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Abstract
Physic in curved spacetime describes a multitude of phenomena, ranging from
astrophysics to high-energy physics (HEP). The last few years have witnessed
further progress on several fronts, including the accurate numerical evolution
of the gravitational field equations, which now allows highly nonlinear
phenomena to be tamed. Numerical relativity simulations, originally developed
to understand strong-field astrophysical processes, could prove extremely
useful to understand HEP processes such as trans-Planckian scattering and
gauge–gravity dualities. We present a concise and comprehensive overview of
the state-of-the-art and important open problems in the field(s), along with a
roadmap for the next years.

PACS numbers: 04.25.D−, 11.25.−w, 11.25.Tq, 04.50.−h, 04.25.−g, 04.70.−s

(Some figures may appear in colour only in the online journal)
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List of acronyms

AdS Anti-de Sitter
BH Black hole
BSSN Baungarte–Shapiro–Shibata–Nakamura
CFT Conformal field theory
EFT Effective field theory
GL Gregory Laflamme
GR General relativity
GW Gravitational wave
PN Post–Newtonian
SMT String theory/M-theory
TeV Tera-electron volt

1. Introduction

Numerical relativity (NR), the gauge/gravity duality and trans-Planckian scattering, as well as
high-energy physics (HEP) in general, have been tremendously active and successful research
areas in recent years. Strong motivation for the combined study of these fields has arisen from
direct experimental connections: gravitational wave detection, probing strong interactions at
the Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC) and possibly
black hole (BH) production at LHC. Inspired in part by the fairly recent advent of techniques to
evolve BH spacetimes numerically and the consequent unprecedented opportunities to expand
and test our understanding of fundamental physics and the universe, a group of leading experts
in different fields (HEP, astrophysics, general relativity (GR), NR and phenomenology of
gravitational effects on curved backgrounds) got together from 29 August to 3 September
2011 in Madeira island (Portugal) to review some of the most exciting recent results and to
discuss important future directions. The meeting was both an excuse and an opportunity to
place at the same table colleagues from formerly disjoint fields and to discuss the vast number
of possibilities that exist at the interface.
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This overview, written in a ‘white-paper’ style, is a summary of the many interesting
discussions at the meeting. Online presentations can be found at the meeting’s website
http://blackholes.ist.utl.pt/nrhep/.

We have divided the meeting’s discussions into six (not-really disjoint) parts, each
culminating in a round-table with all participants discussing the state of the field and visions
for the future. Each round-table was coordinated by one participant who has also been in
charge of putting together a write-up for that particular section. The (somewhat artificial)
division has resulted in the following topics (round-table organizers’ names in parentheses):
numerical methods and results (Lehner), BH solutions in generic settings (Reall), trans-
Planckian scattering (Park), gauge/gravity duality (Chesler), alternative theories of gravity
(Gualtieri) and approximation methods (Sopuerta). We feel that the rich content of each of
these sections alone is sufficient to impart to the reader the exciting times that lie ahead.

Finally, we end this short introduction by thanking the European Research Council,
Fundação Calouste Gulbenkian and FCT—Portugal for their generous support of this
workshop. Special thanks go to Ana Sousa and Rita Sousa for their invaluable help, and
to Sérgio Almeida and Luı́s Ferreira for providing technical and visual assistance.

2. Strong gravity, high energy physics and numerical relativity

(Coordinator: Luis Lehner)

Extensive experimental and observational programs are underway to test our understanding of
gravity in ‘extreme’ regimes. These extreme regimes are naturally encountered in cosmology,
violent astrophysical events and possibly at high-energy particle accelerators if nature is
described by certain higher dimensional scenarios. Furthermore, gauge/gravity dualities
provide an intriguing opportunity to understand various physical phenomena, naturally
described by field theories, in terms of gravity in anti-de-Sitter (AdS) spacetime and vice
versa.

For all these scenarios it is vital to understand gravity in the ‘strong’, i.e. fully nonlinear
regime. Currently, the only path towards obtaining such an understanding is the use of
numerical techniques which facilitate the generation of solutions to the Einstein equations,
or their analogues in alternative theories of gravity, with no approximation other than those
arising from a discretization of the equations; in particular, there is no fundamental restriction
such as a linearization of the equations in perturbative studies.

Doing so requires the ability to obtain accurate solutions from the underlying gravitational
theory which, in turn, often requires suitable numerical simulations. Fortunately, in the case
of GR in asymptotically flat, four-dimensional spacetimes, this task is largely under control
[1–3] and will aid in future astrophysical and cosmological observational prospects. Thus we
here concentrate on summarizing the status and open issues of efforts towards understanding
gravity, at the classical level, in energetic phenomena related to higher dimensional scenarios.
In particular, we focus our attention on efforts to understand gravity within holographic
studies and TeV-gravity scenarios with the aim to report both on the state-of-the-art and
ongoing investigations of unresolved issues. We mainly restrict our discussion to studies in
the framework of GR; cf section 6 for a discussion of alternative theories of gravity. As efforts
on this front are just beginning, our discussion cannot possibly be exhaustive and it is likely
that new issues will arise as progress is made. Indeed, drawing from the experience gained in
the four-dimensional setting, it is safe to expect that the challenges and outcomes will be as,
if not more, exciting as can currently be anticipated.
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2.1. Framework

We concentrate on gravitational studies required in the context of two main encompassing
themes: TeV gravity and holography. TeV gravity arises by attempts to explain the hierarchy
problem, i.e. the relative weakness of gravity by about 40 orders of magnitude compared to
the other fundamental interactions. As first noted in [4–7], this problem can be addressed
by considering large volumes and/or warping within higher dimensional scenarios [8, 9].
One way to achieve this goal arises in the context of so-called braneworld models, where
all fundamental interactions except gravity are confined to a four-dimensional brane while
gravity permeates through a bulk higher dimensional spacetime. Unification with gravity can
take place at energy scales � TeV, a regime which can be probed at the most powerful currently
available accelerator (LHC). Experiments might thus allow for testing this possibility and open
up a window to new physics [9]. Furthermore, TeV-scale gravity scenarios can be realized
within string theory and thus are tied to a prospective quantum theory of gravity. We could
therefore be on the verge of experimentally detecting clues from quantum gravity behaviour
in the near future.

Holography, and in particular AdS/CFT dualities [10], refer to a remarkable relation
between D-dimensional field theories and gravity in AdS in (D + 1) dimensions [10–12]. It is
conjectured that this relation can be exploited to gain an insight into physics on either side of the
relation via studying properties of the other. It provides ways to understand, or re-interpret, the
behaviour of condensed matter, plasmas, etc in terms of AdS BHs interacting with particular
fields. Indeed, for (particular limits of) field theories in D = 4, their dual corresponds to AdS
D = 5 gravity in the classical limit. Furthermore, it is commonly believed that the dualities so
far uncovered may be the first examples of a much broader class of gauge/gravity dualities.

Clearly, both themes, TeV gravity and holography, involve understanding gravity in
dimensions higher than 4, and possibly additional higher curvature corrections depending
on the specific regimes under study. Unfortunately, our understanding of gravity in four
dimensions does not necessarily help in providing a good intuition of the expected behaviour
in higher dimensional settings. For example, the non-existence of stable circular orbits for point
particles around BHs (the ‘centrifugal’ potential barrier becomes negligible beyond D = 4),
non-uniqueness of BH solutions (e.g. see [13–16]) and generic violation of cosmic censorship
[17] illustrate the richer phenomenology of gravity in D > 4 dimensions. Developing an
intuitive understanding for D > 5 is likely to require coordinated efforts involving numerical
as well as (semi-)analytic techniques such as perturbation theory or point-particle calculations;
cf section 7. In the following, we will highlight the role of NR for achieving these goals,
drawing, whenever possible, parallels from the corresponding effort in D = 4.

2.2. Challenges ahead

In the past decade, the field of NR has made great strides in modelling D = 4 asymptotically
flat spacetimes and is now able to solve strongly gravitating/highly dynamical scenarios. A
considerable portion of this was driven by the goal of guiding detection and analysis strategies
for gravitational wave astronomy (see [18] and references cited therein), although progress
has been achieved on many fronts: gravitational waves, cosmology, fundamental studies of
gravity, astrophysics, etc For further details, we refer the reader to some reviews [19–26] and
textbooks [27–29] on the subject.

This success has been achieved by the combination of several ingredients as follows.

(i) A good understanding on how to frame the problem in a manner that is both physically
complete and mathematically well posed.
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(ii) The availability of well-understood approximations to describe the state of the solution
for stages where the dynamics is relatively mild. This helps not only in constructing
physical initial stages but also in finding an (approximate) description of systems where
nonlinear effects have little relevance (through e.g. post–Newtonian or effective field
theory approaches, see also section 7).

(iii) The knowledge, or expectation, of the expected late-time behaviour of the system.
Understanding the fact that ultimately a stable Kerr BH would most likely describe
the asymptotic solution, motivated coordinate and boundary conditions to aid the
numerical implementation. Furthermore, it allows one to devise an effective perturbative
description of the solution (through BH perturbation theory), which in turn alleviates
the computational cost to obtain a solution and improves our ability to understand the
expected generic behaviour.

(iv) A well-understood and robust set of numerical techniques to discretize Einstein equations.

(v) Adequate computational resources to deploy the implementation, and obtain results in
a reasonable time for further tests as well as fine-tuning the implementation and obtain
relevant solutions.

The points above are generic requirements for any implementation, and as we argue in the
following discussions, the status of these points in D > 4 is less than what would be desired—
even with respect to point (i) above. We next discuss several relevant questions related to the
particular applications we have in mind. Some of these are common to both TeV gravity and
holography, while others are tied to just one of these main themes.

TeV-scale gravity. This putative description of nature does not have a unique theoretical
predictive formulation; rather it is a generic framework where different theories can be
formulated such that they naturally address the hierarchy problem and possibly connect
with TeV physics. While this facilitates the broad theoretical discussion towards achieving a
fundamental description of nature, at a practical level it makes it difficult to choose which
option to concentrate on. Furthermore, in many cases the full problem cannot be completely
defined at a physical level, let alone a mathematically rigorous one. Broadly speaking, one
has, in a sense, too many (!) options: GR, modifications of GR or alternative gravitational
theories and possibly even the introduction of quantum corrections for the treatment of some
basic phenomena. Among the set of possible theories, GR is unambiguously defined, can
be shown to define well-posed problems and provides a unique framework to work on. As
far as alternatives to GR are concerned, it is unclear which theory to pursue. Some are
incomplete, e.g. have higher curvature corrections which have not been explicitly presented;
others are either known to be ill posed—but are actively pursued nonetheless—or not yet
fully understood regarding the extent to which they might be mathematically sound (e.g.
[30–32]); see section 6 for a discussion on this subject. Naturally, well posedness is a necessary
condition for a successful numerical implementation. While imposing this requirement rules
out a number of alternative theories of gravity, several ones remain in principle valid. These
theories involve a high degree of complexity, and their associated computational cost in
practical applications is likely to be high. An alternative or complementary way could be
envisioned taking a page out of the ‘parametrized post-Newtonian’ approach (PPN) [33, 34]
developed within D = 4 gravitational theories, see section 7. An analogous framework for
higher dimensional gravitational studies would be extremely beneficial. Our current focus is not
to investigate this option, but rather to discuss the role that numerical simulations can play in this
problem.

6
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For concreteness, we shall in the following concentrate on GR and the main systems
of interests which could be realized in accelerators (e.g. [35–39]). In particular, for large
enough BHs, one can expect that GR does provide the generic high-energy behaviour as
higher curvature corrections become sub-dominant. Of utmost interest is the understanding
of D > 4 collisions, with a non-zero impact parameter, in order to improve the modelling of
microscopic BH production in Monte Carlo event generators used in the analysis of data taken
at the LHC. Note that these processes are essentially local, and can therefore be studied with
� = 0 (asymptotically flat scenarios). There remain delicate questions, however, which need
to be addressed in order to define concrete target problems; e.g. ‘which is the dimensionality
of the process?’, ‘which other non-vacuum interactions need to be considered?’; ‘how to
treat interactions restricted to the 4D brane as well as possibly incorporate higher curvature
corrections?’ From a physical point of view, one is interested in understanding high-speed
collisions or scattering, as well as the behaviour (stability, decay, etc) of BHs possibly resulting
from highly energetic collisions. We note that understanding the stability of possible BHs
cannot only bring important clues about the physical behaviour of the system, but also help in
achieving stability in the numerical implementation.

Holography. Here the situation is more concrete. The theoretical framework is most
commonly defined with AdS5 × S5 (though other scenarios including asymptotically flat
spacetimes are under study [40]). The presence of the S5 symmetry helps in reducing the
practical dimensionality of the problem. It is crucial to understand the limiting cases of the
correspondence where the gravitational side is captured by classical GR in AdS (possibly
coupled to gauge fields) and identify what states on the CFT side they correspond to. Most
questions of interest on the CFT side involve understanding BH solutions in AdS. Rigorous
results about the stability of generic BHs are lacking with the exception of Schwarzschild
AdS BHs interacting with a scalar field in spherical symmetry [41]. The presence of the AdS
time-like boundary allows for fields to propagate away from the central region, bounce off
the boundary and return to interact. As a result, asymptotically flat intuition does not translate
to the � < 0 case. Indeed, as recently shown in [42] and further argued in [43], a complex
‘turbulent-like’ phenomenology arises which renders pure AdS nonlinearly unstable to BH
formation regardless of how weak the initial perturbation is. This is in stark contrast to the
known stability of Minkowski spacetime in asymptotically flat scenarios [44] (see also [45]).
This difference between asymptotically flat and AdS spacetimes also indicates that richer
phenomenology might be found in the latter type of spacetimes and carry with it interesting
ties to a diverse CFT behaviour. Indeed, since the proposal of dualities, a plethora of work
has been presented indicating connections across many areas of physics: fluids, plasmas,
condensed matter theory, etc (see e.g. [12, 46–48, 11, 49–51] for some recent discussions).

With such a large number of exciting physical arenas involved, it would be useful to
understand where numerical studies can make the highest impact. In order to address this
question, it is important to comprehend which ‘real world’ applications (e.g. quark–gluon
plasmas (QGPs) [52, 53], superconductors [54, 55]) or generic physical behaviour (e.g.
turbulence [42]) can be accurately captured through a CFT model so as to study essential
physical features of the system one is trying to model and identify those that can be studied
within a reduced dimensionality (see section 2.3).

A particularly delicate issue for a numerical implementation concerns the AdS boundary.
Indeed, as opposed to the asymptotically flat case where numerical implementations typically
deal with boundaries using a combination of techniques to ensure they do not play a role in the
dynamics, here the situation is markedly different. Not only is the boundary in causal contact
with the interior domain, but also the field behaviour in its vicinity is of special interest. Indeed,
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one goal required from a numerical implementation is to allow for extracting the asymptotic
behaviour and connecting with the boundary theory. As we will discuss later, the mathematical
understanding of how to pose correct boundary conditions is lacking. Further details can also
be found in section 5.

2.3. Understanding strongly gravitating, dynamical systems in D > 4

The problems of interest concern energetic events involving BH formation, BH interactions
and/or highly perturbed BHs. For specific limits, e.g. ultra-high-speed collisions, particular
approximations have been proved quite useful in exploring the phenomenology of the system
[56]. Here fields of particles can be described by the Aichelburg–Sexl [57] solution31 and
show BHs form for a range of impact parameters. For more general scenarios, perturbative
studies might be unable to capture the sought after behaviour correctly, especially during
highly nonlinear stages. Solutions are thus needed within the full theory which requires NR.

Obviously, the study of general scenarios in higher dimensions is computationally more
demanding. At a rough level, the computational cost scales as the Dth power of the resolution
for general situations in D dimensions. Putting the requirements into perspective, D = 4
scenarios without symmetries are currently routinely studied, and typical vacuum (binary BH)
simulations demand a few weeks of continued run on several dozen processors32. Extrapolating
from this observation, one can argue that general scenarios could be studied in D = 5 with
current and near future resources. However, this will come at a significant cost, especially if
progress on this front might require, as has been the case in D = 4, some experimentation
to achieve a robust code. Thus, higher dimensional cases with no symmetries will in practice
be out of the question for a long time. It is safe, therefore, to expect that NR will have
its highest impact in studying scenarios where certain symmetries can be adopted, which
reduces the dimensionality of the computational domain to more tractable two and three spatial
dimensions. Particularly relevant cases are those in which SO(D − 2) and/or (D − 2) planar
symmetries can be assumed such that the dynamics of interest takes place in a dimensionally
reduced setting [13].

To date, a small number of NR efforts have been carried out beyond spherically
symmetric scenarios to study specific questions in higher dimensional spacetimes. Within
large extra dimension scenarios, these have concentrated on examining BH instabilities
[58–60] and high-speed collisions [61–65]. These implementations have mostly followed
the two successful approaches within the Cauchy formulation of Einstein equations used in
D = 4: the generalized harmonic and BSSN formulations together with direct extensions of
D = 4 gauge conditions. These efforts have further taken advantage of generic computational
infrastructure developed to handle parallelization and adaptive regridding so as to ensure an
efficient usage of computational resources (e.g. the publicly available Cactus/Carpet, PAMR,
HAD [66–68]). Within holographic studies, published works of BH formation have relied
on the characteristic formulation of Einstein equations [69, 70] and ongoing work is also
exploiting the generalized-harmonic approach [71].

Interestingly, within the Cauchy approach, directly exploiting symmetries (say in p of the
dimensions) assumed at the onset, and defining a reduced problem has given some difficulties,
possibly related to the use of curvilinear coordinates for a subspace of the manifold and the

31 This analytic solution describes a spherically symmetric solution with large boost. In the limit of a Schwarzschild
black hole of zero rest mass boosted to the speed of light, it is given by a shockwave in an otherwise Minkowskian
spacetime and thus amenable to straightforward superposition.
32 Details depending on the accuracy requirements; non-vacuum scenarios may require significantly more resources
depending on the complications introduced by additional physical ingredients involved.
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ensuing singular nature of the radial coordinate at its origin; cf appendix B in [72]. There
is no fundamental impediment to deal with this issue, however, and successful runs have
been presented in the literature for five-dimensional spacetimes [61–64]. On the other hand,
implementing symmetries in an effective way following the ‘cartoon method’ (where the
problem is treated formally as D dimensional, but the equations are integrated in a (D − p)

sector and derivatives of this sector are accounted for via the symmetries) has provided robust
implementations in a rather direct, though perhaps not elegant way [58–60]. This observation
stresses that more work at the foundational level is still required to translate the success
obtained in D = 4 to higher dimensional settings. Beyond these issues, we next discuss some
particular points of relevance to our two encompassing themes.

In the context of TeV-scale gravity scenarios, the intrinsic computational problem in
vacuum is quite similar to that in D = 4 and existing computational infrastructure can be
readily exploited. In essence, one deals with an initial value problem and computational
boundaries need just to be dealt with in a stable manner and placed sufficiently far from the
region of interest so they do not causally influence it. After dealing with the dimensionally
reduced problem with either of the above options, one can fine tune the implementation
(adjusting gauge conditions, refining algorithms, etc) and begin studying problems of interest
provided the correct physical ingredients are incorporated in the model.

In the context of AdS-CFTdualities, the above picture is more complex as the problem
is intrinsically an initial boundary value problem. The AdS time-like boundary is causally
connected with the bulk region and must be carefully treated as it plays a central role in
the solution sought. Understanding how to deal with time-like boundaries in D = 4 in the
absence of a cosmological constant required major theoretical efforts which culminated in
a series of mathematically sound options guaranteeing the well-posedness of the underlying
problem [73, 74]. An analogue of such work is absent in AdS (even in D = 4) which is
rendered more delicate due to the diverging behaviour of the spacetime metric at the boundary.
We note, however, the derivation of boundary conditions for the linearized field equations in
AdS [75] and studies of the fall-off behaviour of the metric in particular coordinate systems
[76, 77]. Extension of this work towards establishing well-posedness of the full equations will
be of vital importance for a robust numerical treatment of general problems. In the meantime,
however, interesting advances have been presented exploring the characteristic formulation
of GR—where the spacetime is foliated by incoming null hypersurfaces emanating from
the AdS boundary—[69, 70]. Numerical schemes based on the characteristic approach are
particularly robust, a property that has been observed in D = 4 as well, but more restricted in
applicability as caustics will render the coordinate system employed singular. At present there
is no general purpose infrastructure to ensure efficient parallelization and dynamic regridding
for characteristic approaches, though a proof-of-principle work has demonstrated there is
no fundamental obstacle for developing one [78]. Within a Cauchy approach—where the
spacetime is foliated by space-like hypersurfaces—strategies have been specifically tailored
for special cases, see section 5.

Regardless of the nature of the foliation adopted, a related question concerns the boundary
topology. It is well known that within the global 5D-AdS spacetime (with boundary topology
R × S3) a Poincaré patch can be defined through a suitable transformation. The boundary of
this patch is R4. From the perspective of aiming for a numerical implementation, the options
of adopting a Poincaré patch or global coordinates bring up non-trivial issues related to both
the possibility of achieving a robust implementation and its application to generic problems.
Namely, if a global AdS picture is adopted, can all physics be extracted in standard fashion
through a Poincaré patch after a suitable coordinate transformation? As a matter of principle,
a calculation performed in global AdS can always capture the physics of a calculation in the
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Poincaré patch, although in practice it may be a rather inefficient and involved manner of
doing so. The converse, however, might not always be possible. In Euclidean space, the global
and Poincaré patches are related to each other through a rather straightforward coordinate
transformation in a unique way. However, in Lorentzian spacetimes the situation is more
subtle. Excitations or objects evolving in global AdS may cross the Cauchy horizon of the
Poincaré patch, entering or leaving it. (Their energies, measured in Poincaré-patch time,
are redshifted to zero as they reach the Cauchy horizon.) As long as the relevant physics
occurs entirely inside the Poincaré patch, this is not problematic, but for phenomena where
properties on global AdS are required, Poincaré-patch evolutions appear to be ill suited.
Although in principle analyticity should allow for recovering Lorentzian-time global-AdS
correlation functions from Poincaré-patch ones, one must have a detailed understanding of the
prescriptions involved and the approach is likely unsuitable for numerical results. Moreover,
relating the Poincaré picture to that of the global picture may require infinite resolution,
and thus be difficult in numerical approaches. It also remains to be seen whether particular
conditions are required in the boundary treatment of global AdS in order to make such a
mapping possible.

We also note that some applications require ‘operator insertions’ in the CFT which
correspond to particularly ‘deformed’ AdS boundaries. For these spacetimes, all issues with
respect to fall-off behaviour, boundary regularization, well posedness of the resulting problem,
need to be investigated again. While some of these questions (as for example that of using
a Poincaré patch or not) may have simple answers from the physics perspective, they might
introduce delicate numerical issues.

Fields, what fields?. An issue related to both efforts—TeV scale gravity or holography—
concerns the choice of fields to be included for studying relevant scenarios. For instance, in the
context of AdS/CFT, the inclusion of a gauge field is natural and well motivated, as it allows
for studying the effect of a non-zero chemical potential, i.e. finite density, in the boundary
theory. Scalar fields with suitable potentials are also of interest and have been studied to model
in a phenomenological manner the effects of confinement (‘soft-wall’ models).

• For TeV-scale gravity, considering charged collisions, or those involving other fields, will
allow for an exploration of other observational signatures to be searched for in accelerator
experiments. In D = 4, simulations involving scalar and vector interactions, including
charged BHs, are well under control (e.g. [79–82]). In higher dimensions, however,
these fields would be confined to branes and the treatment becomes considerably more
complicated.

• In the context of holography, studying the interaction of BHs with other fields is important
for exploring dualities within a broad physics scope. This includes the ‘condensation’
of fields outside BHs, which has proven important for studies of superconductors and
generic (holographic) condensed matter systems. Of particular importance, for instance, is
to understand the global behaviour driven by super-radiance of scalar or even tensor fields
[83–85] and its final outcome, likely a hairy BH or non-trivial BH solutions.

While exciting work is proceeding to address problems of interest, there is undoubtedly
still plenty of room for resolving fundamental questions that will help in the construction of
robust and general methods to simulate relevant systems and to extract useful physics from
them.
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2.4. Targets of opportunity

As mentioned, gravity in higher dimensions brings about several new delicate issues, some
of which can be addressed via numerical simulations while others must be taken into account
analytically in order to achieve a robust implementation. Indeed, essentially every single point
discussed in section 2.2 would benefit from further work. In addition, there are important
quantum issues not covered here, such as the behaviour of Hawking evaporation and non-
perturbative quantum gravity effects. On the one hand, these issues make the understanding
of these systems more difficult; on the other hand, they represent targets of opportunity. From
a practical standpoint, we loosely group these targets as follows.

• Mathematical. Understand the correct setting for guaranteeing a well-posed initial
boundary value problem in AdS. Understand BH topologies that might arise in higher
dimensional contexts [86].

• Mathematical/Physical. Very basic issues about the stability of higher dimensional BHs
remain unresolved, and at present we can only expect to address them through numerical
studies. Results thus obtained can guide us towards establishing general results from a
mathematical point of view. As discussed earlier, this is particularly important for the
scenarios in which BHs can be formed at colliders. Two outstanding open (and related)
questions in the context of vacuum BHs (with � = 0) are: (i) Black rings with large angular
momenta are unstable, but is there a window of stability for (5D) black rings at moderate
values of the spin? (ii) For given values of M and J, is there more than one stable BH? If the
answer is yes, it would have consequences, for instance, for BH production at colliders. If
not, this would allow us to recover a notion of uniqueness: the only neutral, asymptotically
flat BHs with a connected horizon, would be Myers–Perry BHs with angular momentum
below a certain bound.

More generally, numerical analysis, in a less intensive manner (soft numerics) is
necessary for obtaining information about the space of BH solutions in higher dimensions
that cannot be obtained through other methods. A good example of this is the progress in the
past decade in understanding BHs and black strings in Kaluza–Klein theory. Very similar
problems arise in any other higher dimensional theory of gravity, either in asymptotically
flat vacuum or with a cosmological constant or additional fields.

• Physical. List scenarios relevant for TeV gravity and holography in both vacuum and non-
vacuum spacetimes. To this end, describe desired initial conditions required to study the
future development of the solution. Furthermore, investigate which particularly interesting
cases are amenable to a reduced dimensionality description. Develop methods that could
shed further light on the linearized stability of many BH solutions. For instance, recognize
mappings between different solutions and known cases (as in the case of mapping
close horizon geometries to the GL instability e.g. [87–89]), extend and comprehend
possible limitations of thermodynamical arguments (e.g. [90, 91, 88]), construct suitable
approximation schemes able to capture the system’s behaviour in appropriate limits (e.g.
extensions of PN and EFT [92], blackfolds [93], etc).

• Numerical. Several open problems should be solved numerically, both to obtain
static/stationary solutions or particular initial data as well as studying the dynamical
behaviour of relevant cases. In the following sections, we discuss some particularly
interesting issues on this front.

Initial data: stationary/static solutions and perturbations thereof. In many applications of
NR to TeV-gravity or the AdS/CFT correspondence, BHs play a vital role and need to be
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accounted for in the construction of initial data. Whereas the popular puncture initial data [94]
can be generalized to asymptotically de Sitter spacetimes with positive cosmological constant
[95–97] using McVittie’s solution for Schwarzschild–de Sitter [98], a similar procedure is
not known for AdS spacetimes. A number of other single-BH solutions in AdS potentially
suitable for initial data construction are known, but there remains the question of their stability
properties which are not yet fully understood; cf section 3. In some cases, important headway
has been made by entropic arguments and recognized mappings to known instabilities, most
notably the Gregory–Laflamme (GL) instability [99, 100]. With the exception of the GL
instability, however, present options (short of performing a full nonlinear study) are linearized
perturbation analysis or considering scenarios describing BH perturbations violating Penrose’s
inequality [91]. To date, linearized stability of many of the known BH solutions remains
an open question. This issue is further complicated because many relevant solutions are
only known numerically. Indeed, many situations of interest relate to static or stationary
BH solutions [101] whose derivation requires significant work at analytical and numerical
levels.

Dynamical behaviour. Understanding of the full nonlinear behaviour of BH perturbations
at both classical and quantum levels is paramount for establishing a connection with possible
observations in the framework of TeV-scale gravity models as well as elucidating holographic
connections with equilibration in the dual picture. Furthermore, studies of dynamical scenarios
in higher dimensional gravity will help in building up intuition and guide further work. For
instance, numerical simulations have already shown (see also [102])

• That negative energy ‘bubbles of nothing’ do not give rise to naked singularities,
and initially expanding ones continue doing so, and furthermore that gauge fields can
significantly affect the dynamics and give rise to a static bubble solution dual to black
strings [103, 104].

• That large static BHs exist in AdS5 with the Schwarzschild AdS as the boundary metric
[105, 106], thus disproving a conjecture that no such solutions are admitted [107, 108].

• That a higher dimensional class of unstable AdSs—black strings—[99, 100] display rich
dynamics leading to a self-similar behaviour that ultimately gives rise to naked singularities
[59, 17] under rather generic conditions. Thus cosmic censorship does not hold beyond
D = 4.

• The unstable behaviour of rapidly spinning BHs [87], which can lose enough angular
momentum through gravitational waves so as to cross to the stable branch [58, 60].

• That the amount of energy radiated in D = 5 head-on BH collisions agrees well with the
value obtained from (extrapolations of) linearized, point-particle calculations [64, 109].

• That within the holographic picture, the collision of gravitational shock waves in AdS
gives rise to a dynamical behaviour consistent with that expected from hydrodynamics
in the boundary theory. Furthermore, the behaviour in the gravity sector was exploited to
compute the time required for thermalization in the system [70].

These are just a few examples of interesting physics that can be extracted from the
dynamical behaviour of relevant systems. A priori there is a vast number of interesting
problems, and this number will likely grow as new, and probably unexpected, behaviour
is uncovered. Obviously, prospects for exciting physics lie ahead. Indeed, within large extra
dimensions, a thorough understanding of how a newly formed—but unstable—BH decays to
its eventual fate; what that fate is and how it depends on dimensionality can have profound
observational implications and/or signal difficulties in prospective models. Furthermore, the
influence of the strongly gravitating/highly dynamical regime explored by such a process
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on additional fields could induce tractable signals that can provide important additional
observational channels.

Within holographic studies for static situations there is a clear prescription on the
relationship between the CFT thermal state and properties of the BH horizon. However,
for dynamical scenarios—related to both formation and stabilization of BHs—is there a
sensible, unique way to define such a map? Furthermore, what is the preferred way to
connect CFT and horizon properties as a function of time? The answer to this question is
inevitably tied to the choice of a preferred slicing, which need not be the most convenient one
for the numerical implementation. Additionally, complex dynamics might be driven by the
super-radiance ‘instability’. To date, however, a study of such scenarios even in D = 4
is absent. Related work has presented possible end-state solutions describing hairy BHs
[110–114], though their stability has not yet been established nor is known whether they
are indeed attractor solutions. The super-radiance instability need not be the only or main
effect driving the dynamics. For instance, recent work indicating ‘turbulent-like’ behaviour
in AdS gravity [42, 43] highlights surprises that might still be lurking in dynamical scenarios
beyond what might be understood at low perturbation orders. For instance, the turbulent-
like behaviour takes place on the gravity side in all dimensions, whereas the Navier–Stokes
equations (appearing to lowest order on the field theory side) display a behaviour markedly
different in D = 3 from that in higher dimensions. This indicates that different phenomena
are awaiting our understanding in the context of strongly coupled quantum field theory
(QFT).

Drawing a path from analogies to 4D. As mentioned above, many cases of interest involve
understanding the interaction of BHs in a fully nonlinear framework. It is important to recall
once more that simulations provide information about one single, isolated BH system per run.
Having a sufficient number of such simulations available, certain phenomenological models
could be constructed to capture more generic properties of systems across the parameter space.
Undoubtedly, generating an exhaustive set of numerical simulations will be a time-consuming
task. An alternative (or complementary) approach has been pursued successfully in D = 4,
namely to employ different approximations to understand the system in separate (early and
late) regimes and exploit numerical simulations to bridge the gap in between. Techniques
used for this purpose are post-Newtonian (and related) approximations when the compact
objects move at slow velocities and perturbation theory around a suitable BH solution for the
post-merger (or BH formation) stage (e.g. [115–121] for D = 4 studies and [122] for the
first step in this direction for D > 4.). A judicious phenomenological match between the two
phases, motivated and further tuned via gradual generation of numerical solutions, can thus
provide for an efficient way to encode the system’s behaviour. This approach should be given
consideration in higher dimensional scenarios. However, to this end the following issues must
be kept in mind.

• PN and EFT approximations must be developed to the appropriate order. In particular
to incorporate radiation-reaction effects. Currently, this is only available to first order
(and not in the AdS case) [92]. It is important to note that the order at which this can
be done without internal effects playing a role depends on dimensionality. Nevertheless,
where possible, the knowledge of the trajectories can be directly exploited in obtaining
reasonable approximations to the spacetime metric by suitable superpositions (see e.g.
[123–126]).

• Perturbations of BHs only make sense if the stability of the BH is understood. As
mentioned, in many cases this is still a question to be addressed.
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For a detailed discussion of the use of approximation methods for (D � 4)-dimensional
BH spacetimes see section 7.

3. Higher dimensional black holes

(Coordinator: Harvey Reall)

3.1. Motivation

This section will discuss classical properties of stationary BH solutions of the vacuum Einstein
equation in higher dimensions.

The review article [13] listed several motivations for the study of BH solutions in more
than four spacetime dimensions.

(i) Statistical calculations of BH entropy using string theory. This was first achieved for
certain five-dimensional BHs and later extended to 4D black holes. Each entropy
calculation is a check on the theory, irrespective of the dimension. Hence the study
of higher dimensional black holes is a worthwhile contribution to developing a theory of
quantum gravity.

(ii) The gauge/gravity correspondence relates the properties of black holes in D dimensions
to strongly coupled, finite temperature, QFT in D − 1 dimensions. This provides a way
of calculating certain field theory quantities which cannot be determined by any other
method.

(iii) Certain ‘large extra dimension’ scenarios predict that microscopic higher dimensional
black holes might be formed at the LHC. However, LHC results discussed at the workshop
give no evidence in favour of ‘large extra dimension’ scenarios. It was also emphasized
that if black holes were formed at the LHC when run at higher energy, they would not be in
a semi-classical regime, so quantum gravity would be required to study them. Therefore, it
seems that this motivation for the study of classical higher dimensional gravity is lessened.

(iv) Higher dimensional BH spacetimes might have interesting mathematical properties. For
example, analytically continued versions of BH solutions have been used to obtain explicit
metrics on compact Sasaki–Einstein spaces [127].

(v) Just as it is valuable to consider QFT with field content different from that of the
Standard Model (or any conceivable extension), it might be worthwhile considering
higher dimensions when studying black holes. For example, there might exist explicit
higher dimensional solutions that provide a clean example of some effect in GR. A nice
example of this is the frame-dragging effect exhibited by the ‘black Saturn’ solution [128].
Perhaps there are examples in which an exact calculation in higher dimensions can be
used to check a calculation that has to be done perturbatively in 4D.

(vi) Some things are simpler in higher dimensions. For example, in 4D the asymptotic
symmetry group of null infinity in an asymptotically flat spacetime is the infinite-
dimensional Bondi–Metzner–Sachs group. However, in higher dimensions it is simply
the Poincaré group [129, 130]. This makes it possible to define angular momentum at null
infinity in higher dimensions [131]. In 4D this appears to be difficult.

The focus of this paper will be on stationary BH solutions and their properties. Time-
dependent processes are of great interest for the applications, but will only be touched on here
(see sections 2 and 5 for further details on this topic).
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3.2. State of the art

Explicit solutions. We restrict this discussion to the vacuum Einstein equations with
vanishing cosmological constant. There are two families of explicit asymptotically flat BH
solutions with a connected horizon. There are the Myers–Perry solutions [132], known for any
spacetime dimension D, and the three-parameter black ring solution [133, 134], for D = 5.
The MP solutions have horizons with topologically spherical cross section. The black ring
solution has topology S1 × S2.

There are also explicit solutions with disconnected horizons. The ‘black Saturn’ solution
[128] describes a black ring with an MP BH sitting at the centre of the ring. There are solutions
involving a pair of black rings, e.g., the ‘black di-ring’ [135].

The MP solutions have been generalized to include a cosmological constant for D = 5
[136] and D � 6 [137]. These solutions describe rotating, topologically spherical BHs in an
asymptotically (anti-)de Sitter spacetime.

Classification. It has been shown that a static, asymptotically flat, BH must be described by
the Schwarzschild solution in any number of dimensions [138].

Hawking’s topology theorem has been generalized to higher dimensions [139], with
the conclusion that a cross section of the event horizon of a stationary BH must be a positive
Yamabe space, i.e. it must admit a metric with positive Ricci scalar. In 4D, this implies spherical
topology. In 5D, it restricts the topology to a connected sum in which each component is either
S1 × S2 or a quotient of S3. For D > 5 there are many more possibilities.

Hawking’s rigidity theorem asserts that a stationary black hole must admit a rotational
symmetry. This has been extended to higher dimensions [140]. But it guarantees only one
rotational symmetry, whereas all known explicit solutions have multiple rotational symmetries.
Combining the rigidity and topology theorems further restricts the possible topologies in
5D [141].

For D = 5, one can classify stationary black holes with two commuting rotational
symmetries according to their ‘rod structure’: there exists at most one black hole with given
mass, angular momenta and rod structure [142]. If one also assumes S3 topology, then the black
hole must be a Myers–Perry solution [143]. Solutions with lens space topology are consistent
with this classification. It is not known whether such solutions exist. (They do not appear in
the blackfold approach discussed below.)

Related to the problem of classification is the characterization of the phase space of black
hole solutions: what are the different families of black hole solutions that exist, and how they
branch-off or merge at different points in the phase space. Even if we do not have a complete
classification of all possible BHs, one would like to know how the known phases (explicit or
approximate) relate to each other, at least qualitatively.

In this direction, one expects that the main features of the phase space of neutral,
asymptotically flat, higher dimensional BHs are controlled by solutions in three different
regions as follows.

(i) Large angular momenta.

(ii) Bifurcations in phase space.

(iii) Topology-changing transition regions.

The regime (i) is captured by the blackfold effective theory [144, 93] discussed below.
Regions (ii) are controlled by zero-mode perturbations of BHs that give rise to bifurcations
into new families of solutions. The initial conjectures about these points [87, 145] have been
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confirmed and extended in [89]. For the regions (iii) in D � 6, [146] has provided local
models for the critical geometries that effect the topology change. The critical behaviour in
the five-dimensional case is qualitatively different.

Stability. Singly spinning MP BHs in D � 6 have no upper bound on the angular momentum
J for a given mass. Reference [87] conjectured that such BHs should be classically unstable
for large enough J. Strong evidence for this was found in [89, 147], where it was shown
that a regular stationary perturbation appears at a critical value of J. This is believed to be a
‘threshold’ mode indicating the presence of exponentially growing perturbations for larger J.

Reference [88] considered the most symmetrical case of MP BHs with odd D and all
angular momenta equal. Such solutions have an upper bound on J at which the BH becomes
extreme. It was shown that, close to extremality, there exist linearized perturbations that grow
exponentially with time. Reference [148] showed how the threshold mode of this instability
connects to the threshold mode in the singly spinning case by considering unequal angular
momenta.

The studies just described considered only instabilities that preserve the rotational
symmetry of the BH that arises from the rigidity theorem. However, in the singly spinning
case, it is known that a non-rotationally symmetric instability appears at a lower value of J than
the rotationally symmetric instability. Reference [58] performed a full nonlinear evolution of
the Einstein equation starting from initial data describing a singly spinning MP BH with a
non-rotationally symmetric perturbation. For large enough J, it was found that the BH became
very asymmetrical, resulting in significant gravitational wave emission, and then settled down
to a (presumably stable) MP BH with J always smaller than some critical value. It was found
that this kind of instability is present for D = 5 (despite the upper bound on J) as well as for
D � 6.

With a negative cosmological constant, MP-AdS BHs suffer a super-radiant instability
when �� > 1, where � is the angular velocity of the horizon and � the AdS radius [84]. This
instability breaks rotational symmetry. A rotationally symmetric instability can also appear at
even larger angular velocity [149].

References [150, 151] presented heuristic arguments indicating a classical instability
of ‘fat’ black rings. This was confirmed by [91] using an argument based on Penrose
inequalities. This instability preserves rotational symmetry. Heuristic arguments also suggest
that sufficiently thin black rings will suffer a GL instability, which would break rotational
symmetry [133].

Approximate techniques. Heuristic arguments suggest that black ring solutions should also
exist for D > 5. These are made more precise by the ‘blackfold’ approach [145, 144, 93]
which constructs solutions perturbatively in a derivative expansion, valid when the geometry
of the solution has a large hierarchy of scales, e.g., a black ring with topology S1 × SD−3

where the radius of the S1 is large compared to that of the SD−3. This approach indicates
the existence of BH solutions with a variety of different topologies, for example a product
Sp1 × · · · × Spk × sD−p−2, where pi are odd with

∑
pi = p and Spi denotes a sphere of ‘large’

radius and sD−p−2 a sphere of ‘small’ radius. It also indicates the existence of ‘helical’ black
ring solutions with just the single rotational symmetry predicted by the rigidity theorem, i.e.
less symmetry than any known higher dimensional black hole [14].

Another approximate technique which also points to the existence of new solutions is to
consider perturbations of a known solution. If one finds a perturbation which is stationary,
regular, and does not correspond simply to a variation of parameters of the known solution,
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then it may correspond to the bifurcation of a new family of stationary BH solutions. The
studies of MP perturbations just discussed do indeed provide evidence for such bifurcations.
For singly spinning MP BHs with D � 6, a stationary perturbation appears at the critical value
of the angular momentum beyond which the BH is unstable [89]. This is taken to indicate
the existence of a new family of ‘pinched’ MP BHs. Further bifurcations appear at larger
angular momentum. All of these perturbations preserve the symmetries of the original MP
solution.

The same technique applied to cohomogeneity-1 MP BHs also suggests the bifurcation of
a new family of solutions at the critical value of angular momentum beyond which the solution
becomes unstable [88]. However, in this case, the perturbation generically breaks all of the
rotational symmetries of the MP solution except for the symmetry guaranteed by the rigidity
theorem. In contrast with helical black rings, the new family of solutions would be topologically
spherical. Furthermore, counting the number of free parameters in the perturbation suggests
that the new solutions should have many parameters (e.g. 70 in D = 9 whereas the 9D MP
solution has only five parameters).

In summary, approximate techniques indicate the existence of many stationary vacuum
BH solutions in D > 5 dimensions. These include solutions with only a single rotational
symmetry, solutions with topology different from any known solution and solutions with
many more parameters than the known solutions.

In asymptotically AdS spacetimes, it appears that things can be even more complicated.
Reference [84] suggested the possible existence of stationary, non-static, vacuum BHs without
any rotational symmetry. Evidence in favour of this was found in [43].

Numerical solutions. The study of asymptotically flat BHs gives one a stepping stone to
understand more complicated theories of gravity relevant for phenomenology or holography.
In the asymptotically flat setting, the static solutions are simply Schwarzschild and are known
to be unique [152]. However in more exotic settings, such as compact extra dimensions or
braneworlds, even the static BHs often have a complicated structure. For example in the
simplest toy model, Kaluza–Klein theory, where we are interested in vacuum geometries that
asymptote to R

1,3 × S1, there are three distinct classes of the static solution. As reviewed
in [16], these are the homogeneous black string, the inhomogeneous black string and the
localized black hole. Only the first is known analytically. The second and third class may
be constructed perturbatively in various limits, but generally are only known from numerical
computations (the most recent being [153]). The inhomogeneous black strings were originally
predicted by Gregory and Laflamme [154] and are generated from the homogeneous strings by
the marginally stable static Gregory–Laflamme perturbation [155]. Moving along this solution
branch the horizon appears to degenerate to pinch off and change the topology to that of a
spherical horizon [156]. Kol has argued [157] that on general grounds a singular cone geometry
provides a local model for the part of the horizon where the pinch off occurs, and that one
may resolve the cone to pass through to the spherical topology horizons of the localized
static solution branch. This localized branch is thought to interpolate between this topology
changing point and very low mass spherical BHs that are near their horizon approximate
five-dimensional Schwarzschild and were first studied by Myers [158] and may be constructed
in perturbation theory [159, 160]. This picture is indeed supported by the numerical evidence
[161, 153]. This topology change of the horizon through a conical transition is also thought to
be relevant in understanding the space of asymptotically flat stationary solutions [145, 146].
Further work to improve these numerical solutions and confirm the cone topology change
picture is an interesting future direction.
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3.3. Future directions

Explicit solutions. The approximate methods discussed above point to the existence of many
stationary vacuum BH solutions in higher dimensions in addition to the known Myers–Perry
and 5D black ring solutions. It is of obvious interest to determine such solutions explicitly.
This is a long-term goal. To do this, new techniques for solving the Einstein equation in higher
dimensions must be developed.

So far, the technique which has led to the most interesting results is the Belinskii–Zakharov
inverse scattering method for solving the Einstein equation when there are D − 3 commuting
rotational symmetries, as well as time-translation symmetry. This method led to the discovery
of doubly spinning black rings and black Saturn and its generalizations. But these symmetry
assumptions are consistent with asymptotic flatness only for D = 4, 5. Furthermore, this
method does not work with a cosmological constant. However, if 5D ‘black lenses’ exist, then
this method could be used to find them.

An alternative approach is based on the algebraic classification of the Weyl tensor. The
Kerr solution was discovered in search for solutions with a Weyl tensor that, in the Petrov
classification, is algebraically special. There is a large literature [162] on exploiting the
algebraically special property as a tool for solving the Einstein equation in 4D. The most
spectacular example of this is the determination of all vacuum type D solutions [163]. This
technique is not restricted to the case of vanishing cosmological constant.

In higher dimensions, there are various notions of ‘algebraically special’ that have been
explored. These have been reviewed in [164]. The most widely used definition is that of
Coley, Milsson, Pravda and Pravdova (CMPP) [165]. So far, the only attempt to use the
CMPP ‘algebraically special’ property as a tool for solving the Einstein equation is [166]
which determined all axisymmetric algebraically special solutions of the vacuum Einstein
equation (with cosmological constant) where ‘axisymmetric’ is defined as the existence of an
SO(D−4) symmetry with SD−3 orbits. There is a significant scope for extending this approach
of combining the algebraically special property with some symmetry assumptions. An obvious
case of interest is U (1)D−2 symmetry.

A more systematic exploitation of the algebraically special property probably will require
further development of the general theory of algebraically special solutions. The key result
lacking is a higher dimensional generalization of the Goldberg–Sachs theorem. Partial progress
has been made (reviewed in [164]), but this is an area in which plenty remains to be done.

An alternative definition of ‘algebraically special’ involves spinors. This works only for
D = 5 (and D = 4). This definition is independent of the CMPP classification (although the
MP solutions are algebraically special according to both definitions) and therefore could lead
to rather different results if exploited as a tool to solve the Einstein equation. The first attempt
at exploiting the spinorial definition of algebraically special to solve the 5D Einstein equation
was made in [167]. Only the most special algebraic classes were considered. It would be very
interesting to consider more general classes.

Another property that might be exploited to solve the Einstein equation is the existence
of a Killing or Killing–Yano tensor. It is known that the wave equation is separable in an
MP spacetime and this is because of the existence of a conformal Killing–Yano tensor.
Furthermore, it has been shown that a certain generalization of the MP solution is the most
general spacetime admitting a ‘principal’ conformal Killing–Yano tensor [168, 169]. This
result shows that one can exploit the existence of such a tensor to solve the Einstein equation.
In this case, it leads to a known solution, but maybe the assumptions here could be weakened.
Is it possible to make progress if the ‘principal’ condition is dropped? Does this lead to new
solutions?
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Classification. A long-term goal is to solve the classification problem: classify all stationary,
asymptotically flat, vacuum BH solutions in D > 4 dimensions. This seems far beyond the
current techniques.

So far, classification results for higher dimensional BHs are restricted to D = 5 with two
rotational symmetries. Since the general case of one rotational symmetry appears intractable
at present, one could consider other special cases with enhanced symmetry. For example,
can one classify cohomogeneity-1 vacuum BH solutions? Are there any such solutions
other than Schwarzschild and equal angular momentum, odd D Myers–Perry? What about
cohomogeneity-2 solutions in general D? These include singly spinning MP BHs. Can such
solutions be classified?

Another simplifying assumption is extremality. Any extreme BH admits a near-horizon
geometry with more symmetry than the full BH solution [170]. Can we classify possible
near-horizon geometries? (See [171, 172] for results in this direction.) Can this be used to
classify extreme BHs? Performing this would involve understanding the global question of
what restrictions asymptotic flatness imposes on a near-horizon geometry.

Although BHs with gauge fields are not within the scope of this paper, it should be
noted that supersymmetry is more restrictive than extremality. So perhaps one could attempt
to classify supersymmetric BHs in a higher dimensional supergravity theory. So far, this has
been investigated only for the simplest 5D theory [173].

Stability. A long-term goal is to determine the classical stability of the known BH solutions,
i.e. Myers–Perry and black rings. Where instabilities exist, the endpoint should be determined.

As discussed above, there are now several results concerning instabilities of MP BHs.
So far, studies of linearized perturbations have considered only perturbations preserving the
rotational symmetry that arises from the rigidity theorem. However, for a singly spinning BH,
numerical evolution finds that the instability which appears first (i.e. at smallest J) breaks
this symmetry. Since numerical evolution is hard, it would be interesting to study this non-
rotationally symmetric instability using linearized theory. It would also be nice to know which
type of instability is dominant at very large J.

A target for future research would be to map out the stable regions of the MP parameter
space. This could be done via a combination of linearized analysis and full numerical evolution.
Although unsuccessful so far [174], perhaps one could derive a master equation describing
MP perturbations, a higher dimensional analogue of the Teukolsky equation.

The stability of black rings against non-rotationally symmetric perturbations is an
important open question that future work should address. Are there any stable vacuum black
rings?

At present, the endpoint of the super-radiant instability of MP-AdS BHs is unknown,
although it is conceivable that no regular endpoint exists [43]. It would be interesting to
determine the time evolution of this instability numerically.

Numerical methods. Given that we expect higher dimensions to admit many new solutions,
many without much symmetry, it is unlikely that we will succeed in constructing them all
analytically. Numerically solving the Einstein equation is likely to become an important tool
in finding new stationary BH solutions. New methods have been developed recently for solving
the Einstein equation to obtain stationary solutions, see [101] for a review.

Of course, numerical work has its limitations: one usually must have a good idea of
the properties of the solution one wishes to find: it will be hard to go ‘fishing’ for new
solutions; as discussed above, there may exist BH solutions with a large number of parameters;
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it would be hard to explore such a parameter space numerically. Nevertheless, numerical
methods can be used to confirm the existence of solutions for which the evidence is otherwise
indirect or perturbative in nature. For example, the arguments for the existence of BHs with a
single rotational symmetry are based on perturbation theory. If we cannot find such solutions
explicitly, then numerical analysis of the Einstein equation provides the only way of confirming
the existence of such solutions at the full nonlinear level. (Actually, this is not quite true:
one might be able to prove existence of solutions without finding them explicitly, but such
an approach may not provide much information about properties of the solutions.) Finding
numerical solutions describing stationary D > 4 BHs with a single rotational symmetry should
be a goal for future work.

An obvious approach to finding new BH solutions is to try to form them in a time-
dependent simulation of gravitational collapse. However, this approach probably will only
find classically stable solutions and many higher dimensional solutions are expected to be
unstable. (This does not make them uninteresting: the timescale for the instability might be
long e.g. compared to the time-scale of Hawking evaporation.) On the other hand, there is no
reason that new stable solutions should not exist, particularly in the less well-understood case
of asymptotically AdS spacetimes.

The recent discovery of the absence of a threshold for BH formation [42] emphasizes
how little is understood about time-dependent processes in AdS. Numerical simulations will
be invaluable in developing our intuition for what is possible. It will be interesting to see how
the results of [42] are modified if one relaxes the assumption of spherical symmetry.

The case of asymptotically AdS spacetimes is particularly interesting because of the range
of possible boundary conditions that one can consider. For example, there has been recent
progress in constructing solutions in which the conformal boundary is the Schwarzschild
spacetime [105], which can be used to study the behaviour of strongly coupled field theory
in a BH background. This idea has been discussed more generally in [175], which argues
for the existence of different types of ‘funnel’ and ‘droplet’ solutions when the boundary
metric describes a BH. Future numerical work should investigate such solutions. It will also
be interesting to construct numerical solutions which describe an AdS BH localized on an
internal space e.g. on the S5 of AdS5 × S5 (see [176] for a discussion of the instability of
Schwarzschild–AdS5 × S5 and its implications for the dual gauge theory).

Approximate methods. The equations of the blackfold approach described above, which
allow us to construct approximate BH solutions, have been solved only in the simplest cases
with a high degree of symmetry that allows us to solve the equations algebraically. This,
however, is far from being a systematic and exhaustive study and has uncovered only a very
small part of the solutions that presumably exist in D � 6. For instance, it would be important
to study solutions with a lower degree of symmetry, since they will play a role in connecting
different BH phases, as well as providing new classes of BHs with less symmetry than the
Cartan subgroup of SO(D − 1). Novel horizon topologies may also be discovered.

Instead of a case-by-case study of specific ansatze for the solutions, a more systematic
approach to the blackfold equations would be highly desirable. This approach should give very
valuable results towards the classification of BHs, or at least towards a useful characterization
of them.

The blackfold methods can also be usefully applied to the study of the stability properties
of BHs whenever their horizons possess two separate length scales [177]. The connection
it makes to hydrodynamics has made it possible to simplify the study of the GL instability
of black branes and possibly will yield a better understanding of the nonlinear evolution of
this instability towards its endpoint. Having an analytical tool to study this problem seems
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Figure 1. A proposed ‘phase diagram’ of different regimes for gravitational scattering (from [181]).

very valuable, since so far it has only been tackled via massive numerical calculations with
supercomputers.

4. Trans-Planckian scattering

(Coordinator: Seongchan Park)

The ultimate aim of physics is to discover the fundamental laws of nature. According
to the uncertainty principle, �x � �/�p, higher energies are needed to probe smaller
distances. Ultimately, however, when the energies involved in physical processes exceed the
Planck energy, we enter the profoundly mysterious trans-Planckian regime. In trans-Planckian
processes, gravity dominates the scattering at increasing distances [178, 179], and it has been
argued that it prevents probing distances shorter than the Planck length [180, 35],
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and the scattering range grows as a power of energy. Here, general features of the dynamics
are expected to be well approximated by semiclassical scattering and/or horizon formation.

One can characterize the scattering in terms of the centre-of-mass energy E = √
s and

impact parameter b = J/
√

s, where J is the angular momentum. A proposed ‘phase diagram’
describing the relevant physics in different regions of the (E, b) plane is summarized in figure 1
(see [181]). The left lower part is unphysical as �x < �/�p. The grey part near the Planck
scale

√
s ∼ MD is largely unknown and nonlinear quantum gravity effects dominate, so that

we need the full theory of quantum gravity to describe physics in this domain. On the other
hand, the large impact parameter regime appears well approximated by the Born or eikonal
approximation, as long as the scattering angle is ‘small’, θ ∼ (Rs/b)D−3 � 1. Lowering the
impact parameter further to the value of Schwarzschild–Tangherlini radius, gravity becomes
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strong and highly nonlinear, and BH formation is expected, even though a full quantum
description of this process remains unknown. Specifically, in the classical theory, high-energy
particles are well approximated by colliding Aichelburg–Sexl solutions [57], and in such
a collision, at impact parameters b � Rs(

√
s), one can show that a trapped surface forms

[182, 56, 183]. (One can supply additional arguments that quantum effects do not modify
these statements [184].) Simulations in NR have confirmed this prediction of BH formation in
high-energy collisions [79, 185–187].

Once a BH is formed, it decays through Hawking radiation. This process would enable
the LHC to probe BH signatures in TeV-gravity models with extra dimensions [35, 36]. (For
reviews, see for instance [9, 38, 37, 39, 188].)

In this section, we review the current status of trans-Planckian physics focusing on the
LHC search for BHs and other trans-Planckian signatures.

The trans-Planckian physics could be relevant to the LHC experiment if MD is as low
as a TeV scale. Indeed, several models of TeV scale gravity have been proposed based on
extra dimension(s) with a large volume [4, 5] or a large warp factor [6, 7] to address ‘the
hierarchy problem’. The hierarchy problem is often casted in terms of the huge ratio between
the fundamental scale of gravity and the electroweak scale, which essentially determines the
relative weakness of the gravitational interaction compared to the other gauge interactions
among elementary particles. It is problematic in particle physics since the mass of a scalar
boson, such as the Higgs boson, is quadratically sensitive to the fundamental scale, so that a
fine tuning of the order of the ratio M2

W /M2
G ∼ O(10−34) is required to realize a weak scale

scalar mass. Recently some hints of the Higgs mass around 125 GeV have been found by the
ATLAS [189] as well as CMS detectors [190] of the LHC.

The large volume of flat extra dimensions helps to understand the hierarchy because the
Planck scale in four dimension, M4, and the scale in D > 4 dimension, MD, are related
as M2

4/M2
D = Mn

DVn. If the volume of extra dimensions is big enough, say, as large as
Mn

DVn ∼ M2
W /M2

G, one can find that the fundamental gravity scale in higher dimensions
may not be very different from the electroweak scale so that the hierarchy problem could
be nullified. The warped extra dimension also helps, since an energy scale runs with respect
to the position along the warped extra dimension as �(y) ∝ e−ky, so that the big hierarchy
between the scale of UV (�UV ∼ MG) and the scale of IR (�IR ∼ Mw) is generated by the
warp factor e−k� ∼ Mw/MG with a moderate distance between the UV boundary and the IR
boundary of the warped space (� ∼ 34/k). For more discussions on Trans–Planckian physics
and its implications to the LHC, one may refer a recent review [188].

4.1. Is trans-Planckian physics testable in the near future?: the experimental status of
TeV-gravity models

The critical question for the experimental observation of trans-Planckian physics is the size of
the fundamental Planck scale. In extra-dimensional models with large and/or highly warped
extra dimensions, the scale of gravity can be as low as MD = O(1) TeV, eliminating a large
hierarchy between this scale and the electroweak scale. The LHC has begun to exclude
the low end of the parameter space for TeV-gravity models by searching for signatures
in various channels. What is the current status of the exclusion? What are the future
expectations?

ATLAS searches. At the time of writing, the most recent results from the ATLAS experiment
at the LHC come from an integrated luminosity of around 1fb−1, acquired during the first part
of 2011. These results will be updated with around 5 pb−1 available in early 2012. ATLAS
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has focused its searches on channels with leptons, because of the expected democratic nature
of the gravitational coupling. This means that one would expect particle production to be
in proportion to the number of states available (with appropriate grey-body factors), and not
related to the gauge quantum numbers of the states. However, it is possible to construct models,
such as split branes [191], where this is not the case.

In [192], a search for microscopic BHs and string ball states was performed, using final
states with three or more high transverse momentum objects, at least one of which was required
to be an electron or muon. No deviations were observed from the standard model expectations,
which were estimated using a combination of data-driven and Monte-Carlo-based techniques.
The dominant background sources come from vector boson production, either directly or from
top decays. A smaller background arises from QCD events which contain a fake lepton. The
events were studied as a function of the scalar sum of the transverse momenta of the final
state particles (	pT ). In the highest bin, with 	pT > 1500 GeV, there were eight (2) electron
(muon) events observed, with standard model expectations of 10.2±1.4±2.6 (2.8±0.5±1.1),
respectively.

In [193], events are selected containing two muons of the same charge. This channel is
expected to have low Standard Model backgrounds while retaining good signal acceptance.
Isolated muons (i.e. muons with very little activity around them in the detector) can be
produced directly from the BH or from the decay of heavy particles such as W or Z bosons.
Muons from the semi-leptonic decays of heavy-flavour hadrons produced from the BH can
have several other particles nearby and can therefore be non-isolated. In order to maintain
optimal acceptance for a possible signal, only one of the muons is required to be isolated
in this analysis, thereby typically increasing the acceptance in the signal region by 50%.
The decay of the BH to multiple high-pT objects is used to divide the observed events into
background-rich and potentially signal-rich regions. This is done by using the number of
high-pT charged particle tracks as the criterion to assign events to each region. BH events
typically have a high number of tracks per event (Ntrk), while Standard Model processes have
sharply falling track multiplicity distributions. In the background-rich region, where only
small signal contributions are expected, data and Monte Carlo simulations are used to estimate
the number of events after selections. This background estimate is validated by comparing to
data. The expected number of events from Standard Model processes in the signal-rich region
is then compared with the measured number, and a constraint on the contribution from BH
decays is inferred. Good agreement is observed between the measured distributions and the
background expectations. No excess over the Standard Model predictions is observed in the
data.

Although it is clear that there is no anomalous signal in the data, setting limits on BH
production is problematic. The LHC experiments are searching at the limit of its current
energy range, and hence, by definition, cannot explore well beyond the current limit on the
bulk Planck mass. This means that predictions for the rate of BH production using semi-
classical approximations are not valid: a full theory of quantum gravity is required.

The experiment tackles this issue in two ways. Firstly, using the number of events observed
in data, and the background expectations, upper limits are set on σ × BR × A, where σ is
the cross section, BR is the branching ratio to the signal channel and A is the acceptance
of non-Standard Model contributions in this final state in the signal region. These limits are
reasonably model independent. However, to make use of these limits, theorists need to know
the relevant value of A for their model scenario. Representative values of A are therefore
published by the experiments. The acceptance tends to be high for the very high mass states
from the BH decay, and so this approach is useful; however, such limits must be used with
caution when applied to extreme scenarios, such as two-body decays.
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The second approach is to set limits on benchmark scenarios. This is done in a plane of
MD versus MT H , where MD is the bulk Planck mass. For the purpose of limit setting, it is
assumed that BH production only occurs above a certain scale, denoted MT H , which should be
well above MD for the semiclassical calculations used in the event generators to be valid. This
approach produces 90% confidence limits up to MD ≈ 1.5 TeV depending on the model used.
However, there is a strong dependence on the modelling of the final remnant decay, which is
a pure quantum gravity effect, and can dominate the final state in this mass range.

CMS Searches. The CMS experiment has pioneered accelerator searches for BHs in 2011
and published a paper [194] based on data collected in the first 7 TeV running period of the
LHC (March–November 2010), corresponding to an integrated luminosity of 36 pb−1. Despite
the relatively small statistics, the sensitivity of the search was high enough to largely disfavour
the possibility of BH production at a 7 TeV centre-of-mass energy. The analysis conducted by
the CMS collaboration was done in the inclusive final state, thus maximizing the sensitivity
to BH production and decay. Semi-classical BHs are expected to evaporate in a large (∼10)
number of energetic particles, emitted nearly isotropically, with the major fraction of the
emitted particles being quarks and gluons, which are detected as jets in the CMS detector.
Quantum effects and grey-body factors may change the relative fraction of emitted quarks and
gluons, but generally it is expected that these particles appear most often even in decays of
quantum BHs, due to a large number of (colour) degrees of freedom that quarks and gluons
possess, compared to the other Standard Model particles (e.g., photons, leptons, neutrinos and
gauge bosons).

The discriminating variable between the signal and the dominating QCD multijet
background used in the search was the scalar sum of transverse energies33 of all particles
in the event, for which transverse energy exceeds 50 GeV. This variable, ST , was further
corrected for any missing transverse energy in the event by adding the missing transverse
energy to the ST variable, if the former exceeds 50 GeV. The choice of ST as the discriminating
variable is extremely robust and rather insensitive to the particle content in the process of BH
evaporation, as well to the details of the final, sub-Planckian evaporation phase. The addition
of the missing transverse energy to the definition of ST further ensures high sensitivity of the
search for the case of stable non-interacting remnant with the mass of order of the fundamental
Planck scale, which may be produced in the terminal stage of the evaporation process.

The main challenge of the search is to describe the inclusive multijet background in a
robust way, as the BH signal corresponds to a broad enhancement in ST distribution at high end,
rather than a narrow peak. Since the BH signal is expected to correspond to high multiplicity
of final-state particles, one has to reliably describe the background for large jet multiplicities,
which is quite challenging theoretically, as higher order calculations to fully describe multijet
production simply do not exist. Thus, one cannot rely on the Monte Carlo simulations to
reproduce the ST spectrum correctly.

The CMS collaboration developed and used a novel method of predicting the QCD
background directly from collision data to overcome this problem. It has been noted
empirically, first via Monte-Carlo-based studies, and then from the analysis of data at
low jet multiplicities that the shape of the ST distribution for the dominant QCD multijet
background does not depend on the multiplicity of the final state, above the turn-on threshold.
This observation, motivated by the way parton shower is developed via nearly collinear
emission, which conserves ST , allows one to predict ST spectrum of a multijet final state using

33 Transverse energy of a particle, ET , is defined as the energy of the particle E times the sine of the polar angle of
the particle direction with respect to the counterclockwise proton beam.
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Figure 2. Left: predicted QCD multijet background with its uncertainties (the shaded band),
data and several reference BH signal benchmarks, as a function of ST in the final state with the
multiplicity of 5 or more particles. Right: model-independent upper limits at 95% confidence level
on a cross section of a new physics signal decaying in the final state with 5 or more particles, as a
function of the minimum ST requirement. From [194].

low-multiplicity QCD events, e.g. dijets or three-jet events. This provides a powerful method
of predicting the main background for BH production by taking the ST shape from the diet
events, for which signal contamination is expected to be negligible, and normalizing it to the
observed spectrum at high multiplicities at the low end of the ST distribution, where signal
contamination is also negligible even for large multiplicities of the final-state objects. The
results are shown in figure 2 (left).

The CMS data at high final-state multiplicities are well fit by the background shape
obtained from the diet events, no excess characteristic of a BH production is seen in the data.
This lack of an apparent signal can be interpreted in a model-independent way by providing
limit on a cross section for any new physics signal for ST values above a certain cutoff, for
any given inclusive final state multiplicity. An example of such a limit is shown in figure 2
(right), for the final-state multiplicity N � 5. For signals corresponding to large values of ST

(above 2 TeV or so), the cross-section limit reaches ∼ 100 fb. These limits can be compared
with production cross section for the BHs in a variety of models and used to set limits on the
minimum BH masses (MBH) that can be produced in these models. In the original publication
[194], the CMS collaboration used just a few simplest semi-classical benchmark models that
are expected to break down at the values of BH masses near the exclusion, given that they
are of the same order as the probed values of the fundamental Planck scale. Despite these
obvious limitations, the benchmark models probed in this search show that the results are
rather insensitive to the details of the BH decay and that BH masses as high as 4.5 TeV are
probed in this analysis. The negative results of this search largely exclude the possibility of
observing BH production at the 7 TeV LHC. An updated analysis using full 2011 statistics is
expected to be published soon.

In figure 3 the indicative lower limit on the minimum black hole mass is set from the
CMS data using the 35 pb−1 in 7 TeV collisions [194]. The black holes are assumed to be
semi-classical and Schwarzschild-like. It should be noticed that the mass scale in the limit is
too close to the fundamental scale, so that the result should be considered as illustration only.
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[194].

Theoretical issues. In order to observe strong-gravitational scattering, approximated as
classical BH formation, scattering energies must significantly exceed the Planck energy. There
are two reasons for this: (1) an object must have a mass significantly exceeding MD in
order to be well approximated as a semiclassical BH; the expansion parameter justifying the
semiclassical approximation is MD/E and (2) not all of the energy of colliding partons goes
into BH formation; some escapes in radiation [195, 35, 56].

It is thus important to determine the threshold for onset of BH formation, for a given
Planck mass. There are different aspects of this problem. Classically, an important question is
to determine the inelasticity, the amount of energy lost to radiation as compared to the mass
of the resulting BH. The trapped surface constructions [182, 56, 183] places lower bounds on
the mass of the BH; these have been modestly improved in [196]. One can also estimate the
radiated energy perturbatively [195, 197–201, 109, 202–204]. Here, NR calculations could
ultimately provide more definitive answers, by computing the amount of radiated energy, in
higher dimensional gravity, and as a function of impact parameter.

Another aspect of the problem is to determine where quantum effects lead to large
deviations from semiclassical BH behaviour. This requires greater knowledge of quantum
gravity. One possible criterion for onset of BH behaviour is the onset of thermodynamic
behaviour, characterized by the entropy [35].

4.2. How can we improve our understanding of trans-Planckian scattering?

There are a number of important questions on the subject of trans-Planckian scattering. As
noted above, we would like to determine classical characteristics of high-energy gravitational
collisions. In particular, we would like to find the radiated energy and BH mass as a function
of collision energy and impact parameter. In addition to give the inelasticity factors, this would
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also provide information about the cross section for BH formation. It would also be interesting
to determine further characteristics of the radiation, and the evolution of the BH as it goes
through the ‘balding’ phase [35], asymptoting to a Myers–Perry [132] BH. Also of interest
is determining the classical evolution (e.g. radiation details) in the larger impact parameter
regime, where a BH does not form.

A second class of questions regards corrections to the classical analysis. Specifically,
given a classical description of scattering in the eikonal and BH regimes, one would like to
understand the size and nature of quantum corrections. In the eikonal regime θ � 1, one would
for example like to check what effect quantum corrections have on the classical scattering plus
radiation, and also check the expectation that the basic features of the scattering are largely
determined by classical physics.

In the BH regime, we know there are important quantum corrections to the classical
analysis. These include Hawking radiation. However, so far we lack any quantum description
of the full evolution of the BH, and in fact encounter a conflict of basic physical principles in
attempting to describe such evolution. This conflict (for some more discussion see [181] and
references therein) has been called the ‘information paradox’ or ‘unitarity crisis,’ and seems to
indicate the need for fundamental revision of the foundations of physics. Beyond theoretical
study of this regime, one can anticipate that experimental data on trans-Planckian scattering,
should it be found, could provide further clues.

Interplay between perturbative and numerical methods. Despite being a well-defined
problem, the computation of the exact solution for the collision of two ultra-relativistic particles
in GR is out of reach and approximation techniques have to be used. Then, obtaining estimates
from different techniques becomes fundamental for cross-checking. Let us discuss three such
techniques and compare their results.

The oldest method consists of modelling the gravitational field of the colliding particles
by Aichelburg–Sexl (AS) shock waves [57] and computing the apparent horizon that forms,
as first done in four dimensions by Penrose [182]. From the apparent horizon construction,
a lower bound for the energy loss into gravitational radiation and estimate of the threshold
impact parameter for BH formation in D-dimensional collisions can be obtained [56]. This
method does not require the knowledge of the geometry in the future light cone of the collision
and can only provide bounds. Its main advantage is its technical and conceptual simplicity,
although the critical impact parameter estimates in D > 4 require numerical solutions [183].
This method suggests that the amount of radiation loss increases (as a ratio of

√
s) with D.

An improvement of the method, for determining the cross section, that considers an apparent
horizon on the future light-cone (but not inside) was given in [196].

The second method, which may be regarded as a refinement of the first one, also uses
the superposition of two AS shocks, but attempts to compute the geometry in the future
light cone of the collision by a perturbative expansion. In four dimensions, the method
was carried out to second order in perturbation theory [195, 197, 198], in the case of a
head-on collision, yielding 0.164

√
s for the energy loss. The case with impact parameter

is technically harder, due to the loss of symmetry, and has not been fully discussed. The
generalization of this method to higher D head-on collisions was done recently, in first-order
perturbation theory [199, 205]. Interestingly, the trend exhibited for the energy loss is the
same as that obtained from the first method and suggests that the two methods converge as
D → ∞.

The third method is to model the colliding particles as BHs and to perform high-energy
collisions using NR techniques. The use of BHs is, in principle, only for simplicity (i.e.
one uses the vacuum Einstein equations). Using any other lumps of energy (such as boson
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stars) should yield similar results in the trans-Planckian regime, since the process should be
dominated by the energy of the objects; in other words, the individual phase space of the
colliding objects is irrelevant as compared to the phase space of the entire collision process,
and the detailed structure of the objects is hidden behind their mutual event horizon. It
would be extremely interesting to confirm this expectation; in four dimensions, since high-
energy head-on collisions of both BHs [185] and boson stars [79] have been performed, such
comparison is within reach. The high-energy collisions performed so far have reached γ ∼ 3
[185]; these authors extrapolated to γ → ∞ using the numerical points and a fit based on
the zero frequency limit, yielding, in the ultra-relativistic regime (0.14 ± 0.03)

√
s for the

energy loss (the error bars are dominated by the numerical errors, rather than the specific fit).
Remarkably, this overlaps the second-order perturbation theory result described above, which
may be interpreted as lending credibility to both methods. Thus, two important directions are
to obtain both the perturbative computation to second order in higher D and the corresponding
numerical simulations. Some important steps concerning the latter have been already given
[206, 72, 63, 64, 207], but it seems harder to reach the same γ s in higher dimensions, due to
stability, but also perhaps fundamental [65] problems.

4.3. Black hole search at the LHC: future improvements

There are various theoretical developments needed to refine BH searches in high-energy
collisions. As noted above, it is important to better determine BH mass as a function of
energy and impact parameter, which also supplies cross-sectional information, as well as to
characterize the classical radiation.

To improve study of BH signatures, one needs further information about the BH decay. In
particular, the full evolution of a BH through the ‘spindown’ and ‘Schwarzschild’ phases [35],
ending with the ‘Planck phase’ M ∼ MD, where the semiclassical approximation breaks down,
has not been determined. One would like to determine from this the spectra of decay products,
as well as other features such as angular distributions, indicative of BH spin. First estimates of
these basic features for a spinning BH were given in [35], and there has been a lot of work on
the important problem of refining calculations of grey-body factors [208–224]. However, we
still lack a calculation of the grey-body factors for graviton emission from spinning BHs, and
so a complete picture of BH evolution is lacking (see [211] for the evolution in the spin-down
and Schwarzschild phases). Such a calculation in particular is important to determine the
amount of radiation in visible particles.

Finally, in addition to the questions associated with the unitarity crisis (described above)
and Planck phase, there are questions of the dependence of the BH decay on the detailed
microphysical model of TeV-scale gravity. Such details could contribute additional signatures.
For this reason, further study of viable models for TeV-scale gravity would be helpful.

The data samples accumulated during 2011 are likely to provide the strongest limits
obtainable on BH production for the LHC at a centre-of-mass energy of 7 TeV. The results are
already constrained by the lack of theoretical understanding of the final stages of the BH decay.
Furthermore, the fundamental Planck scale MD has been constrained over the years, up to the
present LHC data. The main sources of bounds come from (i) deviations from Newtonian
gravity in torsion balance experiments [225, 226]; (ii) collider searches for Kaluza–Klein
graviton production (monojet or photon with missing energy) [227–229] and KK graviton
mediated dilepton or diphoton production [230–234]; (iii) astrophysical or cosmological KK
graviton production in supernovae and in the early universe [235, 236]. The most stringent
laboratory bounds from current LHC searches indicate MD � 2.5–3.5TeV for D > 6, whereas
observational bounds from astrophysics and cosmology only allow for such small MD for
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D > 7. (However there are many model-dependent uncertainties on the latter.) Because of the
theoretical uncertainties and the limits on MD indicated by these searches, it is important to
perform a wide-ranging search in the data, using all available channels to look for TeV-gravity
effects. It would be dangerous, for example, to use limits from dijet production to infer the
absence of the signal in a leptonic channel, since a TeV-gravity model would be needed to link
the observations together. The experiments have already looked at dijet, multijet, single lepton
and dilepton data, and this approach should be continued. Once the full 2011 dataset has been
analysed, further progress will probably have to await an increase in the LHC beam energy.

On the theoretical front, it would be useful to try to constrain the range of allowed
scenarios near the bulk Planck mass. The cross section is predicted to rise by many orders
of magnitude, at a very rapid rate, in this region. From past experience with the onset
of new physics, such as that observed in low-energy hadron scattering near the QCD
scale, one would expect resonant behaviour near threshold, settling to the semi-classical
prediction as the energy increases. Such behaviour could greatly enhance the sensitivity of
the experiments, since the peak cross sections could be very large. It would be useful, if it
were possible, to make generic predictions for the maximum allowed cross section for BH
production, perhaps based on unitarity considerations, or even on the maximum allowed rate
of change of the cross section near threshold. Such predictions could then be used instead
of sampling parameter space in regions where the approximations required are known to be
violated.

Finally, studies of the possible BH solutions of higher dimensional gravity over the
last decade have revealed a vast number of possible solutions besides the Myers–Perry
family of BHs (see section 3). These include five-dimensional black rings and black Saturns
(which are known in exact explicit form) as well as a large number of other BHs in six
or more dimensions with more complicated topologies (which have been constructed using
approximate techniques). The potential formation and detection of one of these BHs would
provide a new window into the study of higher dimensional gravity. However, many of these
solutions are expected to be dynamically unstable when their angular momentum is sufficiently
large and therefore would not appear as states after the balding phase (although they might
play a role in the approach to this phase). For moderate angular momenta, currently it is
not yet known whether a black ring (arguably the simplest and most important among the
new kinds of BHs) may be dynamically stable and thus have observational signatures in a
collision. It is expected that progress in this stability problem will be achieved in the near
future via numerical studies. Before that, it seems premature to make any predictions about
the possibility of observing them in collider experiments.

5. Strong gravity and high-energy physics

(Coordinator: Paul M Chesler)

5.1. Dynamics in holographic quantum field theories from numerical relativity

The study of real-time dynamics in QFT is a theoretically diverse topic, with available tools
ranging from perturbative QFT and kinetic theory to string theory and gauge/gravity duality.
It is also a challenging topic to study. Prior to the discovery of gauge/gravity duality, the only
theoretically controlled regime of real-time dynamics in QFT was that of asymptotically weak-
coupling, where QFTs often admit an effective kinetic theory description in terms of weakly
interacting quasiparticles. In this regime, one can systematically study real-time dynamics via
perturbative expansions. However, the domain of utility of real-time perturbative expansions
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is more often than not quite limited, with extrapolations to O(1) couplings converging
poorly.

One interesting phenomenon where strongly coupled dynamics appears to be relevant is
that of heavy-ion collisions at the RHIC and the LHC. There, collisions are believed to produce
a strongly coupled QGP, which behaves as a nearly ideal liquid [237]. During the initial stages
of a collision, when the QGP is produced, the system is surely far from equilibrium. However,
the success of near-ideal hydrodynamic models of heavy-ion collisions suggests that the time
required for the far-from-equilibrium initial state to thermalize may be as short as 1 fm c−1,
the time it takes for light to traverse the diameter of a proton [238].

Quantum chromodynamics (QCD) is the accepted theory of the strong interactions and
therefore should describe the dynamics of heavy-ion collisions. Understanding the dynamics
of the QGP produced in heavy-ion collision—from small viscosities to short thermalization
times—from QCD has been a challenge. This is not to say that QCD is an incorrect description
of nature, but rather that theorists simply do not know how to perform controlled calculations
in QCD when the coupling is large.

Holography, or gauge/gravity duality, has emerged as a powerful tool to study real-
time dynamics in strongly coupled QFTs from first principle calculations [10]. The utility of
gauge/gravity duality lies in the fact that it maps the dynamics of some strongly coupled QFTs
(i.e. holographic QFTs) in D spacetime dimensions onto the dynamics of semiclassical gravity
in D + 1 spacetime dimensions. From a utilitarian perspective this means strongly coupled
QFT dynamics can be mapped onto classical PDEs in D + 1 spacetime dimensions, which can
be solved numerically if needed.

Holography is a unique tool. There is no other tool available which provides controlled
access to dynamics in strongly coupled QFTs. However, it is also a tool of limited applicability
[239]. Currently, there are no known theories of nature with dual gravitational descriptions.
However, this has not deterred the construction of holographic toy models of QCD or other
QFTs. While holography does not provide systematic access to strongly coupled QCD, it does
provide systematic access to a regime of QFT never accessible before and therefore should be
explored to the fullest possible extent. Moreover, holographic toy models of QCD can provide
valuable qualitative insight into strongly coupled dynamics in QCD (for a useful review see
[52]). Perhaps the most celebrated example is that of the shear viscosity in strongly coupled
holographic QGP. All QGPs with holographic descriptions have the same shear viscosity to
entropy density ratio η

s = 1
4π

[240]. Such a small viscosity is a hallmark of a strongly coupled
QFT. Indeed, recent models of heavy-ion collisions suggest that the viscosity of the QGP
produced is within a factor of 2 of η

s = 1
4π

[241]. No other systematic calculation of the
viscosity has yielded values close to this.

Much can be learned about holographic QFTs via analytical techniques. Indeed, many
other transport coefficients than the shear viscosity can be computed analytically [242, 243].
However, there are many dynamical processes where one must resort to numerical techniques.
For example, the creation of a QGP via collisions of sheets of matter in 3 + 1 spacetime
dimensions is dual to the creation of a BH via the collision of gravitational waves in 4 + 1
dimensions. To study such a complicated process one must have a NR toolkit suitable for
spacetimes relevant to holography. The development of such a toolkit would be a valuable
addition to the quantum field theorist’s toolbox. However, as we discuss below in section 5.2,
stable algorithms for NR in holographic spacetimes have been difficult to construct. As a
consequence of this, very little progress has been made in the application of NR to holography
and strongly coupled dynamics in QFT. Notable examples of successful applications of NR in
the context of holography include [244, 70, 42, 71].
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5.2. The challenge of numerical relativity in asymptotically AdS geometries

The simplest and most widely studied example of holography is the AdS/CFT correspondence,
which maps the dynamics of non-Abelian CFTs in D spacetime dimensions onto semiclassical
gravity in asymptotically AdSD+1 spacetime. In particular, the AdS metric encodes the
expectation value of the stress 〈Tμν〉 in the dual CFT [245] and metric correlation functions
(which satisfy linearized Einstein equations) encode stress correlation functions in the dual
CFT [246]. For concreteness, we shall consider the case of D = 3 + 1. In Fefferman–Graham
coordinates, the metric of asymptotically AdS5 takes the form

ds2 = r2gμν (x
μ, r) dxμ dxν + dr2

r2
, (3)

where xμ are the 3 + 1 spacetime directions of the dual CFT and r is the radial direction of
the AdS geometry. The boundary of the AdS geometry, which is where the dual CFT can be
thought of as living, is at r = ∞.

As is evident from the metric (3), a light-like signal from some finite r can reach r = ∞
in a finite amount of time. As a consequence of this, boundary conditions must be imposed on
the metric at the boundary. To shed light on what the requisite boundary conditions should be,
it is useful to solve Einstein’s equations with a series expansion in r near the boundary. Doing
so, one finds that near the boundary the metric has the asymptotic expansion [245]

gμν (x
μ, r) = g(0)

μν (x
μ) + · · · + g(4)

μν (x
μ)/r4 + · · · , (4)

where g(0)
μν (x

μ) and g(4)
μν (x

μ) are two independent constants of integration. Via holography, the
expansion coefficient g(0)

μν (x
μ) has the physical interpretation of the (3+1)-dimensional metric

of the geometry that the dual CFT lives in and the expansion coefficient g(4)
μν (x

μ) is related to
the expectation value of the dual CFT stress tensor via [245]

〈Tμν (x
μ)〉 = const. × g(4)

μν (x
μ). (5)

From the perspective of the dual CFT, the required boundary conditions on the metric gμν (xμ, r)
are obvious. The CFTs described by AdS/CFT are not gravitating: they do not backreact on
the geometry they live in. For a given geometry that the CFT lives in, the evolution of the
expectation value of the stress tensor is governed by the Hamiltonian of the CFT. Therefore,
natural boundary conditions consist of fixing g(0)

μν (x
μ) and letting g(4)

μν (x
μ) be dynamically

determined. The simplest possible choice is g(0)
μν (x

μ) = ημν where ημν is the metric of
Minkowski space. It should be emphasized that fixing g(4)

μν (x
μ) can lead to unstable evolution

(and even the appearance of naked singularities). Such unphysical behaviour is easy to interpret
from the perspective of the dual CFT, as one must judiciously choose the evolution of g(4)

μν (x
μ),

so that it is consistent with the CFT Hamiltonian.
In addition to imposing the boundary condition limr→∞ gμν (xμ, r) = fixed, there is

another type of boundary condition that must be imposed at r = ∞. Four components of
Einstein’s equations are radial constraint equations [70]. If they are satisfied at one value of r,
then the other Einstein equations imply that they are satisfied at all values of r. 34 In addition
to imposing limr→∞ gμν (xμ, r) = fixed, one must also demand that the four radial constraint
equations are satisfied at r = ∞. As we will discuss below in section 5.3, this is tantamount
to demanding that the CFT stress tensor is conserved.

Even with the correct boundary conditions imposed, finding stable NR algorithms in
asymptotically AdS spacetime is a challenge. The challenge lies in the fact that Einstein’s

34 In particular, if the radial constraint equations are satisfied at one value of r, then the other components of Einstein’s
equations imply that the radial derivative of the radial constraint equations also vanishes. This can easily be seen from
the Bianchi identities.
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equations for the rescaled metric gμν (xμ, r) contain a regular singular point at r = ∞.
Because of this, at r = ∞ one must not only impose boundary conditions, but one must
also solve Einstein’s equations very well near r = ∞ if one is to peel off the expansion
coefficient g(4)

μν (x
μ) and obtain the expectation value of the (conserved) stress in the dual CFT.

The simplest possible approach is to put a cutoff on the geometry at some r = rmax and impose
the boundary condition gμν (xμ, rmax) = ημν . However, such an approach generically does not
lead to stable evolution. Einstein’s equations imply that gravitational radiation propagating
towards r = ∞ cannot change the boundary geometry at r = ∞ 35. However, gravitational
radiation propagating up from the bulk can change the geometry at rmax. An arbitrary boundary
condition at rmax is generally inconsistent with Einstein’s equations and thus the evolution of
the stress tensor in the dual CFT. For suitably large rmax one would expect this effect to be small
and controllable by taking rmax larger. However, because Einstein’s equations are singular at
r = ∞, any discontinuity in the metric at rmax can be amplified by the singular point in
Einstein’s equation and lead to numerical evolution which quickly breaks down. Therefore,
one of the challenges of doing NR in asymptotically AdS spacetime lies in imposing boundary
conditions at r = ∞. One must find an algorithm which is consistent with Einstein’s equations
and which is suitably accurate near r = ∞, so that the asymptotics of the metric can be peeled
off and the dual CFT stress tensor can be determined.

5.3. The characteristic formulation of Einstein’s equations

One successful approach to NR in asymptotically AdS has been the characteristic formulation
[244, 69, 70]. While, as we discuss more below in section 5.4, the characteristic formulation
does have limitations, it has provided the first stable numerical solutions to Einstein’s equations
in asymptotically AdS [244] and lends itself to many interesting problems with relative
computational ease.

Using infalling Eddington–Finkelstein (EF) coordinates, the metric of asymptotically
AdS5 may be written as

ds2 = −A dv2 + 	2gi j dxi dx j + 2Fi dxi dv + 2 dr dv, (6)

where v is EF time, xi are the CFT spatial directions and det gi j = 1. Lines of constant v

represent infalling null geodesics from r = ∞. Moreover, the radial coordinate r is an affine
parameter for these geodesics. The metric (6) is invariant under the residual diffeomorphism
r → r + ξ (v, x), where ξ (v, x) is an arbitrary function.

Einstein’s equations read

RMN − 1
2 GMN (R − 2�) = 0, (7)

where GMN is the 5D metric and � = −6/L2 is the cosmological constant, and L is the
AdS curvature radius (which can be set to 1). Upon substituting the metric (6) into Einstein’s
equations one reaches the following conclusions.

(1) Time derivatives only appear in the combination d+ ≡ ∂v + 1
2 A∂r. This is the directional

derivative along an outgoing null radial geodesic.
(2) Given gi j on a slice of constant v, the (0, 0), (0, i), (0, 5) and (i, j) components of

Einstein’s equations are a system of linear ODEs in r for the fields 	, Fi, d+gi j and
A at time v. These ODEs can be integrated in from the boundary and thereby have all
boundary conditions imposed at r = ∞. Once these ODEs are solved, one can compute
∂vgi j = d+gi j − 1

2 A∂rgi j and gi j on the next time slice.

35 In other words, the expectation value of the CFT stress tensor does not change the geometry that the CFT lives in.
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(3) The (i, 5) and (5, 5) components of Einstein’s equations are the radial constraint
equations. If they are satisfied at one value of r, then the other components of Einstein’s
equations imply that they are satisfied at all values of r. These equations must be
implemented as the radial boundary conditions at r = ∞ in the aforementioned nested
linear system of ODEs.

To determine the requisite boundary conditions for the nested system of ODEs and how
the radial constraint equations must be implemented, it is again useful to solve Einstein’s
equations with a series expansion near r = ∞. Doing so, one finds that the required boundary
conditions on the nested system of linear ODEs consist of the boundary geometry and the
expectation value of the conserved densities 〈T 0μ〉 at time v. Moreover, one then finds that
the radial constraint equations are equivalent to the condition that the CFT stress is conserved
∂μ〈T μν〉 = 0. Therefore, the algorithm for solving Einstein’s equation in the characteristic
formulation consists of

(1) Specify gi j(x, r) and 〈T 0μ(x)〉 at time v.
(2) Solve the (0, 0), (0, i), (0, 5) and (i, j) components of Einstein’s equations for 	, Fi,

d+gi j and A at time v with the boundary condition that the CFT momentum density is
〈T 0μ(x)〉 and with a given boundary geometry.

(3) Compute the field velocity ∂vgi j.
(4) Compute the field velocity ∂v〈T 0μ(x)〉. This is given by the energy–momentum

conservation equation ∂v〈T 0μ(x)〉 = −∇i〈T iμ(x)〉, which is equivalent to the radial
constraint equations. At time v the spatial components 〈T i j(x)〉 are determined by the
near-boundary asymptotic of gi j.

(5) Compute gi j and 〈T 0μ(x)〉 on the next time step and repeat the above process.

The utility of the characteristic formulation of Einstein’s equations lies in the fact that
Einstein’s equations are integrated in from the boundary along infalling null radial geodesics.
Therefore, any numerical error made at the boundary instantaneously falls to finite r away
from the singular point in Einstein’s equations. While this tames the singular point in
Einstein’s equations at r = ∞, it does not completely ameliorate it. One must still solve
Einstein’s equations very well near r = ∞. Two successful approaches thus far are to
(i) solve Einstein’s equations semi-analytically for r > rmax and match the semi-analytic
solution onto the numerical solution at r = rmax [244] or to (ii) discretize Einstein’s equations
using pseudospectral methods [70]. In the latter approach, one can directly impose boundary
conditions at r = ∞, as the exponential convergence of pseudospectral methods outpaces the
power-law singularities in Einstein’s equations.

As a proof by example that the characteristic method can be stable in asymptotically
AdS, figure 4, taken from [70], shows the energy density and transverse and longitudinal
pressures for a collision of two translationally invariant sheets of matter in a holographic CFT.
Translational invariance in the two directions transverse to the collision axis implies that the
corresponding NR problem can be dimensionally reduced to 2 + 1 dimensions. In the dual
gravitational description, this problem is equivalent to the formation of a black brane via the
collision of two gravitational waves36.

The fluid gravity correspondence [242] implies that at suitably late times the evolution
of the CFT stress tensor will be governed by hydrodynamics. The charm of the gravitational

36 We note that AdS5 contains a horizon at r = 0, the Poincaré horizon. Because of this, a horizon exists for all times,
even in the infinite past before the collision event. As a consequence of this and the fact that the horizon has the
topology of a plane, the residual diffeomorphism invariance of the metric (6) can be removed by setting the position
of the apparent horizon to be at r = 1.
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µv

µz = 0

E/µ4

µv µz

P⊥/µ4

P||/µ4

hydro

Figure 4. Left: the energy density E of two colliding sheets of matter in a holographic CFT.
Right: the transverse and longitudinal pressures P⊥ and P|| at z = 0. The colliding sheets are
translationally invariant in the two directions orthogonal to the collision axis z. The scale μ sets the
energy density per unit area of the sheets. The sheets propagate at the speed of light and collide at
time v = 0. Near v = 0, the system is very far from equilibrium and the transverse and longitudinal
pressures are very different. However, after a few units of 1/μ, the dynamics of the debris left
over from the collision is governed by viscous hydrodynamics with increasing accuracy as time
progresses.

calculation is that Einstein’s equations encode all physics: from far-from-equilibrium dynamics
during the initial stages of the collision to the onset of hydrodynamics at late times. As is evident
from the right panel in figure 4, the total time required for the collision to take place and for
the system to relax to a hydrodynamic description is �hydrov ∼ 4/μ, where the scale μ is
related to the energy density per unit area of the shocks μ3(N2

c /2π2), with Nc being the
number of colours of the CFT gauge group. Crudely modelling heavy-ion collisions at RHIC
with translationally invariant sheets of matter, one can estimate μ = 2.3 GeV, which yields a
relaxation time �vhydro ∼ 0.35 fm c−1.

While demonstrating that NR in asymptotically AdS geometries can be stable, the above
example also demonstrates that thermalization times < 1 fm c−1 are not unnatural in strongly
coupled QFTs.

5.4. Conclusions

The marriage of NR and holography is still in its infancy. There are many unexplored QFT
and gravity problems to study, such as turbulence, QGP formation and thermalization in
non-conformal QFTs, and Choptuik critical phenomena and its holographic interpretation.

Much work remains to be done in order to develop a robust NR toolkit applicable to
holography. While the characteristic method discussed in section 5.3 has proven to be stable,
it is not without its limitations. One limitation is that the characteristic method breaks down
when caustics form. This limits the applicability of the characteristic method to black brane
geometries, where the horizon of the black brane has the topology of a plane. Clearly, it would
be desirable to develop alternative NR algorithms which lend themselves to more general
geometries.

It cannot be over emphasized how valuable a robust NR toolkit would be to the study
of dynamics in QFT. The first QFTs studied were written down a generation ago. And yet
in that generation the vast majority of the progress made in understanding dynamics in
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QFT has come from weak-coupling expansions. With the discovery of gauge/gravity duality,
dynamics in strongly coupled QFTs is now accessible in a systematic and controlled setting.
The strongly coupled regime of QFT should be explored to the fullest extent possible. While
NR in holographic spacetimes may be challenging, it is vastly easier than first principle
calculations in strongly coupled QFTs.

6. Alternative theories of gravity

(Coordinator: Leonardo Gualtieri)

The theory of GR is one of the greatest achievements in Physics. Almost one century after
its formulation, it still stands as an impressive construction which captures in a compelling
and successful way most of what is known about the universe on a large scale. And yet, both
theory and observations hint at the incompleteness of GR.

On the theoretical side, GR is conceptually disjoint from another remarkable and
successful explanation of nature: Quantum Field Theory, which explains with great accuracy
small-scale physics. It is believed that GR and QFT should be limits of a more fundamental
theory, which despite a decades-long effort devoted to its understanding, remains as yet elusive.
Adding to this, GR is plagued by singularities and other ‘weird’ phenomena such as causality
violations which appear to reveal a breakdown of the theory at very small length scales, even
though such occurrences are probably always hidden by horizons.

On the experimental/observational side, important open problems may be associated with
deviations from GR. Among them, the most compelling regard cosmology: observations have
shown that our Universe is filled with dark matter and dark energy, which seem to be difficult
to incorporate elegantly in GR37.

One possible way out of this conundrum is to accept that Einstein’s theory is valid
only in the weak-field regime, but has to be modified for a description of strong fields. In
fact, all experiments and observations so far have only probed the weak-field regime of gravity
[250–253] 38 and while Einstein’s theory passes all these tests with flying colours, extrapolating
GR to the elusive strong-field regime may be dangerous.

Testing the strong-field limit of GR is one of the main objectives of many future
astrophysical missions [254, 255]. In the context of testing alternative theories of gravity,
arguably the most promising of these missions would be the space-based GW detector
LISA/eLISA, since it would be sensitive enough to give birth to the so-called gravitational-
wave astronomy, i.e. observing the universe through a new window, the most appropriate to
look at violent, strong-field phenomena occurring in our Universe. Unfortunately, after recent
decisions from NASA and ESA it is not clear if this detector is going to be realized in the
next decade. Several other projects to probe the strong-field regime of GR are currently in
construction or under design study. Detectors in construction include the second generation
ground-based GW detectors Advanced LIGO/Virgo [256] and, on a longer timescale, the
underground cryogenic detector KAGRA [257]; we should also mention the Pulsar Timing
Array project to detect GWs indirectly by observing an array of pulsars using radio telescopes
[258]. Detectors in design study include the third generation detector ET [259], more advanced

37 This is a debated issue. See e.g. [247], where it is argued that the cosmological constant should be considered as a
natural part of Einstein’s equations. Some attempts to incorporate dark energy in GR have also been done, see e.g.
[248, 249].
38 Even tests from binary pulsars [251, 253] verify the weak-field limit of GR, because the strong gravitational field
near the stellar surface does not significantly affect the orbital motion, and the gravitational compactness is smaller
than 1 part in 105 for the most relativistic (double) binary pulsar.
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space-based detectors (DECIGO, BBO) [260, 261], next generation x-ray and microwave
detectors to study BHs and the cosmic microwave background (IXO, NICER) [262].

Further experiments target the observation of specific violations of GR, like violations
of Lorentz symmetry, of the equivalence principle, of the expected polarization and speed of
GWs, etc. We expect then to have soon a large amount of data, which will allow us to test, for
the first time, the strong-field limit of gravity. A signature of new physics in these experiments
and observations could be a ‘message in a bottle’ coming from a more fundamental theory,
standing at energies far beyond our reach.

In this context, it is not surprising that the community of theorists has been paying, in recent
years, more and more attention to possible deviations of GR, and more generally to alternative
theories of gravity. Many theories have been proposed, such as scalar–tensor theories [263],
scalar–tensor–vector theories [264], massive graviton theories [265, 266], braneworld models
[6, 7, 267], f (R) theories [268], quadratic curvature corrections (e.g. Gauss–Bonnet gravity
[269], Chern–Simons gravity [270]) or Lifshitz-type theories [271]. Given this plethora of
possible corrections to GR, it is crucial to devise some guideline which allows us to make
contact between theoretically conceivable models and upcoming observations.

In the following we discuss some important issues about alternative theories of gravity
in four dimensions, with the aim to report both on the state-of-the-art and on the ongoing
discussion on these topics. We will not discuss here alternative theories of gravity in D > 4;
we only mention that some effort has been done to study deviations from GR in higher
dimensions, mainly in the context of theories with quadratic curvature corrections [272–274].

6.1. Which kind of GR deviations should we expect?

An answer, even partial, to this question would be extremely valuable. Indeed, on the one hand,
the realm of possible alternative theories of gravity is too large to be the starting point for
systematic tests of GR. On the other hand, choosing one specific alternative theory of gravity
could become a merely formal exercise, unless the choice is made on physical grounds.
Actually, many alternative theories of gravity claim to be ‘string inspired’, since they have
features which also appear, in different contexts, in string theory/M-theory (SMT). This is the
case, for instance, for scalar–tensor theory [263], in which, as in SMT, the spacetime metric
is non-minimally coupled to a scalar field, of theories with quadratic curvature corrections
[269, 270], which arise in several low-energy truncations of SMT, of braneworld theories
where, as in SMT, gauge fields can be confined on submanifolds (branes) of the spacetime,
and so on.

These are merely inspirations and analogies, however. It would be extremely useful, in the
study of possible GR modifications, to have a guidance from candidate fundamental theories
(SMT, loop quantum gravity, etc), but actual SMT constraints on the low-energy theory are
still poor, because we do not know the symmetry breaking mechanism which would yield our
world. Many deviations from GR can be accommodated in some model of SMT. Actually,
it would be more appropriate to speak of ‘predictions of an SMT model’ rather than ‘SMT
predictions’, since today SMT should be viewed as a framework on which different models
can be defined, rather than a well-defined theory.

Given that SMT is one of the few candidates for a unified theory, it is perhaps wise
to extract from it general indications, which may be useful (if it is the correct route to
the fundamental theory unifying GR and QFT) as a possible, preliminary guideline. In this
context, the most likely and potentially interesting GR corrections would be associated with
couplings with other fields (scalars, vectors, etc). Another interesting possibility is that GR
corrections would involve curvature invariants. The dimensionful coupling constant of such
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curvature invariants may, however, be suppressed by the Planck scale, making these corrections
irrelevant for astrophysical phenomena. On the other hand, both the hierarchy problem and the
cosmological constant problem suggest that possible couplings to gravity may be very different
from those expected from standard field theory. Thus, if for some reason these corrections
are not Planck-suppressed, alternative theories like Chern–Simons gravity or Gauss–Bonnet
gravity may have important implications for gravitational-wave astronomy.

Alternatively, one could adopt an ‘agnostic’ attitude, not trying to infer general indications
from candidate fundamental theories, and instead considering whether gravitational wave
observations or other gravitational experiments can provide any constraints on gravity theories
beyond that of Einstein. One route towards this goal is to think about what possible symmetries
or fundamental GR principles one could compromise to study whether nature violates them.
This is the case, for instance, of generic breaking of parity invariance (captured in Chern–
Simons gravity [270]), or of kinematical violations of Lorentz–Symmetry in the propagation of
gravitational modes [275]. Whether one expects such deviations from fundamental principles
or not, it might still be worthwhile to consider what current or future experiments have to say
about these topics.

6.2. Strategies to find a GR deviation in experiments and observations

A possible strategy to find GR deviations may be building a parametrization as general as
possible of metric theories of gravity, modelling in this framework the relevant (strong-field)
astrophysical processes and determining observable signatures in terms of the parameters of
the theory. This could be made in two ways (which have been dubbed, respectively, top–
down and bottom–up [276]): parametrizing the action and looking at the phenomenological
consequences, or parametrizing a phenomenological description of the observations, and
inferring the consequences on the underlying theory. An attempt to pursue the former approach
has been made in [277], where a parametrization of the action in terms of polynomials in the
curvature tensor has been proposed. An example of the latter, instead, is the parametrization
of the BH spacetime (in a general theory of gravity) in terms of multipole momenta, which
has been proposed in the context of extreme mass-ratio inspirals [278, 279]. Another example
is given by the ppE formalism [280, 281], in which a parametrization of the gravitational
waveform emitted in BH binary coalescences is proposed. All these approaches are attempts
to build a general parametrization of the gravitational theory, to be compared with observations.

On the other hand, a general parametrization of gravitational theories could be difficult to
implement in the analysis of data (for instance from gravitational interferometers). Indeed, it
could depend on too many parameters to preserve practicality of the matched filtering process:
too many free parameters in the template space can introduce degeneracies in the parameter
estimation process and also lead to larger uncertainties in those estimations, i.e. they could
raise the false-alarm rate. It should further be remarked that having a precise template will
be crucial for the determination of the physical parameters, but should be less important for
detection, [282]. Therefore, it will probably be the outcome of the experiments which dictate
how we should proceed or which strategies will work best in testing the behaviour of the
gravitational interaction.

Nevertheless, there exists strong motivation for embedding the alternative theories
of gravity proposed so far in a large class of theories. A clever strategy could be to
first find the general signature of a theory (or of a class of theories), then identify the
experimental/observational setup in which such a signature is enhanced. Thus, the search
for ‘smoking guns’ of alternative theories (for instance spontaneous scalarization [283] and
floating orbits [284] in scalar–tensor theories, birefringence of GWs in parity-violating theories
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[285]) would be a solid route to establish or rule out many candidate theories. Knowing
‘where to look’ would also be extremely useful to conceive new experiments and to fine-
tune the experiments now in the commissioning and building stages. We would be able,
once a deviation from the GR prediction is detected or observed, to understand its theoretical
implications, and translate the new observation into a deeper understanding of the fundamental
laws of nature.

It is also worth saying that, even in the absence of any observational evidence to date for
deviations from GR, experimental/observational data are already providing useful information
on alternative theories of gravity. Indeed, negative results (even in weak-field processes) enable
us to constrain the set of allowed theories [286, 250, 287–290].

6.3. GR deviations in astrophysical processes

To test deviations from GR, we should look at the most violent astrophysical processes
dominated by gravitational fields, which are the coalescences of compact binary systems
formed by BHs and/or neutron stars, either of comparable masses [291–293] or of extreme
mass ratio [294–296]. BH oscillations are a promising process, too, since they encode in a clean
way the features of the underlying theory of gravity [297]. Such processes provide an optimal
testbed for GR, as they probe the pure gravitational interaction. Indeed, most of the literature
on phenomenological bounds of alternative theories of gravity refer to such processes.

Possible insights from BH and neutron star physics would be complementary to the large
amount of literature on alternative theories in cosmological scenarios. Indeed, cosmological
observations could also provide a valuable tool to study alternative theories of gravity. For
instance, some of these theories (braneworld models, f (R) gravity) could account for the
acceleration of the universe without the need of including dark energy [298–300]; these
models can then be tested against the large amount of observational data on supernovae,
cosmic microwave background, gravitational lensing, galaxy clustering, etc [301] (see also
[302]). Other theories (such as scalar–vector–tensor theories) could explain the galaxy rotation
curves without the need of including dark matter [264] (see also [303]). This topic is beyond
the scope of this paper; for a comprehensive review we refer the reader to [304].

Some of these processes, however, especially those involving BHs, do not probe a key
aspect of GR, namely the coupling of gravitation to matter. Possible constraints in this sector
may come from different kinds of strong-gravity processes, like those involving the internal
dynamics of neutron stars. Unfortunately, the uncertainty about the behaviour of matter at
extreme density in the core of a neutron star makes it difficult to disentangle the effects of an
alternative theory of gravity from those due to a different equation of state. Within the next few
years, astrophysical and gravitational wave observations may be able to shed more light onto
the neutron star equation of state. This will open up the possibility of making precision tests
of the coupling of gravity with matter [305–307]. Accretion of matter into BHs has also been
studied in alternative theories of gravity [308, 309], but the uncertainties in our knowledge of
this process make it difficult to use it as a testbed of GR against other theories.

More generally, rather than constraining small corrections to standard gravity, it could be
useful to look for effects which only appear in alternative theories, but identically vanish in GR
[283–285]. Such effects may provide clear observational signatures and thus prove effective
in constraining or ruling out alternative theories.

6.4. Numerical relativity and alternative theories of gravity

NR may be a powerful tool to study alternative theories of gravity and to understand their
phenomenology in strong-field astrophysical processes. Numerical simulations in this field,
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however, have so far almost exclusively been restricted to highly symmetric configurations such
as the spherically symmetric gravitational collapse of dust [310–312] or processes involving
scalar fields in spherical symmetry [313]. We note, however, the recent study of BHs in scalar–
tensor theory by Healy et al [314]. With that exception, though, the use of NR following the
2005 breakthroughs [1, 3, 2] in the study of alternative theories of gravity remains essentially
uncharted territory. Aside from the rather well-studied case of scalar–tensor theories (see
also [315, 316]), it is not even clear to what extent the stability properties of the present
state-of-the-art codes in (3 + 1)−dimensional and higher dimensional spacetimes carry over
to modifications of GR. Furthermore, for those cases where the action contains higher order
polynomials of the Riemann tensor, the existence of a well-posed initial value formulation
of the field equations is not known. For this class of theories, which includes for example
Chern–Simons gravity, the field equations contain derivatives higher than second order which
may drastically change the mathematical structure of the theory (see e.g. [30]).

There may be reason, however, for some optimism in this regard. We emphasize that the
following items cannot be regarded as mathematical arguments, but merely as an intuitive
motivation for carrying out such investigations with some level of confidence. First, if a given
theory correctly describes real physical processes, then we should expect there to exist a well-
posed form of this theory. Second, we typically consider scenarios which only mildly deviate
from GR. Given that GR itself has well-posed initial-value formulations, we might hope that
this remains the case, at least in a ‘neighbourhood around GR in the space of theories’. Third,
modified theories of gravity often arise as the low-energy limits of more fundamental theories.
It could then be acceptable if a modified theory is well posed in certain regimes only.

Deriving fully nonlinear numerical evolutions in the framework of alternative theories of
gravity will require substantial effort, but the wealth of physical systems thus opened up for
systematic study almost certainly justifies the effort. For instance, we would be able to model
processes with low degree of symmetry or those involving complex matter distributions and/or
other fields, whose study is not possible using semi-analytic approaches such as perturbation
theory or parametrized post-Newtonian expansions.

The answer to the above questions and issues crucially depends on the specific alternative
theory to be studied. Two recent works on different directions allow for optimism. In the case
of GR coupled with a scalar and/or vector field, the mathematical structure of the evolution
equations is expected to be preserved [315, 316]. In line with this expectation, NR simulations
of binary BH coalescences in scalar/tensor theory have recently been performed [314]. A
second exciting development concerns a well-known conjecture [107, 108, 317] that large
static BHs do not exist in type II Randall–Sundrum scenarios of the modified gravity model.
These works used indirect arguments to claim static solutions do not exist, and gravitational
collapse would yield a dynamical BH that would ‘evaporate’ classically due to (classical)
gravitational radiation. A counter-example to this conjecture was recently presented where
static BHs were numerically generated [106, 105]. These works, albeit preliminary, show that
NR can be successfully applied to model alternative theories of gravity, in order to understand
their phenomenology in strong-field astrophysical processes.

7. Approximation methods in GR

(Coordinator: Carlos F Sopuerta)

7.1. Relativistic perturbation theory

In the theory of GR, gravity does no longer appear as a force but as a manifestation of the
geometry of spacetime, which is a dynamical entity. As such, the gravitational dynamics is
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encoded by the spacetime metric tensor, a spin-2 field that satisfies the Einstein field equations.
The main difficulties that arise in GR are related to the nonlinearity and the diffeomorphism
invariance of the theory, which complicate solving the field equations and understanding
the solutions. Most of what we have learned about GR comes from the detailed studies of
a few exact solutions (see, e.g. [318, 162]), in particular Minkowski, Schwarzschild, Kerr,
Friedmann–Lemaı̂tre–Robertson–Walker, etc). These exact solutions can also be taken as the
basis for the study of more complex physical situations, e.g. oscillations of compact stars and
BHs, cosmological structure formation, etc. The reason for this is that many of these physical
situations admit a perturbative analysis where the zeroth-order solution (usually called the
background geometry) is one of the exact solutions mentioned above. The starting point of
relativistic perturbation theory is to consider two different spacetimes, the physical one, which
describes the actual physical system, and the background one, which corresponds to a simpler
idealized situation. We can relate these two spacetimes using different maps (which identify
points of the background and physical spacetimes and can be used to transport the tensorial
structure between them), each of them corresponding to a gauge choice and the transformation
between maps is known as a gauge transformation. Using one such mapping we can write the
metric tensor of the physical spacetime, gμν , as

gμν = g̃μν + δgμν (μ, ν = 0 , . . . , D − 1) , (8)

where D is the spacetime dimension, g̃μν denotes the background spacetime metric and δgμν

are the metric perturbations, which can be split into a first-order piece (that satisfies the
Einstein equations linearized with respect to the background metric), a second-order piece,
etc. Experience tells us that the gauge freedom in the identification between the background
and physical spacetimes can cause problems; in fact, many authors talk about the gauge
problem, e.g. [319, 320]. These problems arise in the physical interpretation of results, and in
particular when one works with a family of gauges instead of a unique gauge. For instance,
considering only first-order perturbations (something similar applies to higher perturbative
orders), the Lorenz gauge condition ∇̃μ(δgμν − (1/2)g̃μν g̃ρσ

δgρσ ) = 0 does not identify a
unique gauge, since we can perform gauge transformations whose generating vector field ξμ

satisfies � ξμ ≡ g̃ρσ ∇̃ρ∇̃σ ξμ = 0. These gauge transformations respect the Lorenz gauge
condition but can change the metric perturbations, and hence one must be careful when
dealing with perturbations in this family of gauges. To avoid these potential problems, a usual
procedure is to look for gauge-invariant quantities, i.e. quantities that have the same values
independent of the gauge one is working in. For details on the mathematical formulation of
relativistic perturbation theory see [321–327]. In the case of 4D spacetimes, it has been applied
and developed for different physical systems, mainly for the following.

(i) Perturbations of flat spacetime (see, e.g. [328]). These are the most simple type of
perturbations that one can think of since the background spacetime geometry is the
Minkowski flat spacetime. They are useful for several types of studies, in particular to
describe the propagation of gravitational waves far away from the sources. Perturbations
of flat spacetime are also at the core of the so-called post-Minkowskian approximation,
where one is interested in gravitational weak-field phenomena.

(ii) Cosmological perturbation theory [329–336]. As the name indicates, here one perturbs a
spacetime of cosmological character. Most of the work done in the literature has focused
on the development of perturbations of the Friedmann–Lemaı̂tre–Robertson–Walker
cosmological models. They are one of the cornerstones of the present standard model
of cosmology as they are fundamental for the description of many physical phenomena
in cosmology. The formation and growth of structures in the early universe within the
inflationary paradigm, the description of anisotropies in the cosmic microwave background
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(e.g. the Sachs–Wolfe effect [337]), etc. Recently, second-order perturbation theory has
been used to argue that the acceleration of the Universe (the so-called dark energy problem)
could be explained as a backreaction effect (for a review see, e.g. [338]), although some
other studies indicate that this is unlikely [339, 340].

(iii) BH perturbation theory. Here we have to distinguish between non-rotating
(Schwarzschild) and rotating (Kerr) BHs (for textbook reviews on BHs and BH
perturbations see [341, 342]). In the case of non-rotating BHs, the formalism has been
developed based on metric perturbation variables [343–345]. Spherical symmetry is a key
ingredient, since it allows decomposition in tensor spherical harmonics and the equations
for each harmonic can be decoupled in terms of gauge-invariant master functions that
satisfy wave-type equations in 1+1 dimensions. Once these equations are solved, all
metric perturbations can be reconstructed from the master functions. The situation in the
rotating case is significantly different. First of all, partly due to the lack of the spherical
symmetry, we do not have any metric-perturbation-based formalism to decouple the first-
order perturbative equations. Nevertheless, we do have a formalism based on curvature
variables due to Teukolsky [346, 347] that provides master equations (the Teukolsky
equation) for the Weyl tensor components that can be associated with ingoing and
outgoing gravitational radiation. In both cases, rotating and non-rotating, we can compute
gravitational waveforms, and energy and momentum fluxes radiated at infinity from the
master functions. What remains to be done in the rotating case is to establish, in general,
the reconstruction of the metric perturbations from the curvature-based variables, although
significant progress has already been made (see [348–351]).

BH perturbation theory has been applied to study the stability of BHs [352–354], the
computation of quasi-normal modes of BHs [355–357], etc. In an analogous way to the BH
case, perturbations and quasi-normal oscillations of relativistic stars have been extensively
studied (see [358] for a review). It also has been applied to the description of the dynamics
of binary systems with an extreme mass ratio and their gravitational wave emission, the
so-called extreme mass-ratio inspirals. This is a very demanding subject in terms of the
perturbation theory technology needed for the computations. Usually, one describes the small
compact object as a point mass (which is at odds with the full theory but allows us some
simplifications) that induces perturbations on the geometry of the large one, considered to be a
(supermassive) BH. Then, the inspiral can be described in terms of the action of a local force,
called the self-force, that can be constructed from the gradients of the first-order perturbations.
However, the point-like description of the small compact object leads to singularities in the
perturbative solution that must be regularized. Procedures to regularize the solutions have
been devised in the Lorenz gauge (see, e.g. [359]), but working in this gauge complicates the
computations as we no longer have some of the advantages associated with the well-known
Regge–Wheeler gauge in the case of non-rotating BHs, as for instance the decoupling of
the metric perturbations; something similar happens in the case of spinning BHs. At present,
the gravitational self-force has been computed for the case of a non-rotating BH first using
time-domain techniques [360, 361] and later with frequency-domain techniques [362]. These
calculations have allowed the study of some physical consequences of the self-force [363–365].
Progress is being made towards calculations for the case of a spinning BH [366]. In any case,
given the amount of cycles required for extreme mass-ratio inspirals GWs (it scales with the
inverse of the mass ratio, which can be in the range 10−7–10−3), we cannot expect to generate
complete gravitational waveform template banks by means of full self-force calculations.
Instead, the goal of these studies should be to understand all the details of the structure of the
self-force, so that we can formulate efficient and precise algorithms to create the waveforms
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needed for gravitational-wave observatories like LISA [367] (see [368–370] for reviews on
the progress in the self-force programme). Observations of extreme mass-ratio inspirals have
a great potential for improving our understanding of BHs and even the theory of gravity (see,
e.g. [295]).

Usually, approximation methods require the introduction of a smallness parameter to
establish in which sense the perturbations are small. In relativistic perturbation theory, this
is done in an implicit way, in the sense that we could replace δgμν by λδgμν , where λ is a
formal perturbation parameter without having a direct physical meaning (as in cosmology, in
backreaction problems, or in the study of quasi-normal modes of stars and BHs), although
there are situations in which we can assign to it a specific physical meaning, as in the study of
BH mergers via the close limit approximation, in the analysis of quasi-normal mode excitation
by a physical source, or in the modelling of perturbations generated by the collapse of a
rotating star.

From these basic ideas, one can develop other approximation schemes in GR. In general,
this involves adding extra assumptions in the approximations, combining different schemes,
etc. One example of this is post-Newtonian theory (see, e.g. [371–373]). In general, a post-
Newtonian approximation can describe the GR dynamics in the regimes where the speeds
involved are smaller than the speed of light (v � 1) and the gravitational interaction is weak
(M/R � 1, where R denotes the size of each body or the typical orbital separations). Moreover,
it is well known that the post-Newtonian approximation is valid only in the vicinity of the
massive objects (a region around the bodies that is small as compared with the wavelength of the
gravitational waves emitted by the system). One can use a post-Minkowskian approximation
(where only the weak gravitational field condition M/R � 1 is imposed) to describe the
gravitational field outside the near zone. Then, one can match the two expansions, the post-
Newtonian and post-Minkowskian ones, by means of the method of matched asymptotic
expansions, which is a key ingredient to connect the orbital motion and the gravitational-wave
emission. This process is quite involved in practice and has been developed during many years
(see [371] for a review). The result is a framework in which we can in particular model the
general relativistic dynamics of compact binary systems, including their gravitational-wave
emission. By comparing with recent NR simulations, it has been found that post-Newtonian
computations provide a good description of the inspiral of a binary system close to the merger
phase. In order to improve these results, new schemes that use post-Newtonian theory have
been proposed. In particular, the effective-one-body scheme [374, 375] has been developed to
a point where one can construct gravitational waveforms for the whole binary BH coalescence
[376], including merger and ringdown in the case of non-rotating BHs; for first applications
of the effective-one-body method to spinning binaries see also [119, 377].

Another relativistic computation scheme that has been useful in GR is the so-called close-
limit approximation [378]. This is based on the realization that binary BH coalescence can be
divided into three stages: a long and relatively slow inspiral, a short nonlinear merger phase
and finally the ringdown of the final BH towards a stationary BH state. Then, it turns out that
in the last two stages of this process (or at least including a part of the merger phase where
we are close to the formation of a common apparent horizon) the binary BH system can be
seen as a single deformed BH. The idea is then to map the two-BHs system to a single BH
(we must read its mass and eventually its spin from this mapping) plus perturbations (which
are also read from the mapping and this is the key part of the computation). Then, by using
the standard techniques of BH perturbation theory that we have described above, we can
evolve the system until the final BH is settled, and from this evolution we can compute
physical quantities such as energy and momentum emission in gravitational waves. It has been
shown [379, 380] that in the case of head-on collisions of BHs, the close limit approximation
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provides accurate results in comparison with NR results. The close limit approximation scheme
has been developed by a number of authors [381–388, 125, 389], and it has been applied to
astrophysical problems like the computation of recoil velocities (see e.g. [390, 391]) of BHs
formed in binary BH collisions, in the past for head-on collisions [392] and recently for non-
rotating BHs in circular and in small eccentricity orbits [393, 394] (see also [117, 395]). Since
the close limit approximation scheme applies to the final part of the binary BH coalescence,
it offers considerable potential for problems in HEP that involve BH collisions or similar
systems (see the following subsection). In essence, the close limit approximation is a linear
approximation around the final, equilibrium BH state. In the context of gauge–gravity duality,
it has been recently applied in [396].

Up to now, we have described approximation methods that use the most common
background spacetimes and the main perturbative schemes that have been developed from them
to study a variety of physical phenomena. However, this is not all what has been done. There are
other 4D spacetimes that have received attention and perturbations of them have been studied.
Among those, we note the study of oscillations (quasi-normal modes) of Schwarzschild–dS
BHs [397], Schwarzschild–AdS BHs [398–401], Reissner–Nordstrom–AdS BHs [402] and
Kerr–AdS BHs [403]. Oscillations of BHs in alternative theories of gravity, such as higher
derivative gravity, have also been studied [404–408] (for a review, see [409]).

7.2. Perturbations of higher dimensional spacetimes

All that we have described until now is standard relativistic perturbation theory in the case
of 4D spacetimes. Nevertheless, it is clear that the basic ideas and foundations of relativistic
perturbation theory can be transferred without problems to higher dimensional spacetimes.
Here, we will only consider higher dimensional spacetimes governed by Einstein’s equations,
Gμν[gρσ ] = 8π Tμν , where Gμν is the Einstein curvature tensor and Tμν is the stress–energy
tensor.

In the last decades, there has been growing interest in physical phenomena in higher
dimensions motivated by the emergence of new theoretical models in HEP, in particular, on
theoretical models either based on string theory or motivated by it. An interesting feature of
many of these scenarios is that they involve higher dimensional spacetime geometries where
the extra dimensions need not be compactified or have a large curvature radius. Many of these
theories deal with physical situations that involve energies beyond those associated with the
standard model, and given that some of them suggest that the fundamental Planck mass may
be small (as low as the TeV range, which can be a solution to the so-called hierarchy problem
[4]), BHs and other dark objects (containing horizons) in spacetimes with different number of
dimensions can play an important role and as such are an important subject of investigation
(see sections 2, 3 and 4 for further details). There is also a strong motivation coming from the
correspondence between N = 4 super Yang–Mills theory in the large N limit and type-IIB
string theory in AdS5 × S5, the AdS/CFT correspondence [10]. The idea is that in the low-
energy limit, string theory reduces to classical supergravity and the AdS/CFT correspondence
becomes a tool to calculate the gauge field-theory correlation functions in the strong-coupling
limit leading to non-trivial predictions on the behaviour of gauge theory fluids, which has a
lot of applications that have made this correspondence one of the main subjects of current
research; see also section 5.

Cosmological perturbations have also been analysed in certain theoretical scenarios,
as for instance in braneworld models. These models involve at least one extra dimension.
Two scenarios where these cosmological perturbations have been studied extensively are the
Randall–Sundrum type II scenario [7] (see, e.g. [410]) and a closely related one, the Dvali–
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Gabadadze–Porrati model [267]. Again, the interest here is in the early Universe dynamics
where the energies can make these models deviate from the usual GR cosmological dynamics
(see [411] for a review).

In higher dimensions, many geometrical properties that are valid in 4D no longer hold (and
some hold in an appropriate form [140, 412]). In the context of HEP, it is particularly relevant
that the topology of connected components of space-like sections of event horizons does not
need to be that of a sphere, as happens in 4D [413, 318] (see also [141]). This opens the door to
many topologically different objects with horizons [13]. Not all these objects need to be stable,
and actually many of them are not, and this strongly motivates the study of deviations from all
those geometries; cf the discussion of stability in section 3. Therefore, despite the fact that the
basics of relativistic perturbation theory are the same independently of the dimensionality, the
development of a complete perturbative scheme in the sense of constructing gauge-invariant
quantities and their equations for describing the physics associated with the perturbations is
a task that needs to be performed for each background spacetime geometry or at least for
families of background spacetime geometries.

As we have discussed above, in four dimension the perturbative schemes for BHs are quite
developed. For higher dimensional BHs there is still a long way to reach a complete formulation
for perturbations. Nevertheless, significant progress has already been made. For static BHs
in arbitrary higher dimensions, a set of decoupled master equations, which correspond to
the Regge–Wheeler–Zerilli equations in 4D, have been found [414–416]. In this case, for a
D = 2 + d BH background geometry, where d is the number of dimensions of the internal
space (which is an Einstein space; in D = 4 ⇔ d = 2, it is the 2-sphere). Then, the perturbative
variables are classified according to their tensorial behaviour on the internal space and gauge-
invariant variables are introduced. Furthermore, for each type of perturbations, decoupled
master equations are found for scalar master functions on the two-dimensional sector of the
BH background spacetime. Using these techniques, it has been established [417] that the
Schwarzschild solution is mode-stable against linearized gravitational perturbations for all
dimensions D > 4. More specifically, it was shown that the master equation for each tensorial
type of perturbations does not admit normalizable negative modes which would describe
unstable solutions. It was also shown that there exists no static perturbation which is regular
everywhere outside the event horizon and well behaved at spatial infinity, which is a check,
within the perturbation framework, of the uniqueness of the higher dimensional spherically
symmetric, static, vacuum BH.

The situation is different for the rotating case, where we have different families of
solutions. So far, studies of linearized perturbations of higher dimensional rotating BHs have
exploited isometries of BH spacetimes, e.g. enhancement of symmetry of the Myers–Perry
family of solutions [132] by choosing some of the intrinsic angular momenta to coincide. There
has been some effort to extend the 4D Teukolsky formalism to the case of the Myers–Perry
family of solutions. To that end, in order to identify similar perturbative variables as in the
Teukolsky case, the use of the Petrov classification for higher dimensional spacetimes [165]
has been made. And in order to look for decoupled equations, generalizations of the Geroch–
Held–Penrose formalism [418] (a generalization of the Newman–Penrose formalism [419]
for cases with algebraically special spacetimes) have been proposed [420]. Unfortunately,
decoupling does not occur in higher dimensional BH spacetimes (see [84, 174, 421]), except
for near-horizon geometries (see also [422]) and some special cases. For instance, in D = 5
dimensions a master equation for a part of the metric perturbations that are relevant for the
study of stability has been derived [423]. For a detailed discussion of the stability properties
of BHs in D > 4, we refer to section 3.
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Apart from the study of BH-like dark objects, other types of dark objects have been
investigated. In particular, this has led to the discovery of the well-known Gregory–Laflamme
instability of black strings and p-branes [99, 100]; see [424] for a review.

We also mention that there are a number of studies of quasi–normal modes of black
objects in 4D and in higher dimensions (for reviews see [425, 409, 426]), and that gravitational
radiation in D-dimensional spacetimes has been studied in [427].

7.3. Conclusions and prospects for the future

While relativistic perturbation theory has been developed for many years and even though
it has achieved great success in many areas of astrophysics, cosmology and fundamental
physics, there remains a lot of work to be done, even in the realm of 4D GR. Among the main
challenges are the development of tools for higher order perturbation theory, and especially
for the treatment of backreaction, which is important for extreme mass-ratio inspirals and the
particular case of cosmology where it has been invoked to try to explain the acceleration of
the Universe. It would also be important to extend approximation methods currently applied
to GR, to the study of alternative theories of gravity; see section 6.

In the case of higher dimensional spacetimes, there has been significant progress in the
case of static non-rotating BHs; unfortunately, such progress has not yet been extended to
rotating BHs or other black objects, where there is a pressing need for new tools. The fact that
there are no decoupled master equations that describe all the gravitational degrees of freedom
is a challenge for future work. Given that significant progress has also been made in nonlinear
numerical studies, it is important for the near future to develop tools in perturbation theory to
complement the numerical computations and aid in their physical interpretation. In this sense,
it would be interesting to develop more sophisticated perturbative schemes adapted to the
different problems. For instance, the close limit approximation could be developed for higher
dimensional BHs in spacetimes with different asymptotic properties, which may be of interest
for physical applications like ultrarelativistic collisions of BHs and the AdS/CFT conjecture in
relation with QGPs. Also, in this line of research, point particle calculations, which model BH
collisions when one of them is much smaller than the other, give remarkably accurate results
when extrapolated to the equal-mass case [200, 201, 109]. Because this kind of computation
relies on linear perturbation theory, the extension of classical results to different asymptotics
is clearly desirable.
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