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S$Hoop conjecture and spindle collapse

Mass M

Black hole with horizon forms
when and only when mass M gets compacted into
a region whose circumference C in every direction
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by Thorne (1972)

Gravitational Collapse of * -~

(e.g. highly elongated configuration)

— No Horizon = Naked Singularities




Analysis of initial data

Nakamura, Shapiro & Teukolsky(1988)
One of the examples supporting the hoop conjecture

*time symmetric initial data
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After this work, many similar
qu. 1. Representatfve cases of fully relativistic, momentari- analyses appeared and further
ly static prolate spheroids. The solid line shows the matter sur- )
face. The dashed line shows the apparent horizon if it is Wlll appear.
present. The coordinates are in units of M. Parameters for the

specific cases are given in Table I. Note that whenever any di-
mension exceeds =~0.5M, no apparent horizon forms (hoop con-
jecture).



Analysis of dynamical evolution

Shapiro & Teukolsky (1991)
System composed of collisionles particles

[Nakamura, Maeda, Miyama, Sasaki (1981),
Nakamura, Sato (1982)]

Spindle collapse occurred in their
numerical simulation.

No trapped surface was found.

Is this truly naked?

Coonsennr Kretsehmann

Invariant /

D=5 version was studied by Yamada and Shinkai, PRD83 (2011) 064006



There are two ohjections.

1) Time slicing condition 1s wrong.
[
Family of spacelike hypersurfaces
does not hit the Apparent Horizon (AH), '
before it hits singularities. AH
Wald and Iyer, PRD (1991), | AN
Pelath, Tod and Wald, CQG (1998)

2) Rotational motion halts the collapse

Singularity

In the case of an infinitely long cylinderical
matter distribution, the rotational motion
of matter seems to halt its collapse.
So, also in Shapiro and Teukolsky case...

Apostolatos and Thorne, PRD (1992)




After AT paper, Shapiro and Teukolsky performed
numerical simulations with rotational motion
of constituent particles.

Their result was the same: the naked singularity will appear.
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But, it 1s still controversial.
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FIG. 8. Profile of I in a meridional plane for the cases shown
in Figs. 5(a) and 5(b). For the case of 32 angular zones shown
here, the peak value of I is 31/M* for case (a) and 54/M* for
case (b). It occurs on the axis just outside the matter.



There are two ohjections.

1) Time slicing condition 1s wrong.

[
Family of spacelike hypersurfaces 2
does not hit the Apparent Horizon (AH), 'g
before it hits singularities. =1 AH
Wald and Iyer, PRD (1991), 2R\
nn

Pelath, Tod and Wald, CQG (1998)

2) Rotational motion halts the collapse

In the case of an infinitely long cylinderical
matter distribution, the rotational motion
of matter seems to halt its collapse.
So, also in Shapiro and Teukolsky case...

Apostolatos and Thorne, PRD (1992)




Cylindrically symmetric gravitational collapse

Highly elongated gravitational collapse might be approximated by cylindrically
symmetric gravitational collapse.

* Infinitely long cylindrical matter is not enclosed by a horizon. = Singularity is naked.
K. Thorne (1972), S. Hayward (2000)

*This is a very simple system — Detailed analysis is possible.



Appostolatos- Thorne (AT] Shell Model
[PRDA6,0.2433,(1992]]

Centrifugal ForceT Thin hollow cylinder composed of
counter rotating collisionless particles
IGraVity

Centrifugal Force ! ;ravity

Centrifugal Force

—b

Total angular momentum=0

I Centrifugal Force
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Stress-energy tensor of AT-shell
T" =8"8(r-R(7))

Surface stress-energy tensor of AT-shell
S =ou"u’" +Te! e’

(@) (@)
MNl+u” 1+u’
O =+ =—7—T
27TR U
where
U= _"" ; Rotational velocity of
e v each constituent particle

(¢-component of 4-velocity)

Conserved guantities

A ; rest mass per unit Killing length
[ ; specific angular momentum
of each constituent particle



Line element
ds’>= e*V "I =dt*+ dr?) + e?Vr’dg? + e*V d7?
Two metric variables; y=y (¢,7), Y=y (t,r)

~

é)ty = 27‘(&#})0’)#])

) ) > Contraint equations
g,y =r|(0w)" + (o)’ |

/

1
(é’f - 9> ——0, )I/J =0 Evolution equation
r
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( ) KMV —K‘uv =8‘7TG(SMV _EYMVSO{) at r:R
s 2A
0 —(d ==
\ ). = (0). RV1+u’

S|

2 2
< \/e—zm—ws) + (d_R) - \/6-2@‘%) + (d—R) =AM+ u’

dt dt

_de? (positive quantity) x (A, ()~ A) : EOM for the shell

where

A=e™ A :rest mass per unit proper z-coordinate

'l + u’

A ()=
(1) (1+20)

: rest mass per unit proper z-coordinate for static configuration



Newtonian Situation

Vet 4
Oscillatory Motion
E |- < >
R
0 L
R,

Centrifugal Potential

Gravitational Potential

R :radius of cylindrical shell
A:rest mass per unit length
[ : specific angular momentum

If initially £ > E, holds, the cylindrical shell will be oscillating.

If initially E=E,, holds, the cylindrical shell will remain at R=R,.



REIaIiViSIiG Silllalioll (Indication by Apostolatos & Thorne)

Even if the cylindrical shell is initially collapsing with E>E ,
it will bounce by the centrifugal potential.

-

As in the Newtonian case, the cylindrical shell will oscillate.

-

By contrast to the Newtonian case, gravitational waves will be generated.

-

Kinetic energy E of the cylindrical shell will be released by the gravitational waves.

: 1

Finally, the cylindrical shell will rest at an equilibrium position.

Is this always true? No!



Proposition

Initial data which does not settle down in any static configuration exists.

Sketch of proof

1) Momentarily Static and Radiation Free (MSRF) initial data can be
obtained analytically.

MSREF condition: dy =0, dy=0 and ;l—R =0
T
y =0, Y =1, for (=) region

I

Y=Y+ thl%, Y=y, - Kln% for (+) region

2A.
where 7= -ln(l —4AA1+ ] ) K = 1 and A;=e™"A

(1 —4A A+ u’ )\/1 ru




2) Consider a STATC CONFIGURATION with the same conserved quantities
A and [ as those of the MSRF initial data: such a static configuration is unique.

y =0, Y =1, for (=) region
Y="e+ thl%, Y=, - Kln% for (+) region

A w1+ u’

where v, =2In(1+2u>), 1y, =In and A_ (u)=
f ( f ) f Ay () ! (1+2uz)2

[ .
Note  u;=— is a free parameter.
e 'R



C-energy: quasi-local energy per unit Killing length (Thorne 1965)

Y. X
) E=——— 1n vacuum region
1+ 4G &

By Einstein’s eqgs.,

-3l =
ow  2G 0

where w:=t — r 1s a returded time.

C-energy 1s a non-increasing function
of the returded time at the future null infinity.

E = E. .. should hold.

static



3) Find C-energy of MSRF initial data E. and C-energy of

corresponding to that of the static configuration £
Then, show that there is a MSREF initial data with £, < E

il

+K°In—

1

1

E=— -111(1-4/\i 1+ uf)
4G

1

E G[—ln(l— AA (w1’ )

static

+

However
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Total C-energy usually diverges.

A

where u, =
\/ (1 — 4L+ u” )\/1 )

1- 4Aeq(uf)1/1 +u’

finite

i~ Hstatic — 4 G

1-4AA1+u’



3) Find C-energy of MSRF initial data E. and C-energy of
corresponding static configuration E.. . Then, show that
there 1s a MSRF initial data with £, < E

static*

Since the C-energy 1s non-increasing function of the returded time,
such a MSREF initial data does not settle down 1n a static configuration.

Q.E.D.

For the details of the proof,
please see PRD77,044021 (2008) or arXiv:0711.0243.



This result suggest that a static AT-shell may unstable.

We can see that the condition E_ .- E, > 0 holds for a MSRF
initial data, if and only if R. > R, .. 1S satisfied.

static

What is a final state?

Will it escape to infinity or form a naked singularity?

We need to study the dynamical evolution.



Liner Perturbations in Static AT-shell

Kurita and KN, arXiv:1112.4252
Line element

ds*= >V I =dr*+ dr?) + eV [FPdg? + eV dz?
Three metric variables; y=y (t,r), y=y (t,7r),
Einstein’s equations
BB - BB +(B7 - B )7+ BB(v +w ) -2Biny’ =0

. . . . Constraint equations
BB~ BB +y (B~ B2 )+ BB (4 +y") - 2By =0

" /3 ] " /3, ' )
Y+—p-y -—y =0
p p
B-p"'=0  Evolution equation
)‘/'_yl/=1/'}2_l/}12



Liner Perturbations in Static AT-shell

Line element

ds?= >V I =df?+ dr?) + eV [Pd@? + e*V d7?

Three metric variables; y=y (t,r), w=y (t,r), p=p(t,r)

Perturbations
(£) _ (£)
pr=r+b Shell
Y=y
Y =y —kln %)w;{”
y*) = 4y*In| Z +21n(1+2u2)+)/ .
0 R 0 1 (+)
Y =y,
s ¢ 2
l/}S =E§& uo = K = 2u



Liner Perturbations in Static AT-shell

B/ =B+ Wy B+ 2B Wy~ v, =0

. . Constraint equations
)/(,)/))1 - /))1, + )}1 - 2/301/}(’)1/)1 = O

B, = B! - B~ B~ wiB, =0

B~ B/=0

r Evolution equation

Vo= v =20

Quantity with a subscript 0 = background one



--------------- N
[3’() f dwe™™ A()(a))( _lwr)
O = [ dwe ™A ()], (wr) -~ Solutions inside the shell
1 o Ny
®) ®)
7/1 = arﬁl /
Time coordinate within the shell ¢ =e"T

Outgoing wave condition is imposed.

/3(+) f dee" " Aa-)(-a))ezwr/ \
(+) ot A (L (1) +) . .
f doe 14, ( ff))‘H (wr)+= /3 ~ Solutions outside the shell
<+> e /3<+) K(K+1) [5(+> +2K'/J(+) +C
%

Time coordinate outside the shell 7, = e = (1 + 2K)e¢

T: proper time of the shell



+ - 1 a
Kuv _Kuv = SEG(SMV _EYMVSO!) at I’:R

We adopt the radial coordinate comoving to the shell: Shell always stays at r=R.

Shell
B (1.0, R)= B (1,(1).R)
f and 1 are continuous.
Y (L(0),R) =y (1,(T),R) t,
> 7
. R
o o 2J2eA( 2 B, 2(+K)
v = e e R 2 ‘/’1) +)

The value of y and the derivatives
of and ¥ may be discontinuous.

+ "o
y-r] _22etk( 2 wl+2(3+;<)ﬁ
- RY2+Kk\2+K 2+K R

[b’l’—ﬁéyl]i=26y°A\/2(2+K)( 2 Y +— ﬁ)

2+K 2+K R
Y,




1

K, -K, = 87rG(SW —Eyng) at r=R

M21(a))
M, (o)
M, (w)

-

M () 0 M(0)
M () M (w) 0
M, (0) M, (0) M, ()

M) M) M)

(

\

A?f;) (CU) \
AL (@)
A ()

AV(@)



By introducing a new variable R= (1+K)°R

4x*

2+K

M, (w)=(1+ K)ZHg”(a)z%) M (w)=-Kk(1+ i) ek M, (w)=-2J (wR)

Mlz(w) =1+ K)zem M14(w) = —2isin(wR) M43(a)) - Jo(a)R)

477(D) 5 2 277(1) * _ 2 2 iwR
M. (w)=-wR(1+k) H "(wR)-2k"(1+k)"H '(wR) M (w)=x(+Kk")(1+K)e

M, (0)=-(1+K)‘wR] (wR) - 2k(+K) J (wR) M, (w)=- 4i’<;in(“’R)
+ K
M, (0)=-20Rk(1+x)*H"(0R) + 2> (1+ k)’ H"(wR)
M (@) ==+ [(@R 1+ + KA+ e M (@)= K J (wR)
2+K
M, (w)=2i|(wR}*(1+K) + 2KG+E) | in(wR)
2+K




0 M (w) 0 My || A @
M, (0) M, (w) M, () 0 A;;)(a))
M, (0) M,(0) M (0) M, (0) || A" (o)
M,(0) M,(@) M (@) M, (@) ]| Aw)

41

In order that the above equation has a non-trivial solution,

0 M () 0 M, (w)
M,(w) M, (w) M, () 0
M, (w) M (v) M. (w) M, (0)
M,(w) M (w) M, (0) M, (w)

det =0 mmm) ]IS determined.




Unstable modes exist.

For example, 0.8k o
a)=a)R +la)1 ’555555‘
R : radius of the shell ] wR o
of the background 06l wgR v
Vs R .-::
U, = ——
0 1 2 04 _5000°C 4
~—Vo 322"
Rotational velocity oz S
of a constituent 0.2 £ Sseg.
paI'tICIe ._ 3 "::°°=:=:::
C_-." 1 1 1 1
w,=0,1.e., 0) 2 4 6 8 10
R 2
 is pure imaginary U,

w forv,=0.76










Why 1s this system unstable?

Final configuration?

Future Work



