see the red region
of Fig. 4).
We expect that in real systems, the perturbation will grow

until the maximum velocity reaches the escape velocity.
Then, a fraction of the stellar matter will be ejected from the
white dwarf. By the mass loss, the radius of the white dwarf
should increase with time gradually; the compactness of the
white dwarf decreases. As long as the orbit of the white
dwarf remains in the resonant window, this process is likely
to continue. Because the orbital separation is close to that of
tidal disruption, this process may trigger the eventual tidal
disruption.
During the inspiral of a white dwarf, gravitational waves

are emitted. The frequency in the late inspiral phase is in
the band of Laser Interferometer Space Antenna for
m ∼ 105M⊙ [38], for which the frequency of gravitational
waves from a white dwarf in circular orbits at r=m ¼ 8 is

≈30 mHz. When the white dwarf enters into the resonance
window, it no longer behaves as a point mass, and thus, the
gravitational-wave phase would be modified. After the
mass ejection and subsequent tidal disruption, the gravi-
tational-wave signal should shut down. One noteworthy
point is that this shutdown occurs at an orbital frequency
slightly lower than expected for a tidal disruption on the
original configuration of the white dwarf.
As some stellar matter is ejected from the white dwarf,

the resonance should produce some electromagnetic signal.
It is however unclear if it could be distinguished from one
of a tidal disruption. Due to the special nature of the
displacement involved, the signal could be modulated by
the frequency of the precession ωθ. As this frequency is not
exactly equal to Ω the orbital period, one could in principle
differentiate the cases where a resonance was triggered.
In Fig. 5, we plot two estimates of the linear growth rate

of the angular momentum in the ðx1; x3Þ-plane J13, for the
same system as in Fig. 4 assuming an initial state vector
Eαðτ ¼ 0Þ ¼ 0. The first comes from the numerical inte-
gration of Eq. (58). The second is an analytical estimate of
the growth rate using the formula given in Eq. (63). We
observe a good match between these two quantities in the
resonance window. This is to be expected, as Eq. (63) was
derived assuming that we were close to the resonance. We
also notice that at the larger separation the growth rate can
be fitted as a power law dJ13

dt ∝ rδ, with δ ≈ −7.2, close to 7.
This power agrees with the order-of-estimate at large radii
(note that C̃13 ∝ r−4 (see Appendix B) and I11 − I33 ∝ r−3

for r ≫ m where Iij denotes the quadrupole moment of
the star).

FIG. 4. Maximum velocity at the surface of the star due to the
first-order response to the tidal perturbation for a white dwarf
of mWD ¼ 0.6M⊙, R ¼ 104 km, and with a polytropic index
n ¼ 3=2 (Γ ¼ 5=3), as a function of the separation r=m, where
m ¼ 105M⊙ and a ¼ 0.8 m. The amplitude of the perturbation
on the inclination is given as ε0 ¼ 0.5. The dashed line shows the
escape velocity for this star

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mWD=R

p
. The gray zone corre-

sponds to the separation for which the star is tidally disrupted. We
further highlight the red zone, the resonance window, where the
maximum speed induced by the tidal perturbation is of the order
of the escape velocity.

FIG. 5. Two estimates of the growth rate of the angular
momentum in the ðx1; x3Þ-plane due to the tidal perturbation
as a function of the separation r=m. The first comes from the
numerical integration of Eq. (58), and the second one is derived
using the analytical formula given in Eq. (63). We also fit the
numerical estimate of the growth rate at larger separation to a
power law dJ13=dt ∝ rδ, with δ ≈ −7.2. As before, we assume a
white dwarf of mWD ¼ 0.6M⊙, R ¼ 104 km, and with a poly-
tropic index n ¼ 3=2 (Γ ¼ 5=3) and the BH of m ¼ 105M⊙ and
a ¼ 0.8 m, together with the amplitude of the perturbation on the
inclination ε0 ¼ 0.5. The gray zone corresponds to the separation
for which the star is tidally disrupted, and the red zone is the
resonance window highlighted in Fig. 4.
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Let us make an estimate of the number of orbits needed
for the displacement to have an important impact on the
white dwarf. In the system considered, the resonance is at
roughly r=m ≈ 8. Thus Ω ≈ 1

m ð rmÞ−3=2 ≈ 4 × 10−7M−1
⊙ . In

units c ¼ G ¼ 1, we have a growth rate dJ=dt ≈ 10−7M⊙c2.
We can very roughly approximate J ≈ Iumax=R, with umax
being the maximum velocity typically occurring at the
surface. We have in this case I=R ≈ 8 × 102M2

⊙. Thus
after one period, we have u ¼ R

2πIΩ
dJ
dt ≈ 5 × 10−4c. As

the escape velocity u can be roughly estimated as
u ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mWD=R

p
≈ 10−2c, this indicates that the star needs

on the order of 10–100 orbits before being seriously
perturbed by the tidal forces.
Studies of tidal disruption events have often assumed

parabolic encounters of a white dwarf around a black
hole [39–41]. Let us assume that our white dwarf is in a
parabolic orbit around the black hole. To treat this case
rigorously we would need another mathematical
approach. However as the white dwarf only gets close
to the black hole once, it is probable that the resonance
will not have time to be triggered. Indeed from our
previous order of magnitude computation, we saw that
the white dwarf needs multiple orbits before the induced
displacement disrupts it.

V. CONCLUSION

In this paper, we extend our previous study [20] to
the case of a compressible star using the polytropic EOS.
We applied the affine model formulated in [30] and found
that compressible stars could exhibit the same resonances
but only in restricted cases, i.e., only for the relatively
stiff EOSs.
As remarked in [20], the same analysis can be performed

for weakly eccentric orbits. The perturbative equations we
introduced could also be used in this case. The principles
leading to the resonances can then be expected to still
apply. Thus we may also expect stars in slightly eccentric
orbits to have a resonance before they encounter the Roche
limit, if the EOS is not too soft.
This could be of relevance for the products of three-body

interaction or a tidal capture event. Indeed, we should
expect such systems to be eccentric and have a non-
equatorial orbit. Thus we might observe an even wider
array of resonances in such cases.
When stars are at the resonance, or near it, the induced

displacement becomes very large. The perturbative approach
then breaks down. To explore it further,weneed to gobeyond
a linear analysis. Doing this will allow us to study the impact
of the resonance on the evolution of the system. It will also
enable us to explore possible signatures of these resonances.
For this one needs to perform numerical hydrodynamics
simulations of the system. Furthermore it has been widely
shown that the actual result of a tidal resonance on an object
depends on the inner structure of the object. Thus while we

studied relatively simple stars, further insights could be
gained on this resonance by taking more complicated inner
structures into consideration.
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APPENDIX A: SPACETIME METRIC
AND GEODESIC

The metric of a Kerr BH in the Boyer-Lindquist
coordinates is written as

ds2 ¼ −
Δ
Σ
ðdt− a sin2 θdϕÞ2 þ sin2 θ

Σ
½ðr2 þ a2Þdφ− adt�2

þ Σ
Δ
dr2 þΣdθ2; ðA1Þ

where Δ ¼ r2 − 2mrþ a2 and Σ ¼ r2 þ a2 cos2 θ.
The timelike geodesics on the Kerr spacetime are

described by the four constants of motion, E, specific
energy; L, specific angular momentum for the BH spin
direction; K, the Carter constant [43], and the mass of the
test particle. The resultant geodesic equations are written
as [e.g., [44] ]

dt
dτ

¼ ½ðr2 þ a2Þ2 − Δa2 sin2 θ�E − 2mraL
ΔΣ

; ðA2Þ

Σ2

�
dr
dτ

�
2

¼ fEðr2 þ a2Þ − aLg2 − Δðr2 þ KÞ

≔ RðrÞ; ðA3Þ

Σ2

�
dθ
dτ

�
2

¼ K − a2 cos2 θ −
ðaE sin2 θ − LÞ2

sin2 θ
; ðA4Þ

dφ
dτ

¼ 1

Δ

�
2mraE

Σ
þ
�
1 −

2mr
Σ

�
L

sin2 θ

�
; ðA5Þ

where τ is an affine parameter of the geodesics. In this
paper, we assume that the star has a spherical orbit with a
fixed value of r ¼ r0; R ¼ 0 ¼ dR=dr ¼ 0 at r ¼ r0.
These relations give us the two relations among E, L,
and K.
We assume a slightly precessing orbit, i.e., ε ¼ θ −

π=2 ≪ 1. ε then is a solution of the following equation:

MATTEO STOCKINGER and MASARU SHIBATA PHYS. REV. D 111, 123044 (2025)

123044-12



r4
�
dε
dτ

�
2

¼ C − ε2½a2ð1 − E2
0Þ þ L2

0�; ðA6Þ

where C ¼ K − ðL − aEÞ2, which vanishes for equatorial
orbits. We took into account the terms at Oðε2Þ. Note that
E0 and L0 denote E and L for equatorial circular orbits
while for C we need the second-order quantities in ε.
Then, for r ¼ r0, we obtain

εðτÞ ¼ ε0 cosðωθτÞ; ðA7Þ

where

ωθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
0 þ a2ð1 − E2

0Þ
p

r20

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − 4a

ffiffiffiffiffiffiffiffi
mr0

p þ 3a2

P0

s
Ω0; ðA8Þ

ε0 ¼
ffiffiffi
C

p

ωθ
: ðA9Þ

Here ε0 and
ffiffiffi
C

p
are first-order parameters which are used

for the perturbative expansion. It is worth noting that
cos θðτÞ ¼ −εðτÞ at the first order.

APPENDIX B: TIDAL TENSOR

The expression of the tidal tensor can be simplified by
changing the frame we are working on. In a rotating frame
of rotation Ω⃗ along the 3-axis with magnitude Ω ¼ dΨ=dτ,
the tidal tensor becomes [35]

C̃11 ¼
�
1 − 3

STðr2 − a2 cos2 θÞ
KΣ2

�
Ia þ 6ar cos θ

ST
KΣ2

Ib;

ðB1Þ

C̃22 ¼ Ia; ðB2Þ

C̃33 ¼
�
1þ 3

r2T2 − a2 cos2 θS2

KΣ2

�
Ia − 6ar cos θ

ST
KΣ2

Ib;

ðB3Þ
C̃12 ¼ 0; ðB4Þ

C̃13 ¼ 3½−ar cos θðSþ TÞIa þ ða2 cos2 θS − r2TÞIb�
ffiffiffiffiffiffi
ST

p

KΣ2
;

ðB5Þ

C̃23 ¼ 0; ðB6Þ

where

Ia ¼
mr
Σ3

ðr2 − 3a2 cos2 θÞ; ðB7Þ

Ib ¼
ma cos θ

Σ3
ð3r2 − a2 cos2 θÞ; ðB8Þ

S ¼ r2 þ K, T ¼ K − a2 cos2 θ, and Ψ is a time-dependent
angle obeying the following equation:

dΨ
dτ

¼
ffiffiffiffi
K

p

Σ

�
Eðr2 þ a2Þ − aL

r2 þ K
þ a

L − aE sin2 θ
K − a2 cos2 θ

�
: ðB9Þ

APPENDIX C: GRAVITATIONAL
SELF-POTENTIAL

We define here the quantities necessary to evaluate the
gravitational self-potential. This also establishes further the
links between the affine and incompressible models. In this
appendix, we do not make use of the Einstein summation
convention.
The formula of the gravitational self-potential, Ãij, was

given by Eq. (23). At zeroth order, the matrix b̂ia is
diagonal. In terms of its components, ðb̂1; b̂2; b̂3Þ, we have

Að0Þ
ij ¼ b̂1b̂2b̂3

Z
∞

0

δijdu

D̂ðb̂2i þ uÞ ¼ Aiδij; ðC1Þ

where D̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb̂21 þ uÞðb̂22 þ uÞðb̂23 þ uÞ

q
and

Ai ¼ b̂1b̂2b̂3

Z
∞

0

du

D̂ðb̂2i þ uÞ : ðC2Þ

In a similar fashion, we define

Aij ¼ b̂1b̂2b̂3

Z
∞

0

du

D̂ðb̂2i þ uÞðb̂2j þ uÞ : ðC3Þ

At first order, we have Sij ¼
P

a½b̂0;iab̂0;ja þ
εðβ̂iab̂0;ja þ b̂0;iaβ̂jaÞ� þOðε2Þ. Thus when only focusing
on first-order terms, we have
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSÞ

p
¼ b̂1b̂2b̂3

�
1þ ε

X3
a¼1

β̂iab̂
−1
0;ia

�
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSþ u1Þ

p −1 ¼ D̂−1
�
1 −

ε

2
ðb̂20 þ u1Þ−1ij

X3
a¼1

ðβ̂iab̂0;ja þ b̂0;iaβ̂jaÞ
�
;

ðSþ u1Þ−1ij ¼ ðb̂20 þ u1Þ−1ik
�
δkj − ε

X3
a¼1

ðβ̂kab̂0;la þ b̂0;kaβ̂laÞðb̂20 þ u1Þ−1lj
�
: ðC4Þ

Therefore

dÃijðβ̂kaÞ¼ Ãð0Þ
ij

X3
b¼1

β̂ibb̂
−1
0;ib− b̂1b̂2b̂3

X3
b¼1

�Z
∞

0

ðβ̂ibb̂0;jbþ b̂0;ibβ̂jbÞdu
D̂ðb̂2i þuÞðb̂2j þuÞ þ

Z
∞

0

ðb̂20þu1Þ−1ij ðβ̂ibb̂0;jbþ b̂0;ibβ̂jbÞdu
2D̂ðb̂2i þuÞ

�
: ðC5Þ

If we introduce Vij ¼
P

bðβ̂ibb̂0;jb þ b̂0;ibβ̂jbÞ, we have

dÃijðβ̂kaÞ ¼ Aiδij
X3
l¼1

Vll

2b̂2l
− VijAij −

1

2
δij

X3
l¼1

VllAil

¼ −VijAij þ
1

2

X3
l¼1

Vll
Bil

b̂2l
; ðC6Þ

where

Bij ¼ b̂1b̂2b̂3

Z
∞

0

udu

D̂ðb̂2i þ uÞðb̂2j þ uÞ : ðC7Þ

If we want to compare the preceding result with the equations provided by Chandrasekhar [19], we need to compare

X3
k¼1

X3
b¼1

ðdAikðβ̂laÞb̂0;kbb̂0;jb þ Aikðβ̂kbb̂0;jb þ b̂0;kbβ̂jbÞÞ ¼ −VijAijb̂
2
j þ

1

2

X3
l¼1

Vll
Bilb̂

2
i δij

b̂2l
þ VijAi

¼ VijBij þ
1

2

X3
l¼1

Vll
Bilb̂

2
i δij

b̂2l
: ðC8Þ

The modification to the gravitational potential Mij in Chandrasekhar’s formalism is given as

Mij ¼ VijBij þ
1

2

X3
l¼1

VllAilb̂
2
i δij: ðC9Þ

The difference between the two equations comes from the term
P

b A
ð0Þ
ij β̂ibb̂

−1
0;ib, which is equal to 0 in the incompressible

case, due to the conservation of volume Eq. (54).
We proceed likewise for the second order. In Eq. (67), we introduced the term

Ãð2Þ
ij ¼

X3
l;m;n;o¼1

X3
a;b¼1

d2Ãijlmnoðβ̂mab̂0;la þ b̂0;maβ̂laÞ × ðβ̂nbb̂0;ob þ b̂0;nbβ̂obÞ: ðC10Þ

This term can then be computed as before. We introduce the variables Vi;j ¼
P

b β̂ibb̂0;jb. We have Vij ¼ Vi;j þ Vj;i and
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Ãð2Þ
ij ¼

X3
l¼1

�
AijVi;lVj;lb̂

−2
l þAiljVilVlj þ

VllVijAijl

2
−
VijVllAij

2b̂2l

− δij
X3
k¼1

�
Ai

Vl;kVk;l

b̂2l b̂
2
k

−
V2
lkAlki

4
−
AliV2

l;k

2b̂2k
−
VllVkkAil

4b̂2k
þAlkiVllVkk

8
þAiVllVkk

8b̂2l b̂
2
k

��
; ðC11Þ

where

Aijk ¼ b̂1b̂2b̂3

Z
∞

0

du

D̂ðb̂2i þ uÞðb̂2j þ uÞðb̂2k þ uÞ : ðC12Þ
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