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ABSTRACT
We study the dynamical stability against bar-mode deformation of rapidly spinning neutron stars with

di†erential rotation. We perform fully relativistic three-dimensional simulations of compact stars with
M/Rº 0.1, where M is the total gravitational mass and R the equatorial circumferential radius. We
adopt an adiabatic equation of state with adiabatic index !\ 2. As in Newtonian theory, we Ðnd that
stars above a critical value of b 4 T /W (where T is the rotational kinetic energy and W the gravita-
tional binding energy) are dynamically unstable to bar formation. For our adopted choices of stellar
compaction and rotation proÐle, the critical value of is D0.24È0.25, only slightly smaller thanb \ bdGRthe well-known Newtonian value D0.27 for incompressible Maclaurin spheroids. The critical value
depends only very weakly on the degree of di†erential rotation for the moderate range we surveyed. All
unstable stars form bars on a dynamical timescale. Models with sufficiently large b subsequently form
spiral arms and eject mass, driving the remnant to a dynamically stable state. Models with moderately
large do not develop spiral arms or eject mass but adjust to form dynamically stableb Z bdGRellipsoidal-like conÐgurations. If the bar-mode instability is triggered in supernova collapse or binary
neutron star mergers, it could be a strong and observable source of gravitational waves. We determine
characteristic wave amplitudes and frequencies.
Subject headings : dense matter È relativity È stars : neutron È stars : rotation

1. INTRODUCTION

Neutron stars in nature are rotating and subject to non-
axisymmetric rotational instabilities. An exact treatment of
these instabilities exists only for incompressible equilibrium
Ñuids in Newtonian gravity (see, e.g., Chandrasekhar 1969 ;
Tassoul 1978 ; Shapiro & Teukolsky 1983). For these con-
Ðgurations, global rotational instabilities arise from non-
radial toroidal modes eimr (m\ ^1, ^ 2, . . . ) when
b 4 T /W exceeds a certain critical value. Here r is the
azimuthal coordinate, and T and W are the rotational
kinetic and gravitational potential binding energies. In the
following, we will focus on the m\ ^2 bar mode since it is
the fastest growing mode when the rotation is sufficiently
rapid.

There exist two di†erent mechanisms and corresponding
timescales for bar-mode instabilities. Uniformly rotating,
incompressible stars in Newtonian theory are secularly
unstable to bar-mode formation when b º b

s
^ 0.14.

However, this instability can grow only in the presence of
some dissipative mechanism, like viscosity or gravitational
radiation, and the growth time is determined by the dissi-
pative timescale, which is usually much longer than the
dynamical timescale of the system. By contrast, a dynamical
instability to bar-mode formation sets in when b º b

d
^

0.27. This instability is independent of any dissipative
mechanisms, and the growth time is determined by the
hydrodynamical timescale of the system.

The secular instability in compressible stars, both uni-
formly and di†erentially rotating, has been analyzed
numerically within linear perturbation theory by means of a
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variational principle and trial functions, by solving the
eigenvalue problem, or by other approximate means. This
technique has been applied not only in Newtonian theory
(Lynden-Bell & Ostriker 1967 ; Ostriker & Bodenheimer
1973 ; Imamura et al. 1985 ; Ipser & Lindblom 1990 ; Fried-
man & Schutz 1978) but also in post-Newtonian theory
(Cutler & Lindblom 1992 ; see Shapiro & Zane 1998 for
incompressible stars) and full general relativity (Yoshida &
Eriguchi 1999 ; Bonazzola, Frieben, & Gourgoulhon 1996 ;
Stergioulas & Friedman 1998). For relativistic stars, the
critical value of depends on the compaction M/R of theb

sstar (where M is the gravitational mass and R the circum-
ferential radius at the equator), on the rotation law, and on
the dissipative mechanism. The gravitational radiationÈ
driven instability occurs for smaller rotation rates, i.e., for
values in general relativity. For extremelyb

s
\ 0.14,

compact stars (Stergioulas & Friedman 1998) or strongly
di†erentially rotating stars (Imamura et al. 1995), the criti-
cal value can be as small as By contrast, viscosityb

s
\ 0.1.

drives the instability to higher rotation rates asb
s
[ 0.14

the conÐgurations become more compact (Bonazzola et al.
1996 ; Shapiro & Zane 1998).

Determining the onset of the dynamical bar-mode insta-
bility, as well as the subsequent evolution of an unstable
star, requires a numerical simulation of the fully nonlinear
hydrodynamical equations. Simulations performed in New-
tonian theory (e.g., Tohline, Durisen, & McCollough 1985 ;
Durisen et al. 1986 ; Williams & Tohline 1987, 1988 ; Houser,
Centrella, & Smith 1994 ; Smith, Houser, & Centrella 1996 ;
Houser & Centrella 1996 ; Pickett, Durisen, & Davis 1996 ;
New, Centrella, & Tohline 2000) have shown that b

ddepends only very weakly on the sti†ness of the equation of
state. Once a bar has developed, the formation of spiral
arms plays an important role in redistributing the angular
momentum and forming a core-halo structure. Recently, it
has been shown that, similar to the onset of secular insta-
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bility, can be smaller for stars with a higher degree ofb
ddi†erential rotation (Tohline & Hachisu 1990 ; Pickett et al.

1996).
To date, the dynamical bar-mode instability has been

analyzed only in Newtonian theory, hence, almost nothing
is known about the role of relativistic gravitation. The
reason is that until quite recently a stable numerical code
capable of performing reliable hydrodynamic simulations in
three dimensions plus time in full general relativity has not
existed. Some recent developments, however, have
advanced the Ðeld signiÐcantly. New formulations of the
Einstein equation based on modiÐcations of the standard
3]1 ADM system of equations (Arnowitt, Deser, & Misner
1962) have resulted in codes that have proved to be remark-
ably stable over many dynamical timescales (e.g., Shibata &
Nakamura 1995 ; Baumgarte & Shapiro 1999 ; Oohara &
Nakamura 1999). In addition, gauge conditions that
warrant longtime stable evolution for rotating and self-
gravitating systems and are manageable computationally
have been developed (e.g., Shibata 1999b). In this paper, we
adopt the relativistic hydrodynamic implementation of
Shibata (1999a) to study the onset and growth of the
dynamical bar-mode instability in relativistic stars.
Although this study is carried out only for a simple
equation of state and rotational law, it demonstrates
how, as numerical relativity in full 3]1 matures,
it is becoming more useful as a tool to solve long-stand-
ing problems in relativistic astrophysics characterized
by strong gravitational Ðelds and little or no spatial
symmetry.

There are numerous evolutionary paths that may lead to
the formation of rapidly rotating neutron stars with b D 0.3.
The parameter b increases approximately as R~1 during
stellar collapse. During supernova collapse, the core con-
tracts from D1000 to D10 km, and hence b increases by
about 2 orders of magnitude. Thus, even moderately rapidly
rotating progenitor stars may yield rapidly rotating neutron
stars that may reach the onset of dynamical instability
(Bonazzola & Marck 1993 ; Rampp, & Ru†ertMu� ller,
1998). Similar arguments hold for accretion-induced col-
lapse of white dwarfs to neutron stars and for the merger of
binary white dwarfs to neutron stars. In fact, recent X-ray
and radio observations of supernova remnants have identi-
Ðed several young, isolated, rapidly rotating pulsars, sug-
gesting that these stars may have been born with periods of
several milliseconds (Marshall et al. 1998 ; Kaspi et al. 1998 ;
Torii et al. 1999). These neutron stars could be the collapsed
remnants of rapidly rotating progenitors.

Rapidly rotating neutron stars may naturally arise in the
merger of binary neutron stars. Baumgarte, Shapiro, &
Shibata (2000) have studied equilibrium conÐgurations of
di†erentially rotating neutron stars and found examples
where the maximum allowed mass increases by a factor of
about 2 due to di†erential rotation. This suggests that the
merger of binary neutron stars could result in a
““ hypermassive ÏÏ neutron star that has rest mass exceeding
the maximum value for uniformly rotating stars. Recent
hydrodynamic simulations in full general relativity indicate
that such hypermassive neutron stars can indeed be pro-
duced in the merger of moderately compact neutron stars
(Shibata & Uryu 2000). They show that the remnant is
unlikely to exceed the onset point of dynamical instability
initially. Subsequent neutrino emission and cooling,
however, will make the star shrink in size, leading to an

increase in b, possibly beyond the onset of nonradial
dynamical instability, b

d
.

Rapidly rotating neutron stars experiencing the bar-
mode instability could have signiÐcant observable conse-
quences. According to Newtonian simulations (Tohline et
al. 1985 ; Durisen et al. 1986 ; Williams & Tohline 1987,
1988 ; Houser et al. 1994 ; Smith et al. 1996 ; Houser &
Centrella 1996), a dynamically unstable star may evolve
into a two-component system containing a central star and
circumstellar accretion disk. Such a system may be observ-
able in a supernova remnant. In the case of merged binaries,
the di†erentially rotating remnant may be more massive,
hot, and bloated than a typical rapidly rotating, old pulsar.
Consequently, the frequency of gravitational waves excited
by the bar-mode instability could be low, i.e., less than 1
kHz (see eq. [20] below), and hence detectable by
kilometer-size laser interferometers such as Laser Inter-
ferometer Gravitational-wave Observatory (LIGO) (Lai &
Shapiro 1995 ; Thorne 1995).

In this paper, we summarize the results of our fully rela-
tivistic simulations of bar-mode instabilities in neutron
stars. We determine for highly relativistic stars, followb

dthe growth of the bar mode, and Ðnd the frequency and
amplitude of the emitted gravitational waves. We imple-
ment the numerical scheme described in Shibata (1999a),
using di†erentially rotating neutron stars of high b for
initial data. We focus on di†erentially rotating stars since
uniformly rotating stars do not reach except forb Z 0.2
extremely sti† equations of state and hence do not become
dynamically unstable to bar modes (Tassoul 1978). We
adopt an adiabatic equation of state with !\ 2 as a reason-
able qualitative approximation to a moderately sti† nuclear
equation of state. The adiabatic assumption is justiÐed even
for hot neutron stars since energy dissipation is small over
the dynamical timescales of interest.

In ° 2, we brieÑy summarize our formulation of the fully
relativistic system of equations and our numerical scheme.
In ° 3, initial models of di†erentially rotating, equilibrium
neutron stars are presented. Following Shibata, Baumgarte,
& Shapiro (2000), we adopt the so-called conformal Ñatness
approximation to prepare di†erentially rotating neutron
stars in (approximate) equilibrium states for computational
convenience. To conÐrm the reliability of this approx-
imation, we also compute numerically exact equilibrium
states and demonstrate that this approximation is accurate
(cf. Cook, Shapiro, & Teukolsky 1996). In ° 4, we present
our numerical results, focusing on the onset of the bar-mode
instability, its early growth, and corresponding waveforms
and frequencies. We brieÑy summarize our results in ° 5.

Throughout this paper, we adopt geometrized units with
G\ 1 \ c, where G and c denote the gravitational constant
and speed of light, respectively. In numerical simulation, we
use Cartesian coordinates xk \ (x, y, z) with
r \ (x2] y2] z2)1@2, -\ (x2] y2)1@2, and r\ tan~1
(y/x) ; t denotes coordinate time. Greek indices k, l, . . .
denote x, y, z, and t, and Latin indices i, j, k, . . . denote x, y,
and z.

2. SUMMARY OF THE FORMULATION

We perform hydrodynamic simulations in full 3]1
general relativity (GR). We use the same formulation and
gauge conditions as in Shibata (1999a), to which the reader
may refer for details and basic equations. The fundamental
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variables used in this paper are as follows :

o \ rest mass density ,

v\ speciÐc internal energy ,

P\ pressure ,

uk \ four-velocity ,

vk \ uk

u0 , )\ vr ,

a \ lapse function ,

bk \ shift vector ,

c
ij

\ metric in three-dimensional spatial hypersurface ,

c\ e12Õ\ det(c
ij
) ,

c8
ij

\ e~4Õc
ij

,

K
ij

\ extrinsic curvature .

Geometric variables, /, the trace of the extrinsic curva-c8
ij
,

ture as well as threeK 4K
ij
cij, A3

ij
4 e~4Õ(K

ij
[ c

ij
K/3),

auxiliary functions where is the partial deriv-F
i
4 L

j
c8
ij
, L

jative, are evolved with an unconstrained evolution code in a
modiÐed form of the ADM formalism (Shibata & Naka-
mura 1995). GR hydrodynamic equations are evolved using
a van Leer scheme for the advection terms (van Leer 1977 ;
Hawley, Smarr, & Wilson 1984). Numerical simulation is
performed using Cartesian coordinates. Violations of the
Hamiltonian constraint and conservation of mass and
angular momentum are monitored as code checks. Several
test calculations, including spherical collapse of dust, stabil-
ity of spherical neutron stars, and the stable evolutions of
rigidly and rapidly rotating neutron stars have been
described in Shibata (1999a). Simulations using this code
and exploring the dynamical (quasi-radial) stability against
gravitational collapse of rigidly rotating ““ supramassive ÏÏ
neutron stars, which have rest masses exceeding the
maximum value for a nonrotating spherical star, have been
presented in Shibata, Baumgarte, & Shapiro (2000). A simu-
lation using this code and demonstrating the existence of
dynamically stable, di†erentially rotating ““ hypermassive ÏÏ
stars, which have rest masses exceeding the maximum value
for uniformly rotating stars, was presented in Baumgarte et
al. (2000).

The stress energy tensor for an ideal Ñuid is given by

Tkl\ (o ] ov] P)uk ul ] Pgkl , (1)

where is the spacetime metric. We adopt a !-law equa-gkltion of state

P\ (![ 1)ov , (2)

where ! is the adiabatic constant. For isentropic conÐgu-
rations, the !-law equation of state can be rewritten in the
polytropic form

P\ io!, !\ 1 ] 1
n

, (3)

where i is the polytropic constant and n the polytropic
index. This is the form that we use for constructing initial
data. Throughout this paper, we adopt n \ 1 as a reason-
able qualitative approximation to a moderately sti†,
nuclear equation of state for simplicity.

Instead of o and v, we numerically evolve the densities
and as the hydrodynamico

*
4oau0e6Õ e

*
4 (ov)1@!au0e6Õ

variables (Shibata, Oohara, & Nakamura 1997 ; Shibata
1999a). Since these variables satisfy evolution equations in
conservation form, the total rest mass of the system

M0\
P

d3xo
*

(4)

is automatically conserved, as is the volume integral of the
energy density in the absence of shocks.e

*The time-slicing and spatial gauge conditions we use in
this paper for the lapse and shift are the same as those
adopted in our series of papers (Shibata 1999a, 1999b ;
Shibata et al. 2000) ; i.e., we impose an ““ approximate ÏÏ
maximal slice condition (K ^ 0) and an ““ approximate ÏÏ
minimum distortion gauge condition where[D3

i
(L

t
c8 ij)^ 0,

is the covariant derivative with respect to see ShibataD3
i

c8
ij
;

1999b].

3. INITIAL CONDITIONS FOR ROTATING NEUTRON STARS

As initial conditions, we adopt rapidly and di†erentially
rotating neutron stars in (approximate) equilibrium states.
The approximate equilibrium states are obtained by choos-
ing a conformally Ñat spatial metric, i.e., assuming c

ij
\

(see, e.g., Cook et al. 1996 or Shibata 1999a for thee4Õd
ijequations to be solved in this approximate framework).

This approach is computationally convenient and, as
demonstrated in Cook et al. (1996) and Shibata et al. (2000),
provides an excellent approximation to exact axisymmetric
equilibrium conÐgurations in rigid rotation.

Following previous studies (e.g., Komatsu, Eriguchi, &
Hachisu 1989a, 1989b ; Cook, Shapiro, & Teukolsky 1992,
1994 ; Bonazzola et al. 1993 ; Salgado et al. 1994 ; Goussard,
Haensel, & Zdunik 1998), we Ðx the di†erentially rotational
proÐle according to

F()) 4 u0ur\ A2()0[ )) , (5)

where A is an arbitrary constant with dimensions of length
(which describes the length scale over which ) changes) and

is the angular velocity on the rotation axis, which is)0chosen to be the z-axis. In the Newtonian limit u0] 1 and
the rotational proÐle reduces tour] -2),

)\ A2)0
-2] A2 . (6)

Thus, for smaller A, ) becomes a steeper function of -.
Equilibrium conÐgurations of rotating stars are charac-

terized by their gravitational mass M, angular momentum
J, rotational kinetic energy T , and gravitational potential
binding energy W , which in GR can be deÐned invariantly
according to

M \
P

([2T 00] T kk)ae6Õ d3x , (7)

J \
P

T r0 ae6Õ d3x , (8)

T \ 12
P

)T r0 ae6Õ d3x , (9)

W \
P

o
*

v d3x ] T ] M0[ M (10)

(e.g., Cook et al. 1992). For approximate conÐgurations
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derived in the conformal Ñatness approximation, on the
other hand, the gravitational mass is computed from the
asymptotic behavior of the conformal factor, which, after
using GaussÏs law and the Hamiltonian constraint, yields

M \
P C

(o ] ov] P)(au0)2[ P] 1
16n

KijK
ij

D
ae5Õ d3x

(11)

(see, e.g., Bowen & York 1980). This expression is correct
independent of axisymmetry. For conformally Ñat conÐgu-
rations, J, T , and W can be computed from equations (8)È
(10) for nonaxisymmetric conÐgurations as well. As in
Newtonian gravity, we deÐne b as the ratio T /W . (Note
W [ 0 in our deÐnition.)

Physical units enter the problem only through the poly-
tropic constant i, which can be chosen arbitrarily or else
completely scaled out of the problem. In the following, we
deÐne

M1 0 \ M0 i~n@2, M1 \ Mi~n@2 ,

J1 \ Ji~n, P1 rot \ Prot i~n@2 ,

o6 max \ omax in , (12)

where and are rotational period and the maximumProt omaxdensity, respectively. Note that does not necessarilyomaxcoincide with the central density for stars of highly di†eren-
tial rotation. The barred quantities are now independent of
i, and all results can be scaled for arbitrary i using equa-
tions (12).

For the construction of (approximate) equilibrium
models for initial data, we adopt a grid in which the semi-
major axes of the stars, chosen along the x- and y-axes in
the equatorial plane, are covered with 40 grid points. The
semiminor axis in the polar direction along the z-axis is
covered with D10 grid points for the case b D 0.25 and

Hereafter, the coordinate lengths of the semimajorAD r
e
.

and semiminor axes are referred to as and respectively.r
e

r
p
,

We have conÐrmed the convergence of our numerical solu-
tions by increasing the number of grid points covering tor

e120 for typical models shown in Table 1. Comparing with
these higher resolution models shows that the numerical

error in M, T , W , and J of the lower resolution models is
less than 1%.

We Ðnd that for n \ 1, stars with can only beb Z 0.2
constructed for Also, for stars withA[ r

e
. A[ r

e
/2, b Z

0.25 are not spheroids but toroids. Focusing on spheroidal
stars with we study cases with and 1.b Z 0.2, AŒ 4A/r

e
\ 0.8

In Table 1, we display parameters for selected models
constructed both within the conformal Ñatness approx-
imation and from the exact numerical equations (using the
code from Cook et al. 1994) for a given ando6 max, AŒ , r

p
/r

e
.

Note that both approaches lead to valid, fully relativistic
initial data in the sense that both data satisfy the constraint
equations of EinsteinÏs Ðeld equations. The di†erence is that
the ““ exact ÏÏ solutions provide an exactly stationary solu-
tion while the conformally Ñat solutions may only be
approximately stationary when evolved dynamically. Here
we choose stars of R/M D 7 and 9.5 (hereafter, R denotes
the circumferential radius of the equator). All the stars in
Table 1 are ““ hypermassive ÏÏ (Baumgarte et al. 2000) with
rest masses larger than the maximum rest mass of rigidly
rotating stars built from the same equation of state (M1 0^
0.207 ; cf. Fig. 2). The matter proÐles of the equilibrium
conÐgurations obtained in the conformal Ñatness approx-
imation agree fairly well with the exact numerical solution.
The slight deviation arises mainly from the error associated
with the conformal Ñatness approximation (as opposed to
errors due to the di†erent Ðnite di†erencing in the two dis-
tinct codes). As can be seen in Table 1, b is systematically
underestimated in the conformal Ñatness approximation by

(i.e., although the deviation for and M is[0.004 [2%), M0considerably less (\1% error). From a post-Newtonian
point of view, T and W are quantities of O(c~2) but andM0M are of O(c0). In the conformal Ñatness approximation, we
neglect the second post-Newtonian terms of O(c~4) in the
metric (cf. Kley & 1999) so that the error for T andScha� fer
W can be larger than that for masses by O(c2).3 Indeed, the

3 In the conformal Ñatness approximation, the error in T and W is
O(c~4) and O(c~6) in M and (see, e.g., Asada & Shibata 1996). Hence,M0the magnitude of the error for T and W is expected to be D(GM/
Rc2)2D 2% for R/M \ 7, but that for M and is D(GM/Rc2)3\ 1%,M0which is consistent with our numerical results.

TABLE 1

PARAMETERS FOR SELECTED MODELS

r
p
/r

e
AŒ o6 max M1 0 M1 R/M T /W P1 rota P1 rote Stability Model

0.35 . . . . . . . 1 0.06056 0.260 0.241 6.62 0.230 12.7 36.7 Stable D1
0.259 0.241 6.61 0.233 12.7

0.275 . . . . . . 1 0.04460 0.277 0.259 7.07 0.258 15.0 41.8 Unstable D2
0.277 0.258 7.08 0.262 14.9

0.30 . . . . . . . 1 0.04590 0.264 0.246 7.24 0.251 14.9 41.3 Unstable D3
0.264 0.246 7.23 0.254 14.8

0.25 . . . . . . . 0.8 0.04650 0.262 0.245 7.02 0.243 12.3 45.3 Unstable D4
0.261 0.244 7.02 0.247 12.2

0.325 . . . . . . 0.8 0.05940 0.254 0.235 6.50 0.223 10.5 40.2 Stable D5
0.253 0.235 6.50 0.226 10.4

0.275 . . . . . . 1 0.03070 0.229 0.217 9.27 0.262 19.8 50.7 Unstable D6
0.229 0.217 9.27 0.265 19.8

0.3 . . . . . . . . 1 0.03220 0.219 0.208 9.41 0.254 19.5 49.7 Unstable D7
0.219 0.208 9.39 0.256 19.4

NOTES.ÈMaximum density rest mass gravitational mass compaction R/M, b \ T /W , rotationo6 max, M1 0, M1 ,
period on the rotation axis -\ 0 and at the equator of di†erentially rotating stars for selected models(P1 rota ) (P1 rote )
computed in the conformally Ñatness approximation (upper line) and in the exact equations (lower line). For
D1ÈD5, R/M D 7 and for D6 and D7 R/M D 9.5. For the models shown here, J/M2 is larger than unity.
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as a function of - in the equatorial plane for di†eren-FIG. 1.È)/)0tially rotating stars of R/M D 7 and and for 0.8, andb DbdGR AŒ \ 1, 23.

agreement between exact and approximate solutions is
improved for less compact stars (compare models D2 and
D3 with D6 and D7). Because of this small deviation from
the exact solution, the initial conditions prepared in the
conformal Ñatness approximation should be regarded as
slightly perturbed states of exact equilibria.

In Figure 1, we plot as a function of - in the equa-)/)0torial plane to illustrate the rotational velocity Ðeld for dif-
ferent We show an unstable (to bar modes) star withAŒ .
R/M D 7 and b D 0.25, for both and 0.8. As expectedAŒ \ 1
from equation (6), ) is a steeper function of - for smaller AŒ .
As demonstrated in the Newtonian calculations of Pickett
et al. (1996), the degree of fallo† of ) versus - could be an
important factor for determining the onset point of non-
axisymmetric dynamical instability in di†erentially rotating
stars.

4. NUMERICAL RESULTS

To investigate the dynamical stability against bar-mode
deformation, we initially superimpose a density pertur-
bation of the form

o \ o0
A
1 ] d

b
x2[ y2

r
e
2
B

, (13)

where denotes the axisymmetric conÐguration, and weo0choose to be 0.1 or 0.3. We leave the four-velocityd
b

u
iunperturbed. We recompute the constraint (initial value)

equations whenever we modify the equilibrium conÐgu-
rations this way to guarantee that we are satisfying the
Einstein equations at t \ 0.

The growth of a bar mode can be followed by monitoring
the distortion parameter

g 4 2
xrms [ yrms
xrms ] yrms

, (14)

where denotes the mean square axial lengthxrmsi

xrmsi \
C 1
M0

P
d3xo

*
(xi)2

D1@2
. (15)

For dynamically unstable stars, g grows exponentially until
reaching a saturation point, while for stable stars it remains
approximately constant for many rotational periods.

We perform simulations using a Ðxed uniform grid with
typical size 153] 77 ] 77 in x-y-z and assume n-rotation
symmetry around the z-axis as well as a reÑection symmetry
about the z\ 0 plane. We have also performed test simula-
tions with di†erent grid resolutions to check that the results
do not change signiÐcantly. Since we impose n-rotation
symmetry, we ignore one-armed spiral (m\ 1) modes that
might be dominant for rotating stars in which ) is a very
steep function of - (Pickett et al. 1996). However, n-rotation
symmetry guarantees that the center-of-mass drift is identi-
cally zero (cf. New et al. 2000).

We note that the outer boundaries of our computational
domain reside inside the wavelength of gravitational waves
emitted by the bar-mode perturbation, The typicaljgw.
location of the outer boundaries along each axis is

Without setting the boundaries in the radi-D(0.1È0.2)jgw.
ation zone at or using a sophisticated wave-r Z jgw,
extraction technique in the near zone (Bishop et al. 1996 ;
Abrahams et al. 1998), it is impossible to compute the radi-
ation reaction and asymptotic waveforms completely accu-
rately. However, in this paper we focus on dynamical
instabilities, which are independent of dissipation processes
and grow on a dynamical timescale considerably shorter
than the secular dissipation timescale due to gravitational
wave emission. The error in the evaluation of the gravita-
tional waves can therefore be safely neglected in assessing
the onset and growth of a dynamical instability.

Figure 2 summarizes our Ðndings on the dynamical sta-
bility against bar-mode deformation. We evolve a range of
stellar models with (squares) and (circles). AllAŒ \ 0.8 AŒ \ 1
of these models have b º 0.2 and and we0.2\ r

p
/r

e
\ 0.35,

determine their stability by inducing an initial non-
axisymmetric perturbation Each model takesd

b
\ 0.1.

50È100 CPU hr to run on the FACOM VX/4R machine ;
the longtime runs described below take about 150 CPU hr.
Stable stars are denoted with open circles and squares and
unstable stars with solid circles or squares. For models
denoted by crosses, we were unable to determine stability
unambiguously. Note that all di†erentially rotating stars
shown here are dynamically stable against quasi-radial col-
lapse to black holes.

Figure 2 shows that in an versus diagram anM1 0 o6 maxunstable region can be clearly separated from a stable
region. The demarcation line is nearly independent of the
degree of di†erential rotation, at least for the modest varia-
tion in the rotation law that we consider (recall that for

spheroidal stars exist only within a restricted rangeb Z 0.2
of The two regions are separated by a thick dash-dottedAŒ ).
line in the Ðgure. We have also plotted lines of constant b :
one where b \ 0.245 for and another where b \ 0.24AŒ \ 1
for These two lines very closely trace the demar-AŒ \ 0.8.
cation line between the regions of stability and instability.
This result suggests that in general relativity as in Newtonian
gravitation, the parameter b is a good diagnostic for assessing
whether a rotating star is stable against the dynamical bar-
mode instability. It also suggests that for di†erentially rotat-
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FIG. 2.ÈModels of di†erentially rotating stars in an vs.M1 0 o6 maxdiagram. Circles denote stars with squares with SolidAŒ \ 1, AŒ \ 0.8.
(open) circles or squares represent stars that are unstable (stable). Margin-
ally stable stars are denoted with a cross. The region for the stable stars is
clearly separated from that for the unstable stars by the thick dash-dotted
line. This line is followed fairly closely by the dashed and dotted lines,
which have been constructed for di†erentially rotating stars of (AŒ , b)\
(1, 0.245) and (0.8, 0.24). We carry out long-duration simulations for those
stars denoted by a hyphen (models D1, D2, D3, D6, and D7). The long-
dashed and solid lines are for nonrotating spherical stars and rigidly rotat-
ing stars at the mass shedding limit. Scales for the top and right axes are
shown for in which the maximum rest mass for spher-i \ 100(G3M

_
2 /c4)

ical stars is about 1.8 M
_

.

ing, relativistic stellar models the threshold for dynamical
bar formation may depend only weakly on the di†er-bdGRential rotation law and is only slightly smaller than the
corresponding value for uniformly rotating, Newtonian
stars, b

d
D 0.27.

The small but measurable decrease in the critical value of
b could be due to either the presence of di†erential rotation
(cf. Tohline & Hachisu 1990 and Pickett et al. 1996, who
have observed this e†ect in Newtonian gravity) or GR
e†ects (compare with the decrease in with increasingb

scompaction for the secular onset of the gravitational waveÈ
driven instability in Stergioulas & Friedman 1998) or a
combination of both. In order to separate the two e†ects, it
would be desirable to systematically explore parameter
space and study models with di†erent rotation laws and
varying compaction up to the Newtonian limit of small
M/R. We are preparing such a survey now (Saijo et al.
2000).

In anticipation of this survey, recall that in Newtonian
gravity scales with (Shapiro & TeukolskyM1 0 omax(3~n)@2n
1983) for polytropes, or for n \ 1. For stars withM1 0P o6 maxb ^ 0.27, this relation turns out to be M1 0^ (10È12)o6 max ;
for smaller values of b, the coefficient is only slightly
smaller. We therefore expect that the line marking the onset
of dynamical instability, a line of constant b, approaches a
linear relationship in Figure 2 in the Newtonian limit.

Unfortunately, using a fully relativistic code is impracti-
cal for simulating stars in the Newtonian or post-
Newtonian regime. The Courant condition restricts the

numerical time step to the light travel time across a grid
zone and therefore scales with R. The dynamical timescale
of the star, however, is approximately the free-fall timescale
R3@2/M1@2, so that the ratio between the dynamical time-
scale and Courant time step scales roughly as (R/M)1@2. In
the Newtonian limit, this ratio becomes very large, so that
many time steps have to be carried out in order to simulate
a Ðxed number of dynamical timescales, which makes the
calculation computationally impractical. To avoid this
problem, we are implementing a post-Newtonian code
(Shibata, Baumgarte, & Shapiro 1998) to explore the inter-
mediary regime and will present these results in a forth-
coming paper (Saijo et al. 2000). Our preliminary Ðnding is
that in the Newtonian limit for and henceb

d
D 0.26 AŒ \ 1,

the onset of dynamical instability occurs slightly earlier for
stars of greater compaction.

For Ðve of the above models (D1, D2, D3, D6, and D7),
we have followed the growth and evolution of the bar-mode
instability over several rotational timescales. In Figures 3, 4,
and 5, we show snapshots of density contours and velocity
Ðelds in the x-y (left) and x-z (right) planes for the compact
models D1, D2, and D3 (R/M D 7 ; see Table 1). The models
are rotating counterclockwise. Note that the stars start out
as highly Ñattened, disklike objects. In Figure 6, we also
show g as a function of time (a) for models D1, D2, and D3
as well as (b) for models D6 and D7, which are slightly less
compact (R/M D 9.5). In order to accelerate the growth of
the instabilities, we set for these simulations. Ind

b
\ 0.3

addition, we plot the early evolution of o g o on a semilog
scale in Figure 7. This plot also demonstrates that while the
perturbation parameter is fairly large, the non-d

b
\ 0.3

dimensional measure o g o is initially safely in the linear
regime. Unstable growth ceases once the bar-mode reaches
nonlinear saturation. Following the evolution much beyond
this point is impractical, both because of accumulation of
numerical error and because further evolution begins to be
a†ected by gravitational wave emission, which is crudely
handled in this code as discussed above.

Model D1 is stable against bar-mode formation and
demonstrates the ability of our code to identify and main-
tain such a conÐguration in stable equilibrium (see Fig. 3).
The other four models are unstable and the barlike pertur-
bation (and hence g) grows exponentially in the early phase
until saturation is reached, typically when g D 0.2È0.4.
However, the evolution after the saturation varies for di†er-
ent models. For model D2, spiral arms form in the outer
part of the barlike object, which then spread outward,
transporting away mass and angular momentum (see Fig.
4). In Figure 8, we show the fraction of the rest mass inside a
Ðxed coordinate radius r, as a function of timeM

*
(r)/M

*
,

for model D2. We Ðnd that a few percent of the total rest
mass is ejected from the star. We also Ðnd that the fraction
of the rest mass inside and ultimatelyr \ 0.2r

e
0.6r

eincreases during the late phase of the evolution since the
mass with high speciÐc angular momentum is transported
outward, and the star slightly contracts. As a consequence,
the maximum density of the star increases at late times by
about 50% from to D0.065 by Hereo6 max^ 0.045 t \ 6Prota .4

4 For the stable model D1, we Ðnd a small increase in the central
density as well but only by about 10% after This small increase ist \ 6Prota .
due to numerical viscosity and is a numerical artifact. The central density
in the model D2 increases by a much larger fraction over the same time-
scale, suggesting that the bulk of this increase is indeed a physical e†ect.
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FIG. 3.ÈSnapshots of density contours for and the velocity Ñow for vi in the equatorial plane (left) and in the y \ 0 plane (right) for the stable modelo
*D1. The contour lines are drawn for for j\ 0, 1, 2, . . . , 10, where is 0.193, 0.209, and 0.248 for the three di†erent times (theo

*
/o

pmax\ 10~0.3j o6
pmaxcorresponding values of are 0.061, 0.064, and 0.067). The lengths of arrows are normalized to 0.3c (left) and 0.1c (right). The time is shown in units ofo6 max Prota .

is the rotational period on the rotation axis (-\ 0).Prota
Tracking its motion in Figure 2, we Ðnd that the unstable
star approaches the stability threshold line from the left and
ultimately enters the stable region. Model D6 evolves very
similarly. These Ðndings are also in qualitative agreement
with Newtonian results (Tohline et al. 1985 ; Durisen et al.
1986 ; Williams & Tohline 1988 ; Houser et al. 1994 ; Smith
et al. 1996 ; Houser & Centrella 1996 ; New et al. 2000).

Unstable models D3 (see Fig. 5) and D7 start out closer
to the stability threshold and never form spiral(b Z bdGR)arms or eject mass. Instead, they evolve to an ellipsoidal
shape, which is maintained for many rotational periods.
Although the mass is not ejected in this case, the maximum
density slightly increases again due to outward angular
momentum transport. Consequently, the stars again
approach the threshold line of the dynamical stability
shown in Figure 2 and become stable.

We determine the growth time and oscillation period of
the bar-mode instability from Figures 7 and summarize the
results in Table 2. From Figures 7, we can match g to a

function

g ^ g0 10t@qg cos (2nt/q
o
] r0) , (16)

where and are constants and and are the growthg0 r0 q
g

q
otime and oscillation period. The growth time dependsq

g

TABLE 2

GROWTH TIME ANDq
gOSCILLATION PERIOD OFq

o
THE BAR MODE FOR

UNSTABLE STARS D2, D3,
D6, AND D7

Model q
g

q
o

D2 . . . . . . 2.48 1.21
D3 . . . . . . 3.62 1.19
D6 . . . . . . 2.07 1.23
D7 . . . . . . 2.85 1.21

NOTE.ÈThe timescales
are shown in units of Prota .
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FIG. 4.ÈSnapshots of density contours for and the velocity Ñow for vi in the equatorial plane (left) and in the y \ 0 plane (right) for the unstable modelo
*D2. The contour lines are drawn for for j\ 0, 1, 2, . . . , 10, where is 0.126, 0.172, and 0.264 for the three di†erent times (theo

*
/o

pmax\ 10~0.3j o6
pmaxcorresponding values of are 0.045, 0.059, and 0.065). The lengths of arrows are normalized to 0.3c (left) and 0.1c (right). The time is shown in units ofo6 max Prota .

strongly on the compaction R/M and b, and is smaller forq
glarger b as expected. The oscillation period q

o
^ 1.2Prota

depends only very weakly on the compaction R/M and b
and approximately agrees with that found in Newtonian
simulations for n \ 1 (Williams & Tohline 1988). The char-
acteristic oscillation period of g after the saturation of the
growth is for all models, so that theq

o
D (1.2È1.4)Prota

pattern period is D(2.4È2.8)Prota .
In order to check the numerical convergence of our

results, we repeated these simulations with a lower
resolution (101 ] 51 ] 51 as opposed to 153 ] 77 ] 77,
with the outer boundaries at the same location). In Figures
6a and 6b, the dotted lines denote the low-resolution result
for g as a function of time. For the results agreet/Prota [ 5,
well, implying that a fair qualitative convergence has been
achieved. For later times, the accumulation of numerical
truncation error and problems associated with the inade-
quate outer boundaries results in a poorer agreement
between the two resolutions.

The di†erentially rotating ellipsoids formed after satura-
tion are highly Ñattened and still seem to have high b Z 0.2.

We expect these to be secularly unstable against gravita-
tional radiation (Stergioulas & Friedman 1998). Therefore,
g will probably maintain a fairly high value of O(0.1) on a
radiation reaction timescale, which is much longer than the
rotational period. As argued by Lai & Shapiro (1995), such
an ellipsoid will ultimately settle down to an axisymmetric
star or a Dedekind-like ellipsoid (a nonaxisymmetric, sta-
tionary star whose Ðgure does not rotate but which has
internal di†erential motion ; cf. Chandrasekhar 1969).

As a measure of gravitational waveforms, we show h
`and h

C
5

h
`

4 r(c8
xx

[ c8
yy
)/2M , (17)

h
C

4 rc8
xy

/M (18)

in Figure 9 for models D1 (dotted lines), D2 (solid lines), and
D3 (dashed lines). These quantities are read o† near the

5 Our quantities and di†er from those deÐned in Misner, Thorne,h
`

h
C& Wheeler (1973) by a factor r/M.
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FIG. 5.ÈSnapshots of density contours for and the velocity Ñow for vi in the equatorial plane (left) and in the y \ 0 plane (right) for the unstable modelo
*D3. The contour lines are drawn for for j\ 0, 1, 2, . . . , 10, where is 0.128, 0.152, and 0.176 for the three di†erent times. The lengthso

*
/o

*max \ 10~0.3j o6
*maxof arrows are normalized to 0.3c (left) and 0.1c (right). The time is shown in units of Prota .

outer boundaries along the z-axis as a function of retarded
time. For models D6 and D7, very similar waveforms to
those of D2 and D3 are generated, as expected from Figure
6. As mentioned above, the outer boundaries are not
located in the wave zone, which implies that these quantities
will not exactly agree with the asymptotic waveforms. We
guess that the wave shapes are in fairly good agreement
with the exact ones because the frequency agrees with the
oscillation frequency of the bar pattern, but the error in the
amplitude may be Z10%.

We Ðnd that for unstable stars the maximum magnitude
of and is D0.03È0.08 depending on b and R/M, whileh

`
h
Cthey remain of O(10~3) for the stable star D1. The

maximum observable wave amplitude from such a source
situated at a distance r from the Earth is then approx-
imately

h D 6 ] 10~22
Ah

`,C
0.05

BA M
2.5 M

_

BA10 Mpc
r

B
. (19)

The typical gravitational wavelength after saturation is
or, using the empirical relationD1.3Prota Prota D

3M(R/M)3@2 (cf. Table 1), approximately 70M(R/7M)3@2.
This implies that the frequency of gravitational waves is

f D 1.2
A R
7M
B~3@2A2.5 M

_
M

B
kHz . (20)

We note that the amplitude and frequency are in approx-
imate agreement with earlier Newtonian calculations
(Houser et al. 1994 ; Smith et al. 1996 ; Houser & Centrella
1996), which suggests that GR e†ects do not drastically
alter the simple quadrupole-formula predictions for the
waveforms.

Equations (19) and (20) give the maximum amplitude for
one cycle and its frequency. As discussed in Lai & Shapiro
(1995), the e†ective amplitude can be much larger because
of the quasi-periodic nature of the source. Also, the fre-
quency will gradually shift to smaller values as a result of
radiation reaction. Thus, even if h in one cycle is small and
the frequency is initially as high as kHz, these nearlyZ1
ellipsoidal stars may eventually be observable by kilometer-
size laser-interferometric gravitational wave detectors like
LIGO (Thorne 1995) for stars with M D 2.5 andM

_
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FIG. 6.ÈDistortion parameter g as a function of t for models (a) D1
(dashed line), D2 (solid line), and D3 (long-dashed line) and (b) D6 (solid line)
and D7 (long-dashed line). The results in a low-resolution simulation with
101 ] 51 ] 51 grid points are shown by the dotted lines.

RD 7M as a result of the secular decrease of the frequency.
Clearly, this predicted drift needs to be conÐrmed by a more
detailed study. Also, gravitational waves could be a source
for specially designed narrowband interferometers or
resonant-mass detectors in which the frequency band is
between 1 and 2 kHz (Thorne 1995).

5. SUMMARY

We have performed numerical simulations of rapidly and
di†erentially rotating neutron stars in full 3]1 general rela-
tivity. We treated compact stars of and10 ZR/M Z 6

FIG. 7.È o g o as a function of t for models (a) D2 (solid line) and D3
(dotted line) and (b) D6 (solid line) and D7 (dotted line). The dot-dashed
lines denote the growth time of the bar-mode instability.

FIG. 8.ÈFraction of the rest mass inside a coordinate radius as a func-
tion of t for the unstable model D2.

focused on their dynamical stability against bar-mode for-
mation. We found that when plotted in an versusM1 0 o6 maxdiagram a region of stable stars can be clearly distinguished
from a region of unstable stars, with the onset of instability
almost independent of the degree of di†erential rotation.
We showed that the parameter b \ T /W remains a good
diagnostic of the onset point of instability in the relativistic
domain as it did for Newtonian stars. The critical value for
the instability onset depends only weakly on the degree of
di†erential rotation for the models surveyed to date. For
those cases, we Ðnd that and thatbdGRD 0.24È0.25 bdGRdecreases slightly for stars with a higher degree of di†eren-
tial rotation. We also have preliminary evidence that bdGR

and as a function of a retarded time for starsFIG. 9.Èh
`

h
C

t[ zobsD1 (dotted line), D2 (solid line), and D3 (dashed line).
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decreases with compaction as well. We will systematically
study this hypothesis with a post-Newtonian numerical
analysis in a forthcoming paper (Saijo et al. 2000).

For selected models, we followed the growth and satura-
tion of bar-mode perturbations up to late times. Stars with
sufficiently large develop bars Ðrst and then formb [ bdGRspiral arms, leading to mass ejection. Stars with smaller
values of also develop bars but do not form spiralb DbdGRarms and eject only very little mass. In both cases, unstable
stars appear to form di†erentially rotating, triaxial ellip-
soids once the bar-mode perturbation saturates. Typically,
these Ñattened ellipsoids appear to have so thatb Z 0.2,
they would be secularly unstable due to gravitational waves
and viscosity. We expect that this secular instability will
allow the stars to maintain a barlike shape for many
dynamical timescales, leading to quasi-periodic emission of
gravitational waves.

We estimate the initial frequency and amplitude of gravi-
tational waves to be fD 1È1.4 kHz and h D 5 ] 10~22 for
stars of mass D2.5 and radius RD 7M at a distance ofM

_10 Mpc. The e†ective amplitude of gravitational waves
could be much larger during the subsequent evolution

because of the accumulation of quasi-periodic wave cycles
(Lai & Shapiro 1995). In order to accurately determine the
secular evolution of the ellipsoidal star together with
emitted gravitational wave signal, a more detailed calcu-
lation is necessary. Since the secular timescale is larger than
the dynamical timescale by several orders of magnitude, it
may be impossible to follow the evolution with a fully
dynamical code, even with implicit di†erencing to avoid the
Courant criterion for stability. This suggests that in full GR,
the secular evolution problem may best be solved within an
appropriate, quasi-stationary scheme similar in spirit to the
approach used in stellar evolution calculations.

Numerical computations were performed on the VX/4R
machines in the data processing center of the National
Astronomical Observatory of Japan. This work was sup-
ported by NSF grants AST 96-18524 and PHY 99-02833
and NASA grant NAG 5-7152 at the University of Illinois
at Urbana-Champaign (UIUC). M. S. gratefully acknow-
ledges support by JSPS (Fellowships for Research Abroad)
and the hospitality of the Department of Physics at UIUC.
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