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We consider compact binary systems, modeled in general relativity as vacuum or perfect-fluid spacetimes

with a helical Killing vector ka, heuristically, the generator of time translations in a corotating frame. Systems

that are stationary in this sense are not asymptotically flat, but have asymptotic behavior corresponding to equal

amounts of ingoing and outgoing radiation. For black-hole binaries, a rigidity theorem implies that the Killing

vector lies along the horizon’s generators, and from this one can deduce the zeroth law ~constant surface

gravity of the horizon!. Remarkably, although the mass and angular momentum of such a system are not

defined, there is an exact first law, relating the change in the asymptotic Noether charge to the changes in the

vorticity, baryon mass, and entropy of the fluid, and in the area of black holes. Binary systems with MV small

have an approximate asymptopia in which one can write the first law in terms of the asymptotic mass and

angular momentum. Asymptotic flatness is precise in two classes of solutions used to model binary systems:

spacetimes satisfying the post-Newtonian equations, and solutions to a modified set of field equations that have

a spatially conformally flat metric. ~The spatial conformal flatness formalism with helical symmetry, however,

is consistent with maximal slicing only if one replaces the extrinsic curvature in the field equations by an

artificially tracefree expression in terms of the shift vector.! For these spacetimes, nearby equilibria whose stars

have the same vorticity obey the relation dM5VdJ , from which one can obtain a turning point criterion that

governs the stability of orbits.
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I. INTRODUCTION

Beginning with papers by Blackburn and Detweiler @1,2#,
several authors have used spacetimes with a helical Killing

vector1 to model binary systems in the context of general

relativity. Such spacetimes can be regarded as having equal

amounts of incoming and outgoing radiation; they are a

counterpart in general relativity of the stationary solution due

to Schild @4# that describes two oppositely charged particles

whose electromagnetic field is the half-advanced 1 half-
retarded solution of the orbiting charges. Because the radia-
tion field of such a stationary solution has infinite energy,
spacetimes that describe the corresponding general relativis-
tic binaries are not asymptotically flat. Instead, the
asymptotic mass rises linearly with a naturally defined radial
coordinate.

The formal lack of asymptotic flatness has been handled
in several related ways. As Detweiler has emphasized, one
can define an approximate asymptotic region for systems in
which the energy emitted in gravitational waves in a dynami-
cal time is small compared to the mass of the system. In this
‘‘local wave zone,’’ the geometry describes gravitational
waves propagating on a Schwarzschild background. In the

more restrictive context of the post-Newtonian approxima-

tion, one regains asymptotic flatness, because there is no ra-

diation through second post-Newtonian order. Finally, a

number of authors @5–9# considered spacetimes with confor-

mally flat spacelike slices that satisfy a truncated set of field

equations consisting of the initial value equations, a field
equation for the spatial conformal factor, and the equation of
hydrostatic equilibrium. Like the post-Newtonian space-
times, these conformally flat spacetimes are nonradiative and
~as we show! are asymptotically flat.

We consider binary systems modeled in the exact theory
~without asymptotic flatness! and then apply our results to
the post-Newtonian spacetimes and spatially conformally flat
spacetimes that retain asymptotic flatness. In each case one
uses the Killing vector, ka, to define a conserved current and
associated charges. For the exact vacuum and perfect-fluid
spacetimes, the Noether current of the helical Killing vector
assigns to each spacetime a charge Q. ~See, for example,
Refs. @10–15#.! Despite the lack of asymptotic flatness one
can choose the current to make Q finite, and Q is indepen-
dent of the 2-surface S on which it is evaluated, as long as S

lies outside the matter and all black holes. The Noether cur-
rent assigns to each black hole a charge that can be identified
with its entropy ~its area, in the spacetimes we consider!; and
we obtain a version of the first law @Eq. ~55! below# that
expresses the change dQ in terms of changes in the vorticity,
baryon mass, and entropy of the fluid, and in the area of
black holes. Independent work by Baker and Detweiler @16#
obtains a similar first law for spacetimes with approximate
asymptotic flatness at finite distance from the binary.

1In a spacetime with a rotational Killing vector fa and a timelike

Killing vector ta, each combination ta
1Vfa, with V constant and

nonzero, will be called a helical ~or helicoidal! Killing vector. We

give a precise definition in Sec. II and discuss its relation to a

previous definition by Bonazzola et al. @3#.
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In the asymptotically flat spacetimes mentioned above,
the helical Killing vector has the asymptotic form ka

5ta

1Vfa, where ta and fa generate asymptotic symmetries
associated with time translations and rotations. Neighboring
perfect-fluid equilibria in a post-Newtonian or a spatially
conformally flat framework satisfy a first law of thermody-
namics of the form

dM5VdJ1E
S
@ T̄DdS1m̄DdM B1v

aDdCa#

1(
i

1

8p
k idA i .

Here M and J are the Arnowitt-Deser-Misner ~ADM! mass
and angular momentum of the spacetime @see Eqs. ~108!,

~109!#; T̄ and m̄ are the redshifted temperature and chemical
potential; dM B is the baryon mass of a fluid element; and
dCa is related to the circulation of a fluid element @see Eqs.
~56!,~57!#.

Note that, in the full theory, models of binaries with a
helical Killing vector can only have corotating black holes. If
their generators do not lie along the Killing vector the black
holes will have nonzero shear and thus ~assuming positive
energy! increasing area; and this is inconsistent with the as-
sumption of a helical Killing vector. In an appendix, we de-
rive a virial relation for binary neutron-star systems in a con-
formally flat framework and show that the relation is
equivalent to the equality of the Komar and ADM mass.

One other class of asymptotically flat spacetimes with a
single Killing vector is worth mentioning. These are nonaxi-
symmetric stars whose figure is stationary in an inertial

frame, the analog in general relativity of the Newtonian
Dedekind ellipsoids. We expect that such stationary, nonaxi-
symmetric perfect-fluid spacetimes exist; their velocity fields
have nonzero shear, however, and cannot be stationary when
viscosity is present. @17#

Conventions: Spacetime indices are Greek, spatial indices
Latin, and the metric signature is 2111 . Readers familiar
with abstract indices can regard indices early in the alphabet
as abstract, while i , j ,k ,l are concrete, associated with a chart

$x i%. We use the dual form of Stokes’ theorem for the diver-
gence of an antisymmetric tensor Aa•••bg, namely

E
S
¹g Aa•••bgdSa•••b5E

]S
Aa•••bgdSa•••bg

where dSa5eabgddSbgd,dSab5eabgddSgd. For example,
in an oriented chart t, $x i% with S a surface of constant t and

]S a surface of constant t and x1, dSa5¹atA2gd3x ,dSab

5
1
2 (¹at¹bx1

2¹ax1¹bt)A2gd2x . Finally, if S is a 2-surface
in a 3-space S and eabc is the volume form on S associated
with a 3-metric gab , we write dSa5eabcdSbc; for S a sur-

face of constant r, dSa5¹arAgd2x .

II. Helical Killing vectors, event horizons, and the

zeroth law

We consider globally hyperbolic spacetimes M ,gab that
have a symmetry vector ka, a Killing vector that generates a
symmetry of the matter fields. Our particular interest is in
stationary binary systems, systems whose Killing vector ka

has helical integral curves with a fixed period T; but our
results hold for a broader class of spacetimes with a single
Killing vector.

We begin by using the periodic orbits just mentioned to
define a helical vector field. We want a definition that agrees,
for stationary, axisymmetric spacetimes, with Killing vectors
of the form ta

1Vfa, where ta is the asymptotically time-
like Killing vector and fa the rotational Killing vector. Let
x t be the family of diffeos generated by ka, moving each
point PPM a parameter distance t along the integral curve
of ka through P. Although a helical vector is spacelike at
distances from the axis larger than T/2p , its integral curves
spiral each period to points that are timelike separated from
their starting points; at least they are timelike separated when
one is outside a finite region that encloses any horizon or
ergosphere. Without this last caveat, one could define a heli-
cal vector by the requirement that, for each point P, xT(P)
be timelike separated from P. To include the caveat, one
requires that the condition hold only outside some sphere.
Let S be a spacelike sphere, and let T be the timelike surface
swept out by the action of x t on S: T(S)5ø tx t(S); we call
T the history of S.

Definition II.1. A vector field ka is helical if there is a

smallest T.0 for which P and xT(P) are timelike separated

for every P outside the history T of some sphere.
When the spacetime admits a foliation by timelike lines,

this definition is equivalent to the following definition, essen-
tially that of Bonazzola et al. @3#:

Proposition II.1. A vector field ka is helical if it can be

written in the form

ka
5ta

1Vfa, ~1!

where fa is spacelike and has circular orbits with parameter

length 2p , except where it vanishes; V is a constant; and, ta

is timelike outside the history T of some sphere. Conversely,

if a vector field is helical, and if the spacetime can be foli-

ated by timelike curves that respect the action xT(P) , then

ka can be written in the form (1!.2

Because there are spacetimes with helical vectors that do
not allow foliations respecting the action xT(P), the Bonaz-
zola et al. definition is slightly more restrictive than ours;
they are also more restrictive in requiring the existence of a
2-dimensional submanifold, the axis of symmetry, on which
fa vanishes; and in requiring that ta be timelike everywhere.
Note that, although the proposition displays the intuitive

2Without the requirement on the timelike character of ta, any Kill-

ing vector can be written in the form ta
1Vfa. To restrict helical to

the vector fields in which we are interested, we had to exclude the

spiral Killing vectors of Minkowski space that have the form sa

1fa, with sa a constant spacelike vector.
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character of a helical vector, ta and fa are far from unique.
Each foliation of M by a family of timelike curves that re-
spects xT gives a different decomposition of ka of the form
~1!.

Proof of Proposition. The first part of the Proposition, that
a vector of the form ~1! is helical, is immediate. We prove as
follows that a helical vector can be written in this form.
Define a scalar by requiring it to have the value t on x t(S),
with S a Cauchy surface. Let ta be the vector tangent to our
congruence of timelike curves, each parametrized by t.

Let c t be the family of diffeos generated by ta. Each
integral curve of ka can be projected to a circle on S by
pushing it down to S along the timelike congruence: The
circle through each point PPS is

t→c~ t !ªc2t+x t~P !.

One obtains a circle with parameter length 2p by reparam-
etrizing c, defining C(s)ªc@sT/(2p)# . Finally, define fa

on S as the vector field tangent at each point P to the circles
C(t) through P; and drag fa by c t to extend it to M. Then
ka

5ta
1Vfa, with V52p/T . h

In particular a spacetime that is stationary and axisymmet-
ric, with asymptotically timelike Killing vector ta and rota-
tional Killing vector fa, has a family of helical Killing vec-
tors ta

1Vfa, for each V . Our primary concern, of course,
is with binary systems, spacetimes for which ta and fa are
not themselves Killing vectors, although, for one value of V,
ka

5ta
1Vfa is.

We have emphasized that spacetimes with a helical Kill-
ing vector cannot be asymptotically flat in the exact theory,
and a theorem by Gibbons and Stewart @18#, showing that I

~null infinity! cannot be periodic, makes this claim precise:
No spacetime can have a I ~and hence no spacetime can be
asymptotically flat! if it is vacuum outside a compact region
and has a helical Killing vector. We can, however, use the
Killing vector ka to define as follows the future and past
horizon and the future and past domains of outer communi-
cation of a spacetime with a helical Killing vector.

Definition II.2. A point xPM is in the future (past) do-

main of outer communication, D 6 if some future-directed

(past-directed) timelike curve c(l) through P eventually ex-

its and remains outside the history T of each sphere S: That

is, for each history T that encloses P, there is some l0 for

which c(l) is outside of T, all l.l0.
Definition II.3. The future (past) event horizon H 6 is the

boundary of the future (past) domain of outer communica-

tion.
Proposition II.2. Let the history T of a spacelike sphere lie

in D 6. Then H 6
5]I7(T ).

Proof. Denote by int(T ), the points inside a history T. It
suffices to show that I2(D 1)ùint(T )5I2(T 1)ùint(T ).
For any PPI2(D 1)ùint(T ), there is a timelike curve from
P that exits T and hence intersects T. Thus P

PI2(T 1)ùint(T ); and, from T,D 1
⇒I2(T ),I2(D), the

result follows. h

The main result of this section is that H 6 are Killing
horizons and hence that they satisfy the zeroth law of black-

hole thermodynamics: That is, the Killing vector ka is tan-
gent on H 6 to the null generators; and the associated surface
gravity k , defined by

kb¹bka
5kka, ~2!

is constant on each connected component of H 6.
To prove that H 6 is a Killing horizon ~Prop. II.5 below!,

we will use an analogous theorem proved by Isenberg and
Moncrief @19,20# and a strengthened version by Friedrich,
Rácz, and Wald @21# ~FRW!, for a class of spacetimes with a
compact null surface ~see also earlier work by Hawking
@22#!. Following FRW, we first show that the spacetime
N ,gab covers such a compact spacetime. Although our
spacetime is not in the class they study, FRW note that their
asymptotic conditions can be relaxed, and we easily extend
their proof to spacetimes of the kind considered here.

For convenience in matching our definition and proof to
that of FRW, we consider a subspacetime N5I1(M )ùintT,
for some T that encloses the fluid and black holes. By choos-
ing a future set, we keep all black holes but discard the
bifurcation horizon and white holes that are part of the full
spacetime. ~To obtain the corresponding results for white
holes—for the past horizon—one exchanges future and past.!
When the surface gravity k is nonzero, the past-directed null
generators reach the bifurcation horizon of M in finite affine
parameter length. This means that in N, they are past geode-
sically incomplete, and that past incompleteness is one of the
conditions required for the FRW proof. The Isenberg-
Moncrief version does not require past incompleteness, but
does demand that the horizon be analytic. N ,gab satisfies the
following conditions that define a spacetime of type A8.

Definition II.4. A smooth spacetime N ,gab will be said to

be of class A8 if it has the following properties. (i) The

spacetime has a Killing vector field ka that is transverse to a

Cauchy surface.3 (ii) N5I1(N) . (iii) There is a history T for

which N5I1(T ) . (iv) The horizon Hª]I2(N) consists of

smooth disconnected components each of which has topology

R3S2. (v) The generators of H are past incomplete. (Alter-

natively, H is analytic.)

Proposition II.3. Let N ,gab be a spacetime of type A8,

satisfying the null energy condition Rablalb>0, all null la.

Then on each component of the horizon, there exists a t0

Þ0 such that x t0
maps each null geodesic generator of H to

itself.

We first need to establish for spacetimes of class A8 an
analog of Prop. 9.3.1 of Hawking and Ellis @23#, showing
that the shear and divergence of the horizon generators van-
ish. This implies that the generators are Killing vectors of the
horizon, Lie-deriving its degenerate 3-metric.

Lemma II.1. Let N ,gab be a spacetime of class A8. On

each component of the horizon, the shear and expansion of

the null generators vanishes.

Proof of Lemma.II.1. Let S be a Cauchy surface transverse
to ka, S t5x t(S), and let Bt5S tùH. Because x t is an isom-

3A vector field ka is transverse to a hypersurface S if ka is no-

where zero on S and nowhere tangent to S.
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etry, it maps H to itself. Then ka is tangent to H, and the
family of slices Ft foliates H. Because Ft is mapped to Ft8
by the isometry x t82t , the area of Ft is independent of t.
This implies that the divergence u of the horizon’s generators
vanishes and that the generators have no past endpoints. Fi-
nally, using u50 and the null energy condition, the Ray-
chaudhuri equation ~optical scalar equation!,

du

dl
52Rablalb

22sabsab
2

1

2
u2, ~3!

implies sab50. h

Proof of Proposition.II.3. Once Lemma.II.1 is proved, the
proof of this proposition is exactly the proof of Prop. 2.1 in
FRW. h

Definition II.5. A spacetime N ,gab is of class B if it con-

tains a compact orientable, smooth null hypersurface N that

is generated by closed null geodesics.
~These causality-violating spacetimes are introduced only

as part of the proof of Prop. II; the spacetimes considered in
this paper as models of physical systems are globally hyper-
bolic.!

Proposition II.4. Let N ,gab be a spacetime of type A8.

Then @ int(N), ga b # is a covering spacetime of a spacetime

of type B.
The proof is immediate:
Proof of Prop.II.4. Because ka is transverse to a Cauchy

surface, x t has no fixed points for tÞ0; in particular, for t

5t0 of Prop. II.3, x t0
has no fixed points. Then the factor

space Ñ5int(N)/x t0
, with induced metric g̃ab has covering

spacetime int(N),gab . Because x t0
maps each generator of

H to itself, H̃5H/x t0
is a null hypersurface generated by

closed null geodesics. h

Proposition II.5. In a spacetime of class A8H is a Killing

horizon of ka. In particular, if, up to a constant scaling, ka is

the only Killing vector in N ~or in any subspacetime!, then ka

is parallel to the null generators of H.
Proof. Any neighborhood of a component of the horizon

of @ int(N),gab# that is disjoint from the fluid covers a
vacuum spacetime of type B. Theorem 4.1 of FRW implies
that in a one-sided neighborhood of that component of the

horizon, there is a Killing vector K̃a normal to the the hori-

zon. The pullback Ka of K̃a to the covering space is then a
Killing vector on a one-sided neighborhood of the corre-
sponding component of H, normal on H to H: i.e., H is a
Killing horizon. If each neighborhood has ka as its only Kill-
ing vector ~up to an overall scale!, then ka}Ka on each
component of H, implying that H is a Killing horizon with
Killing vector ka. h

Corollary (0th Law). The surface gravity k i is constant on
the ith component of H.

Proof. The proof of the zeroth law of event horizons given
in Bardeen et al. @24# establishes the result for any Killing
horizon in a spacetime satisfying the null energy condition.

The first law is the content of the next section. The second
law, that the area of a black hole cannot decrease, has mean-
ing here only if one extends the definition of event horizon in

a way that requires neither a Killing vector nor asymptotic
flatness. Black-hole thermodynamics of general spacetimes
that are not asymptotically flat has been examined previously
@25–28# but the results here appear to be new.4

III. FIRST LAW FOR SYSTEMS WITH A SINGLE

KILLING VECTOR

We consider spacetimes with black holes and perfect-fluid
sources, which have a helical Killing vector or, more gener-
ally, a single Killing vector that is transverse to a Cauchy
surface and timelike on the support of the fluid. Although
such spacetimes will not, in general, be asymptotically flat,
one can obtain a generalized first law of thermodynamics in
terms of a Noether charge Q associated with the Killing vec-
tor field and with an action for the perfect-fluid spacetime.
For spacetimes that are asymptotically flat, the overall scal-
ing of a timelike Killing vector is chosen by requiring it to
have unit norm at spatial infinity. Here, without asymptotic
flatness, the overall scaling cannot be so determined. Instead,
in our discussion of the first law, the choice of a family of
spacetimes will include the choice of a Killing vector; but
readers should keep in mind that nothing in this section re-
stricts the freedom to choose another scaling of the Killing
vector for each member of the family of spacetimes.

We describe a perfect fluid by its four-velocity ua and
stress tensor

Tab
5euaub

1pqab, ~4!

where p is the fluid’s pressure, e its energy density, and

qab
5gab

1uaub ~5!

is the projection orthogonal to ua. We assume that the fluid
satisfies an equation of state of the form

p5p~r ,s !, e5e~r ,s !, ~6!

with r the baryon-mass density and s the entropy per unit
baryon mass. ~That is, rªmBn , with n the number density of
baryons and mB the average baryon mass.!

Given a family of perfect-fluid spacetimes specified by

Q~l !ª@gab~l !,ua~l !,r~l !,s~l !# , ~7!

one defines the Eulerian change in each quantity by dQ

ª(d/dl)Q(l).

4In particular, in the isolated horizon framework, for a horizon

with a single Killing vector, one shows the existence of a charge E

defined on an isolated horizon for which dE5kdA @27#; in our case

this is satisfied by the charge dQ i5dQLi1dQKi defined on the ith

disconnected component of the horizon by Eqs. ~49! and ~53!. Our

first law, in contrast, relates this change in the black-hole charges to

the changes in the Noether charge of a sphere surrounding all black

holes and all matter and to the changes in the entropy, baryon num-

ber, and circulation of the fluid. The existence of such a first law

depends precisely on what is not assumed in the isolated horizon

framework: a globally defined Killing vector.
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We introduce a Lagrangian displacement ja in the follow-
ing way: Let QªQ(l), and let Cl be a diffeo mapping each
trajectory ~worldline! of the initial fluid to a corresponding
trajectory of the configuration Q(l). Then the tangent ja(P)
to the path l→Cl(P) can be regarded as a vector joining
the fluid element at P in the configuration Q(l) to a fluid
element in a nearby configuration. The Lagrangian change in
a quantity at l50,5 is then given by

DQª

d

dl
C2lQ~l !ul505~d1£ j!Q. ~8!

The first law will be written in terms of integrals over a
spacelike hypersurface S , transverse to ka, whose boundary

]S5Sø iBi , ~9!

is the union of black hole boundaries Bi (Bi , is the ith dis-
connected component of SùH1!, and a 2-sphere S that en-
closes the fluid and all black holes. Define a scalar t by
setting t50 on S and requiring ka¹at51.

We can write ua in the form,

ua
5u t~ka

1v
a!, ~10!

with u t:5ua¹at and v
a a vector field on S ,

v
a¹at50. ~11!

The fact that Cl maps fluid trajectories to fluid trajectories
and the normalization uaua521 imply @29–31#

Dua
5

1

2
uaubugDgbg . ~12!

One obtains an action for a perfect-fluid spacetime by con-
sidering perturbations for which the entropy and baryon
mass of each fluid element are conserved; and we use this
action to define a Noether charge Q associated with ka, for
each spacetime Q(l). Then for general perturbations, in
which the entropy and baryon mass of each fluid element are
unconstrained, we use the charge Q to write a form of the
first law for perfect-fluid spacetimes that have one Killing
vector and a Killing horizon ~and that are not, in general,
asymptotically flat!.

When the entropy and baryon mass of each fluid element
are conserved along the family Q(l), we have

Ds50 and D~ruaA2g !50, ~13!

implying

Dr

r
52

1

2
qabDgab ; ~14!

and the local first law of thermodynamics for the fluid,

De5rTDs1hDr , ~15!

with

h5

e1p

r
, ~16!

yields

De

e1p
5

Dr

r
52

1

2
qabDgab . ~17!

From these relations, it follows that the scalar density

L5S 1

16p
R2e DA2g ~18!

is a Lagrangian density for a perfect fluid space time. That is,

dL5

1

16p
d~RA2g !2D~eA2g !1¹a~eja!A2g ,

~19!

and @when Ds50 and D(ruaA2g)50#, we have

1

A2g
D~eA2g !52

1

2
~e1p !qabDgab1

1

2
egabDgab

52

1

2
TabDgab

52

1

2
Tabdgab1ja¹bTab

2¹a~Tabjb!.

~20!

That L is a Lagrangian density is then expressed by the
equation @32#

1

A2g
dL52

1

16p
~Gab

28pTab!dgab2ja¹bTab
1¹aQa,

~21!

with

Qa
5~e1p !qabjb1

1

16p
~gaggbd

2gabggd!¹bdggd .

~22!

Now one can associate with L a family of Noether charges
@13,10–12,14,15#6

5The Lagrangian change is analogously defined at any l0: The

diffeo C̃l5Cl1l0
Cl0

21 maps each fluid trajectory in the configu-

ration Q(l0) to the corresponding trajectory of Q(l1l0), whence

DQ(l0)ª(d/dl)C̃2lQ(l1l0)ul50.

6Our Noether formalism is similar to Iyer’s extension of the Wald-

Iyer work to perfect fluid spacetimes @12#. Like Schutz and Sorkin

@13,14#, however, we use vectors instead of forms, and our La-

grangian displacement arises from a map Cl from the manifold to

itself, not, as in Iyer, from a projection onto the manifold of fluid

trajectories.
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Q5 R
S

QabdSab , ~23!

where

Qab
52

1

8p
¹akb

1kaBb
2kbBa, ~24!

and Ba(l) is any family of vector fields that satisfies

1

A2g

d

dl
~BaA2g !5Qa. ~25!

By choosing Ba(0)50, we make Q(l) finite; and, as we
will see, Q is independent of the sphere S, as long as S

encloses the fluid and any black holes. Outside the matter,

Ba
5

1

16p
~gaggbd

2gabggd!ul50¹°bggd~l !1O~l2!,

~26!

where ¹°b is the covariant derivative of the metric gab(0).
The generalized first law will be found by evaluating the

change dQ in this Noether charge, allowing perturbations
that change the baryon number and entropy of each fluid
element. We restrict the gauge in two ways: We use the dif-
feomorphism gauge freedom to set dka

50. The description
of fluid perturbations in terms of a Lagrangian displacement
ja has a second kind of gauge freedom: a class of trivial
displacements, including all displacements of the form f ua,
yield no Eulerian change in the fluid variables. We use this
freedom to set Dt50. Because dt50 (t is not dynamical!,
this is equivalent to the condition j t

50. Equation ~12! now
implies

Du t

u t
5

1

2
uaubDgab . ~27!

Then, from Eqs. ~12! and ~27!, we have Dua
5Du t(ka

1v
a), while, by Eq. ~10!, Dua

5D@u t(ka
1v

a)#; thus

D~ka
1v

a!50. ~28!

For perturbations that include changes in baryon number
and entropy, Eqs. ~14! and ~20! are replaced by

Dr

r
52

1

2
qabDgab1

D~rA2gu t!

rA2gu t
, ~29!

and

1

A2g
D~eA2g !5rTDs1

h

u tA2g
D~ru tA2g !

2

1

2
Tabdgab1ja¹bTab

2¹a~Tabjb!;

~30!

and the change in the Lagrangian density becomes

1

A2g
dL52rTDs2

h

u tA2g
D~ru tA2g !

2

1

16p
~Gab

28pTab!dgab

2ja¹bTab
1¹aQa. ~31!

To find the change dQ in the Noether charge, we first com-
pute the difference,

dFQ2(
i

Q iG , ~32!

between the charge on the sphere S and the sum of the
charges on the black holes Bi . As we show below, this quan-

tity is invariant under gauge transformations that respect the

Killing symmetry. Write Q5QK1QL (QK the Komar
charge, QL an additional contribution involving the Lagrang-
ian density!, with

QK52

1

8p
R

S

¹akbdSab ,

dQL5 R
S
~kaQb

2kbQa!dSab , ~33!

dS Q2(
i

Q iD 5dS QK2(
i

QKiD 1dS QL2(
i

QLiD .

~34!

From the identity

¹b¹akb
5Ra

bkb, ~35!

we have

QK2(
i

QKi52

1

8p
R

]S
¹akbdSab52

1

8p
E

S
Ra

bkbdSa

~36!

52

1

8p
E

S
Gb

akbdSa2

1

16p
E

S
RkadSa .

~37!

Now

2Ta
bkbdSa52Ta

b~kb
1v

b!dSa1Ta
bv

bdSa

5e kadSa1~e1p !uaubv
bdSa ,

~38!

whence
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QK2(
i

QKi52E
S
S 1

16p
R2e D kadSa

1E
S
~e1p !uaubv

bdSa

2E
S

1

8p
~Ga

b28pTa
b!kbdSa ~39!

and

dS QK2(
i

QKiD 52E
S
dLd3x1E

S
D@~e1p !uaubv

bdSa#

2dE
S

1

8p
~Ga

b28pTa
b!kbdSa . ~40!

The second term on the right of Eq. ~34! is given by

dS QL2(
i

QLiD 5 R
]S

~kaQb
2kbQa!dSab

5E
S
¹b~kaQb

2kbQa!dSa

5E
S
¹bQbkadSa2E

S
£ kQ

adSa ,

~41!

where we have used the relation ¹aka
50 to obtain the last

equality, and ¹bQb is given by Eq. ~31!. Then, adding Eqs.
~40! and ~41!, and using the relations

D@~e1p !uaubv
bdSa#5hubv

bD~ruadSa!]

1v
bD~hub!ruadSa

1~e1p !uaub£ kj
bdSa , ~42!

where Dv
b
52Dkb

5£ kj
b is used and

£ kQ
adSa5~e1p !qb

a£ kj
bdSa5~e1p !uaub£ kj

bdSa ,

~43!

where £ kj
b¹bt50 is used, we obtain an expression for

d(Q2( iQ i):

dS Q2(
i

Q iD 5E
S
F T

u t
DsruadSa1S h

u t
1hubv

bD
3D~ruadSa!1v

bD~hub!ruadSaG
2

1

8p
dE

S
~Ga

b28pTa
b!kbdSa

1E
S
F 1

16p
~Gab

28pTab!dgab

1jb¹aTb
aGkgdSg . ~44!

We next evaluate the black-hole charges Q i . Recall that,
by Prop. ~II.5!, ka is tangent, on each disconnected compo-
nent Hi , to the null generators of the horizon, with surface
gravity k i given by

kb¹bka
5k ik

a. ~45!

On each Bi , let n
a be the unique null vector field orthogonal

to Bi and satisfying naka
521. The area element of Bi is

then

dSab5

1

2
~kanb2kbna!dA . ~46!

Using the Killing equation, ¹akb
5¹ [akb], and Eq. ~2! to

evaluate the integrand of QKi , we have

¹akb
1

2
~kanb2kbna!5kb¹bka

na52k i , ~47!

implying

QKi52

1

8p
R

B i

¹akbdSab5

1

8p
k iA i . ~48!

Finally, following Bardeen et al. @24#, we show that

dQLi52

1

8p
dk iA i . ~49!

Using d(¹akb)5d(¹[akb])5¹[adkb] , we have

dk i5d~nakb¹akb!

5dn
akb¹akb1n

akb¹[adkb] . ~50!

Because the horizon is unchanged in our gauge, and ka is
parallel to the null normal to Hi , dka5aka , some function
a on Hi . Then

dn
akb¹akb52dn

ak ika5k in
adka52k ia

52an
akb¹akb

52n
adkb¹akb

5ka
n

b¹adkb , ~51!

where, in the last equality, we have used £ kdka50. From
Eqs. ~50! and ~51! and from the vanishing of dsab and du ,
we have

dk i5

1

2
~ka

n
b
1kb

n
a!¹adkb52

1

2
¹adka

52

1

2
ka¹bdgab . ~52!

Now
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dQLi5 R
Bi

~kaQb
2kbQa!dSab

5

1

8p
R

B i

ka~gbdgge
2gbggde!¹gdgde

3

1

2
~kanb2kbna!dA

5

1

16p
R

Bi

ka¹bdgabdA

52

1

8p
dk iA i . ~53!

The first law now follows from Eq. ~44! for d(Q2( iQ i),

Eq. ~48! for QKi , and Eq. ~53! for Q̃Li :

dQ5E
S
Fr

T

u t
DsuadSa1S h

u t
1hubv

bD D~ruadSa!

1v
bD~hub!ruadSaG1(

i

1

8p
k idA i

2

1

8p
dE

S
~Ga

b28pTa
b!kbdSa

1E
S
F 1

16p
~Gab

28pTab!dgab1jb¹aTa
bGkgdSg .

~54!

When the family of spacetimes satisfies the field equations,
the last line vanishes and we obtain a first law of thermody-
namics in the form

dQ5E
S
Fr

T

u t
DsuadSa1S h

u t
1hubv

bD D~ruadSa!

1v
bD~hub!ruadSaG1(

i

1

8p
k idA i . ~55!

Equivalently, writing

T̄ª

T

u t
, m̄ª

m

u tmB

5

h2Ts

u t
, ~56!

and

dM BªruadSa , dSªsdM B , dCaªhuadM B ,
~57!

we have

dQ5E
S
@ T̄DdS1m̄DdM B1v

aDdCa#1(
i

1

8p
k idA i .

~58!

The relation between this form and that for an asymptoti-
cally flat spacetime with two Killing vectors, ta and fa, will
be found in Sec. IV B.

We noted above that the difference d(Q2Q i) is gauge
invariant. In fact, we can see as follows that d(QK

2( iQKi) and d(QL2( iQLi) are separately invariant under
gauge transformations that respect the symmetry ka. The
gauge transformation associated with a vector field ha is
given by

dhQ5£hQ, ja~h !52ha. ~59!

The corresponding Lagrangian change in any quantity is then
identically zero:

Dh5dh1£ 2h50. ~60!

From Eqs. ~41!, ~31!, and ~60! the change in d(QL

2( iQLi) due to a gauge transformation is given by

dS QL2(
i

QLiD 5E
S
¹bQbkadSa5E

S
dhL d3x , ~61!

when the field equations are satisfied. Decomposing h in the
manner

ha
5hb¹btka

1ĥa, ~62!

with ĥa¹at50, and using £ kh
a
50, we have dhL5£hL

5¹a(Lĥa),

dS QL2(
i

QLiD 5E
S
]a~Lĥa!d3x50, ~63!

because L vanishes outside the fluid ~on ]S).
Similarly, from Eq. ~37!,

dS QK2(
i

QKiD 52

1

8p
dE

S
Ra

bkbdSa . ~64!

Again, for a gauge transformation that respect the Killing
symmetry, the right side is an integral over the boundary ]S
of a quantity that vanishes outside the fluid.

Lastly, we verify the assertion made previously, that Q is
independent of the 2-surface S on which it is evaluated, if S

encloses the fluid and any black holes. This is immediate for
QK from Eq. ~37! and ~48!. For Q ~and QL), it follows from
the fact that Q5QK at l50, together with the implication of
Eq. ~54! that dQ/dl5dQ is independent of S along any
sequence of equilibria Q(l).

First law in Hamiltonian framework

In applying the first law to spacetimes that are spatially
conformally flat, we will need to write it in a 311 form, with
metric gab on S and its conjugate momentum pab as inde-
pendent variables. Until Eq. ~79! of this section, the vector
field ka that generates time evolution is not assumed to be a
Killing vector.
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Let S5S0 be a Cauchy surface transverse to ka, and let
S t5x t(S), with x t the family of diffeos generated by ka.
Denote by gab(t) the spatial metric on S t . Let na be the
future-pointing unit normal to this foliation, and recall that
one can identify spatial tensors on S t with spacetime tensors
that are orthogonal on all of their indices to na. In particular,
the projection gab orthogonal to na ,

gab5gab1nanb , ~65!

is the 4-tensor associated with the family of 3-metrics gab(t)
on the slices S t . Although ka is not everywhere timelike, the
fact that it is transverse to a family of spacelike hypersur-
faces means that we can introduce a nonvanishing lapse a
and a shift va that relate ] t[ka to na in the usual way,

ka
5ana

1va, vana50. ~66!

Then, in a chart $t ,x i% for which S t is a t5const surface, the
metric gab5gab2nanb has the form

ds2
52a2dt2

1g i j~dx i
1v idt !~dx j

1v jdt !. ~67!

With Da the covariant derivative of the spatial metric gab ,
the extrinsic curvature of S t is given by

Kab52

1

2
£ ngab5

1

2a
~2ġab1Davb1Dbva!, ~68!

where ġab is the pullback to S of £ kgab , vanishing when ka

is a Killing vector.
By taking as independent variables the quantities

pab,gab ,a , va with

pab
52~Kab

2gabK !g1/2, ~69!

we now generalize the derivation of the first law to permit
independent variations dpab,dgab ,da ,dva.

In terms of Hamiltonian metric variables, the gravitational
Lagrangian density takes the form @33#

RA2g5pabġab2aHG2vaC G
a

1Da~22Daag1/2

22vbpa
b1vap !2ṗ , ~70!

where

HG ª22Gabnanbg1/2

52
3Rg1/2

1S pabpab
2

1

2
p2Dg21/2, ~71!

C G
a

ª22Gabga
a nbg1/2

522Dbpab. ~72!

Regarding L5@(1/16p)R2e#A2g as a function of
pab,gab ,a ,va and the fluid variables, we rewrite Eq. ~31! in
the manner

dL52ag1/2rTDs2

h

u t
D~ru tag1/2!

1

1

16p H 2daH2dvaCa1dpabF ġab2Davb

2Dbva22aS pab2

1

2
gabp Dg21/2G

2dgab~Gab
28pSab!ag1/2J 2ja¹bTabag1/2

1DaQ̃ag1/2
2

1

16p
~dpabgab!•. ~73!

Here, denoting the pullback to S of sa by ga
asa , we have

set

rH ªTabnanb, jaª2Tabga
anb, SabªTabga

agb
b ,

~74!

HªHG116prHg1/2, C a
ªC G

a
216p jag1/2;

~75!

and the remaining quantities in the last two lines of Eq. ~73!
are given in terms of (pab,gab ,a ,va) by

Q̃a
5

1

16p
$@22d~Daag1/2!1~vagbcdpbc

1pdva

22pa
bdvb!#g21/2

1~gacgbd
2gabgcd!~aDbdgcd

2Dbadgcd!1a~e1p !qa
bjb

2ava jbjb%, ~76!

Gab
5ṗaba21g21/2

1
3Rab

2

1

2
gab 3R1S 2pacpb

c2ppab

2

1

2
gabpcdpcd1

1

4
gabp2Dg21

2

1

a
~DaDba2gabD2a !

1

2

a
pc(bDcv

a)g21/2
2

1

a
Dc~pabvc!g21/2, ~77!

and

ajb¹aTab
5jb@Da~aTab!1DbarH2 jaDbva

2Da~va jb!# .

~78!

For ka a Killing vector and Aa any vector field Lie de-
rived by ka, we have the identities

¹aAaA2g5DaÃaAg , ~79!

E
]S

~kaAb
2kbAa!dSab5E

]S
ÃadSa , ~80!

where
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Ãa5aAaga
a
1vaAana, ~81!

and dSa is along the outward normal to ]S in S . In particu-

lar, the vector Q̃a of Eq. ~76! is related to Qa by Q̃a

5aQaga
a
1vaQana, implying

dQL5E
S

Q̃adSa , dQLi52E
B i

Q̃adSa . ~82!

QK can be expressed in terms of (pab,gab ,a ,va) by writing

¹akbga
anb

5ga
a¹a~kbnb!2ga

a¹anbkb

52Daa1Kabvb, ~83!

with Kab52(pab2
1
2 gabp)g21/2. Then

QK2(
i

QKi5

1

8p
E

]S
~Daa2Ka

bvb!dSa

52

1

8p
E

S
Ra

bkbdSa , ~84!

with @34#

Ra
bkbnauS5Da~Daa2Ka

bvb!. ~85!

We can verify directly that Ra
bkbna takes the form ~85!,

when written in Hamiltonian variables, using the Hamil-
tonian forms already given for HG , CGa , and Gab. Equation
~66! implies

Ra
bkbnauS52

1

4
ag21/2HG2

1

2
g21/2C Gava

1

1

2
agabGab.

~86!

Equation ~77! gives

gabGab
52

1

2
(3)R1

2

a
D2a1g21S 1

2
pabpab2

1

4
p2D

1

2

a
pabDavbg21/2

2

1

a
Da~pva!g21/2; ~87!

and substituting this and the forms ~71! and ~72!, of HG and
CGa in Eq. ~86!, we obtain

Ra
bkbnauS5DaS Daa1pa

bvbg21/2
2

1

2
pvag21/2D

5Da~Daa2Ka
bvb!. ~88!

Consequently, Eq. ~40! holds with R and Ga
bna given by

Eqs. ~70!, ~71!, and ~72!, and with Dgab defined as a func-
tion of (gab ,a ,va), independent of pab.

Finally, combining Eq. ~40!, Eq. ~73! and Eq. ~82! in the
Lagrangian derivation, as we obtain Eq. ~54!:

dS Q2(
i

Q iD 5E
S
~ T̄DdS1m̄DdM B1v

aDdCa!

1

1

16p
E

S
H dpabFDavb1Dbva

12aS pab2

1

2
gabp Dg21/2G

2adH2vadCa1a@dgab~Gab
28pSab!

116pja¹bTab#g1/2J d3x . ~89!

Here the last two integrals in Eq. ~54! are combined by using

2d@(Gb
a
28pTb

a)kbna#5daH1adH1dvaCa1vadCa .

When the field equations are satisfied, and pab is given by

pab
52

1

a
~D (avb)

2gabDcv
c!g1/2, ~90!

we have

dQ5E
S
@ T̄DdS1m̄DdM B1v

aDdCa#1(
i

k idA i .

~91!

IV. APPLICATION TO THE INSPIRALING BINARY

BLACK HOLE–NEUTRON STAR SYSTEM

A. Comparing configurations in quasistationary systems

Our study of a generalized first law was spurred by the
fact that equilibria stationary in a rotating frame—spacetimes
with helical Killing vectors—are used in several approaches
to binary inspiral. In each of these cases, one approximates
the inspiral phase of binary coalescence by an evolutionary
path through a sequence of equilibria. The first law has a
strikingly simple form when used to compare such dynami-
cally related spacetimes: For isentropic fluids, dynamical
evolution conserves the baryon mass, entropy, and vorticity
of each fluid element, and we show that the first law be-
comes

dQ5

1

8p (
i

k idA i ; ~92!

or

dQ50, ~93!

for perfect fluid spacetime with no black holes. In the gauge
that we have chosen (dka

50), when the spacetime is as-
ymptotically flat and ka has the asymptotic form ta

1Vfa,
with ta and fa timelike and rotational Killing vectors of a
flat asymptotic metric, we find

dQ5dM2VdJ , ~94!

with M and J the ADM mass and angular momentum
at spatial infinity. In particular, the first law in this form
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describes ~i! comoving binaries, flows with v
a
50; and ~ii!

irrotational binaries, potential flows hua5¹aF , with

D~hua!5¹aDF . ~95!

For an isentropic fluid, conservation of rest mass, entropy,
and vorticity have the form

£ u~rA2g !50, £ us50, £ uvab50, ~96!

with the relativistic vorticity vab given by

vab5qa
gqb

d@¹g~hud!2¹d~hug!#5¹a~hub!2¹b~hua!.

~97!

The perturbed conservation laws have the first integrals

D~ruaA2g !50, Ds50, Dvab50, ~98!

appropriate to the difference between two flows that are re-
lated by a dynamical evolution. It immediately follows that
the first and second terms of Eq. ~55! vanish for isentropic
flows.

To see that the third term vanishes when the perturbed
vorticity vanishes, we use @d ,£ j#50 to write

05Dvab5¹aD~hub!2¹bD~hua!, ~99!

implying Dhua5¹aDF , as in Eq. ~95!. The third term in Eq.
~55! can then be written

E
S

v
bD~hub!ruadSa5E

S
v

b¹bDFru tkadSa ~100!

5E
S
¹b~v

bDFru t!kadSa

2E
S
¹b~v

bru t!DFkadSa .

~101!

The first term in this last equality vanishes, because it is the
integral of a total divergence. @Write (¹bAb)ka

5¹b(Abka

2Aakb) and use Stokes’ theorem; or, more concretely, write

kadSa5A2gd3x .# For the second term, recalling the defi-
nition of v

a in Eq. ~10!, we have

¹b~v
bru t!5¹b~rub!2£ k~ru t!2ru t¹bkb, ~102!

with each term on the right separately vanishing.
Thus, for spacetimes related by a perturbation that locally

conserves baryon mass, entropy and vorticity, the first law
has the form ~92!, as claimed.

B. Asymptotically flat systems

We will use the 311 formalism of Sec. III A to evaluate
dQ5dQK1dQL . In the post-Newtonian and in the
Isenberg-Wilson-Mathews spacetimes that have been used to
describe binary systems, the 3-metric has the asymptotic
form

gab5 f ab1O~r21!, ~103!

where r5(d i jx
ix j)1/2, with $x i% a chart for which f i j5d i j .

By writing ka
5ana

1va, as in Sec. III A, we choose a
shift va associated with a comoving chart at spatial infinity.
That is,

va
5Vfa

1ba, where ba
5O~r22!, ~104!

and fa is a rotational Killing vector of the flat metric f ab

fa
5x1~]2!a

2x2~]1!a. ~105!

The extrinsic curvature and lapse have asymptotic behavior

Kab5O~r23!, a511O~r21!, Daa5O~r22!.

~106!

To evaluate dQ , we first define two asymptotic masses
and the asymptotic angular momentum. A mass M K seen by
a test particle in Keplerian orbit is associated with the
asymptotic form of the lapse,

M Kª

1

4p
È DaadSa5 lim

r→`

1

4p
E

Sr

]rar2dV , ~107!

where

È ª lim
r→`

E
Sr

with Sr a sphere of constant r. In terms of the metric poten-
tials, M K has the form of the Komar mass associated with a
timelike asymptotic Killing vector ta.

The ADM mass is computed from the 3-metric:

M ADM5

1

16p
È ~ f ac f bd

2 f ab f cd!]bgcddSa

52 lim
r→`

1

2p
E

Sr

]rcr2dV . ~108!

Finally, the angular momentum associated with the
asymptotic rotational Killing vector is given by

J52

1

8p
È pa

bfbdSa5

1

8p
È Ka

bfbdSa . ~109!

As in the first equality of Eq. ~84!, we have

QK52

1

8p
È ~2Daa1Ka

bvb!dSa

5

1

8p
È ~Daa2Ka

bVfb!dSa , ~110!

whence, by Eqs. ~107! and ~109!

QK5

1

2
M K2VJ . ~111!
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We obtain dQL from Eqs. ~82! and ~76!. Using faDar

50 and the asymptotic behavior given above, we have

Q̃a
5

1

16p
$@22 f 1/2dDaa22d~pa

bVfb!

12dpa
bVfb# f 21/2

1~ f ac f bd
2 f ab f cd!Dbdgcd%

1O~r23!, ~112!

dQ̃L5

1

16p F22d È DaadSa12d È Ka
bVfbdSa

22Vd È Ka
bfbdSa1 È ~ f ac f bd

2 f ab f cd!DbdgcddSaG
52

1

2
dM K1d~VJ !2VdJ1dM ADM

5dM ADM2

1

2
dM K1dVJ . ~113!

Adding Eq. ~113! to d~111!, we have

dQ5

1

2
dM K2d~VJ !1dM ADM2

1

2
dM K1dVJ

5dM ADM2VdJ , ~114!

in agreement with the usual first law.

C. The first law for spacetimes with a conformally flat

spatial geometry

As mentioned earlier, several groups have recently ob-
tained quasi-equilibrium sequences @6–9#, approximating bi-
nary inspiral by a sequence of Isenberg-Wilson-Mathews
spacetimes ~IWM spacetimes!, spacetimes whose
3-geometry is conformally flat and whose five metric poten-
tials satisfy a truncated set of five field equations. More pre-
cisely, the metric of a IWM spacetime satisfies the constraint
equations and the spatial trace of the Einstein equation, to-
gether with the maximal slicing condition for its conformally
flat slices; and its matter satisfies the equation of motion,
¹bTab

50 ~see, e.g., Isenberg @35# or Flanagan @36#!.
As Detweiler has pointed out, when the spacetime has a

helical ~or timelike! Killing vector, one cannot in general
solve all of these equations simultaneously for a metric with
conformally flat spacelike slices. One must omit one relation
to accommodate the new constraint that the existence of a
Killing vector imposes on the extrinsic curvature, Kab . We
note first that, if one omits the K50 condition, the resulting
spatially conformally flat spacetime satisfies an exact first
law, despite the fact that only a truncated set of field equa-
tions are imposed.

In the second part of this section, we note that one can
alternatively retain the K50 condition if one simply defines

a tensor K̂ab by the form @Eq. ~123! below# that the extrinsic
curvature would take in a spacetime with a helical Killing
vector foliated by K50 slices. We show that the first law is
exact in this framework. This is surprising, in view of the

artificiality of the definition of K̂ab and the fact that one
component of the Einstein equation is not satisfied in the
IWM framework.

In each case, one has a spacetime foliated by hypersur-
faces whose spatial metrics have the form

gab5c4 f ab , ~115!

with f ab a flat metric. The corresponding 4-tensors,

gab5c4 f ab , ~116!

are Lie derived by the Killing vector ka:

£ kgab50, £ kc50, £ k f ab50. ~117!

In particular ~although we will not use the fact in this sec-
tion!,

ka
5ta

1Vfa, ~118!

with fa a rotational Killing vector of f ab .
In the first case ~with K not required to vanish!, the space-

time satisfies on each S t the equations

H50, Ca50, gab~Gab
28pTab!50, ¹bTab

50,

~119!

together with the relation ~90! expressing pab in terms of the
metric. Because

dgab54
dc

c
gab , ~120!

it is exactly this set of equations that occur in the action and
in the 311 form of the first law ~89!, when one compares
two spatially conformally flat spacetimes.

Finally, comparing asymptotically flat spacetimes of this
kind, with no local change in entropy, baryon number, or
vorticity, we have

dM5VdJ1(k idA i . ~121!

We consider next solutions (p̂ab,gab ,a ,va,e ,ua), to the

same set ~119! of equations, now with p̂50:

p̂ab
52K̂abg1/2, ~122!

with K̂ab the tracefree part of the extrinsic curvature:

K̂ab5

1

2a S Davb1Dbva2

2

3
gabDcv

cD . ~123!

One writes H, Ca , gab(Gab
28pTab), and ¹bTab as they

occur in the Hamiltonian formalism ~for the metric!, as func-
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tions of (pab,gab ,a ,va) and the matter variables; one sub-
stitutes for gab and pab the expressions

gab5c4 f ab ,

p̂ab
52

1

2a S Davb
1Dbva

2

2

3
gabDcv

cDg21/2,

~124!

and one solves the resulting system of equations for
(c ,a ,va;e ,va)

Ĥ50, Ĉa50, ~Ĝab
28pSab!gab50, ¹bTab

50,

~125!

where

Ĥ5H~p̂ab,gab ,a ,va;e ,ua!,

Ĉa
5C a~p̂ab,gab ,a ,va;e ,ua!,

Ĝabgab5Gabgab~p̂ab,gab ,a ,va;e ,ua!.
~126!

Then, for a family of such solutions, the quantities da , dv ,
and dgab54(dc/c)gab occurring on the right of the first

law ~89! multiply expressions that vanish. Because dp̂ab is

traceless, the expression involving dp̂ab has the form

1

16p
dp̂ab@Davb1Dbva12ag21/2p̂ab#

5

1

16p
dp̂abFDavb1Dbva2

2

3
gabDcv

c
12ag21/2p̂abG

50. ~127!

Equation ~89! thus yields

dQ̂L2

1

8p
dE R̂b

akbdSa5E
S
@ T̄DdS1m̄DdM B1v

aDdCa# .

~128!

To recover the first law in the form

dM5VdJ , ~129!

we must show that

2

1

8p
dE

S
R̂b

akbdSa52

1

8p
dE

]S
¹akbdSab . ~130!

This is not obvious, because, in replacing the extrinsic cur-
vature by its tracefree part, we invalidate the Killing identity
~35!:

¹b¹akbÞRb
a~p̂ab,c ,a ,va!kb. ~131!

Remarkably, however, the na components of the two sides of
this inequality differ by a divergence; and the asymptotic
behavior of the spacetime implies the equality

QK52

1

8p
È ¹akbdSab52

1

8p
E R̂b

akbdSa . ~132!

That is, from Eq. ~85!, we have

¹b¹akbnauS5Rb
akbnauS5Da~Daa2Kb

avb!; ~133!

and

R̂b
akbnauS5Da~Daa2K̂b

avb!. ~134!

Then

¹b¹akbnauS2R̂b
akbnauS5Da@~K̂b

a
2Kb

a!vb#

52

1

3
Da~vaK !.

~135!

As noted in Sec. IV B,

va
5Vfa

1ba, with ba
5O~r22!, ~136!

where fa is a rotational Killing vector of the flat metric f ab ;
and K5O(r23).7 We then have

QK52

1

8p
E Rb

akbdSa

52

1

8p
E

S
R̂b

akbdSa2

1

24p
E

]S
vbKdSb

52

1

8p
E

S
R̂b

akbdSa , ~137!

as claimed.
From Eq. ~108!, we conclude

dM5VdJ , ~138!

along a family of conformally flat solutions to the IWM

equations, written in terms of (p̂ab,c ,a ,va).
Note that the equation jb¹aTab

50 is satisfied, because,
for an isentropic fluid, the equation of hydrostatic equilib-
rium, conservation of rest-mass, and the one-parameter equa-
tion of state together imply ¹aTab

50. To see this explicitly,
we decompose the divergence of the stress tensor as follows:

7If, however, one allows a nonzero 3-momentum, with boosted-

Schwarzschild asymptotics, then c511 f ( r̂)/r1O(r22) and ba

5O(r21). Because K is given by (1/a)@(6/c)VfaDac1Daba# ,

one can only demand K5O(r21), baK5O(r22), allowing a finite

contribution to QK .
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¹aTab
5~qbg2ubug!¹aTag

5r@ug¹g~hub!1¹bh#

1ubh¹a~rua!2rT¹bs . ~139!

In constructing an isentropic (s5const) equilibrium model,
conservation of rest mass is assumed, and a barotropic equa-
tion of state p5p(r) is used. Helical symmetry and the as-
sumption that the fluid flow is either co-rotational or irrota-
tional then leads to a first integral of the Euler equation
ug¹g(hub)1¹bh50. It is this first integral, specialized to a
conformally flat metric, that is solved in the IWM formalism,
implying that ¹aTab

50. Thus, as claimed, all terms involv-
ing the field equations vanish in Eq. ~54!, and the first law
holds for IWM spacetimes in the form ~55!.

As in the exact theory, when the system includes black
holes, the k idA i terms refer to Killing horizons. The IWM
spacetimes do not satisfy the Raychaudhuri equation for the
null generators of the horizon; as a result, as noted in the
Introduction, Killing horizons in IWM spacetimes need not
co-rotate with the orbital motion.

V. DISCUSSION

The first law can be used to deduce a criterion for orbital
stability for the asymptotically flat models of binary equilib-
ria discussed above, using a theorem of Sorkin @37#. Con-
sider a one-parameter family Q(l) of binary equilibrium
models along which baryon number, entropy and circulation
are locally constant ~the Lagrangian changes Ds , DdM B ,

and DdCa vanish!. Suppose that J̇50 at a point l0 along the

sequence, and that V̈ J̇Þ0 at l0. Then the part of the se-

quence for which V̇ J̇.0 is unstable for l near l0.
The result relies on a first law in the form

dM5VdJ ~140!

and on the fact that the equilibria are extrema of mass with J

constant. As we have seen, this is the case for a configuration
space in which baryon number, entropy, and circulation are
fixed for each fluid element. For asymptotically flat models
with one or more black holes, if one also fixes the area of the
horizon along a sequence, then the same criterion above can
be used to diagnose stability.

In general, the proof of the theorem shows only that the
spacetime is secularly unstable on one side of the turning
point. In the present context, however, the theorem shows the
existence of nearby configurations with lower mass that can
be reached by perturbations that conserve baryon number,
entropy, and circulation; this suggests that the criteria locates
the onset of dynamical instability.

When one models stationary binary systems in full GR,
the lack of asymptotic flatness leads to several ambiguities.
For binary charges in Minkowski space, one can obtain a
one-parameter family of equilibria if one simply replaces
asymptotic regularity ~finite energy! by a condition that the
electromagnetic field be given by the half-advanced 1 half-
retarded Green’s function. In GR, it remains to be seen
whether one can find an analogous asymptotic condition.
Simply requiring equal amounts of ingoing and outgoing ra-

diation is a weaker condition even in Minkowski space; in
GR one must have asymptotic conditions as restrictive as
asymptotic flatness to avoid ambiguity in each asymptotic
multipole. Finally, as mentioned in Sec. III, the helical Kill-
ing vector has an arbitrary scaling that one must resolve to
obtain a unique value for the charge Q of the first law.
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APPENDIX A: VIRIAL RELATION IN IWM SPACETIMES

In this appendix, we derive a virial relation for quasiequi-
librium states in IWM spacetimes. Incidentally, we show that
the virial relation is equivalent to the relation M K5M ADM .8

As described in Sec. IV C, we use a 311 formalism, with
3-metric gab5c4 f ab , and with a helical Killing vector that
has the form

ka
5ta

1Vfa, ~A1!

where fa is a rotational Killing vector of the flat metric f ab .
Throughout this appendix, we use Cartesian coordinates

t ,$x i% for which f ab has components f i j5d i j and tm
5d0

m . In

the IWM formalism, one imposes the maximal slicing con-
dition K50 on the family of t5const surfaces S t ; and, in-
stead of solving the full Einstein equation, one solves the
Hamiltonian constraint, the momentum constraint and the
equation for the slicing condition. Here, however, as in Sec.
IV C, to obtain a set of equations consistent with the exis-
tence of a helical Killing vector, we replace the extrinsic

curvature in this set of equations by its tracefree part, K̂ i j.
The basic equations are then

Dc522pc5rH2

c5

8
K̂ i

jK̂ j
i[2Sc , ~A2!

] j~AgK̂ i
j!58p j iAg , ~A3!

Dx52pxc4~rH12Sk
k!1

7

8
xc4K̂ i

jK̂ j
i[Sx ,

~A4!

where D denotes the flat Laplacian for three space, Ag
5det(g i j)5c6, and x[ac . @See Eqs. ~74! for definition of

8The relation M K5M ADM for stationary and asymptotically flat

spacetimes has been proven by Beig @38#, and by Ashtekar and

Magnon-Ashtekar @39#. A virial relation relying on this has been

derived by Gourgoulhon and Bonazzola @40#.

JOHN L. FRIEDMAN, KŌJI URYŪ, AND MASARU SHIBATA PHYSICAL REVIEW D 65 064035

064035-14



rH , j i and S i j .# The energy-momentum tensor is assumed to
be nonzero only inside the light cylinder (x2

1y2)1/2
,V21.

The shift vector ba of Eq. ~104! satisfies

ba
52ana

1ta. ~A5!

The Cartesian components K̂ i
j are given in terms of b i by

K̂ i
j
5

1

2a S ] ib
j
1d ild

jk]kb
l
2

2

3
d i

j]kb
kD . ~A6!

The asymptotic behavior of geometric variables is that of
Eqs. ~103!–~106!,

c511O~r21!, ~A7!

x511O~r21!, ~A8!

b i
5O~r22!, ~A9!

K̂ i
j
5O~r23!, ~A10!

appropriate for an asymptotically flat spacetime in a chart for
which the total ADM 3-momentum vanishes:

P i[
1

8p
R

r→`
K i

jAgds j50, ~A11!

where ds j5(D jr)r2dV and Ag is computed in Cartesian
coordinates.

We now derive the virial relation and show the equiva-
lence of Komar and ADM mass for quasiequilibria of two
neutron stars. For r→` , x and c behave as 12M x/2r

1O(r22) and 11M ADM/2r1O(r22). From this asymptotic
behavior, we can define M x and M ADM by the surface inte-
grals,

M x5

1

2p
R

r→`
d i jc] ixds j

M ADM52

1

2p
R

r→`
d i jx] icds j . ~A12!

Since M x52M ADM12M K , our goal is to show M x

5M ADM .
Using Gauss’s law, they can be rewritten in the manner

M x5

1

2p
E ~cSx1d i j] ix] jc !d3x , ~A13!

M ADM5

1

2p
E ~xSc2d i j] ic] jx !d3x . ~A14!

We next derive a relation that will be used several times in

the calculations that follow. From xc5K̂ i
jK̂ j

i
5AgK̂ i

j] jb
i, we

have

E xc5K̂ i
jK̂ j

id3x5E AgK̂ i
j] jb

id3x

52E ] j~AgK̂ i
j!b id3x1 R AgK̂ i

jb ids j

528pE Ag j ib
id3x , ~A15!

where we use the asymptotic behaviors at r→` and Eq.
~A3! to obtain the last line. r without specification of a sur-
face denotes a surface integral over ]S: r5rr→` . From the
vanishing of the total ADM 3-momentum ~more precisely,

from the vanishing of * r→`K̂ i
jAgdS j! and from the momen-

tum constraint ~A3!, we have

05E j iAgd3x , ~A16!

which may be interpreted as the linear momentum of a neu-
tron star.

Using Eqs. ~A13! and ~A14!, we write the difference be-
tween M ADM and M x in the form

M x2M ADM5

1

p
E F2pxc5Sk

k
1

3

8
xc5K̂ i

jK̂ j
i

1d i j] ic] jxGd3x

52E FAg$ jkv
k
13aP%2

1

2
Ag j jb

j

1

1

2p
d i j] ic] jxGd3x , ~A17!

where we use Sk
k
5 jku lg̃

kl/(au t)13P , v
k
5uk/u t,9 gklu l

5ut(vk
1b k), and Eq. ~A15!. In the following we show that

the relation M x5M ADM is equivalent to the virial relation.
To derive the virial relation, we first write the general

relativistic Euler equation gk
n¹mTn

m
50 in the form

] t~ jkAg !1]k~ j lAgv
l!1]k~aAgP !1rHc5]kx

2~rH12S l
l!xc4]kc2Ag j l]kb

l
1

1

2
xcS i j]kg̃

i j
50,

~A18!

9The above definition for v
k is used only in this appendix. Note

that v
k was differently used for spatial velocity vector in co-moving

frame with ka as defined in Eq. ~10! in main sections.
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where g̃ i j
5g i jc4. Equation ~A18! is a fully general relativ-

istic expression. In the IWM spacetimes, g̃ i j
5g̃ i j5d i j and

consequently, the last term in Eq. ~A18! is neglected.
In the following calculation, we choose the x1-axis so

that, on some time-slice S t , it lies along the centers of the
two members of the binary system.

As in the Newtonian case, the virial relation can be de-

rived by taking inner product with x̂k and by performing an
integral over three space, i.e.,

E d3x̂ x̂k@] t~ jkAg !1] j~ jkAgv
j!1]k~aAgP !1rHc5]kx

2~rH12S l
l!xc4]kc2Ag j l]kb

l#50. ~A19!

Below, we shall carry out integrals separately. For simplicity,

we omit hats (ˆ) in the following.
~1! First term: Since we assume the existence of the heli-

cal Killing vector, we have a relation

] tJk52V@] l~f lJk!1Jl]kf
l# , ~A20!

where we use ] lf
l
50 and Jk[ jkAg . In the present coordi-

nates, f l
5(2x2,x1

2b ,0). After an integration by parts, we
obtain

E xk] tJ kd3x5VE ~fkJk2J lx
k]kf

l!d3x . ~A21!

From a relation xk]kf
l
5f l

1d2lb , we immediately find

E xk] t~ jkAg !d3x52bVE j2Agd3x[2bVPNS ,

~A22!

where PNS is interpreted as the linear momentum of a neu-
tron star @see Eq. ~A16!#.

~2! Second and third terms: An integration by parts imme-
diately yields

E xk] j~ jkv
jAg !d3x52E jkv

kAgd3x , ~A23!

E xk]k~aAgP !d3x523E aAgPd3x . ~A24!

~3! Fourth and fifth terms: Using Eqs. ~A2! and ~A4!, we
can rewrite these terms as

rHc5]kx2~rH12S l
l!xc4]kc

52

1

2p
@Dc]kx1Dx]kc#2

c12K i
jK j

i

16p
]kS a

Ag
D .

~A25!

Taking into account an identity,

E @~xk]kc !Dx1~xk]kx !Dc#d3x5E d i j] ix] jcd3x ,

~A26!

we find

E xk@rHc5]kx2~rH12S l
l!xc4]kc#d3x

52E F 1

2p
d i j] ix] jc1

c12K i
jK j

i

16p
xk]kS a

Ag
D Gd3x .

~A27!

~4! Sixth term:

2E Ag j ix
k]kb

id3x52

1

8p
E ] j~AgK i

j!xk]kb
id3x

5

1

8p
E @AgK i

jxk]k] jb
i
1AgK i

j] jb
i#d3x2

1

8p
R AgK i

jxk]kb
ids j

52

1

8p
E @]k~AgK i

j!xk] jb
i
12AgK i

j] jb
i#d3x1

1

8p
R Ag~K i

jxk
2K i

kx j!] jb
idsk

52

1

8p
E F axk

2Ag
]k~c12K i

jK j
i !12aAgK i

jK j
iGd3x1

1

8p
R Ag~K i

jxk
2K i

kx j!] jb
idsk
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52

1

16p
E FaAgK i

jK j
i
2c12K i

jK j
ixk]kS a

Ag
D Gd3x2

1

16p
R ac6K i

jK j
ixkdsk

1

1

8p
R Ag~K i

jxk
2K i

kx j!] jb
idsk

5

1

16p
E F8pAg jkb

k
1c12K i

jK j
ixk]kS a

Ag
D Gd3x1

1

16p
R ac6K i

jK j
ixkdsk

2

1

8p
R AgK i

kx j] jb
idsk , ~A28!

where we use Eqs. ~A3! and ~A15!. Because of the
asymptotic behavior, the surface terms at r→` in the last
line of Eq. ~A28! vanish. Equation ~A16! implies that the
center of mass of the system does not move in the x2 direc-
tion, that the sum of the momenta of the neutron stars van-
ishes.

Gathering the results of Eqs. ~1!–~6!, we obtain the rela-
tion

052E S jkv
kAg13aAgP1

1

2p
d i j] ix] jc

2

1

2
Ag jkb

kD d3x . ~A29!

This is the virial relation for a neutron star binary system in
quasiequilibrium.

From Eq. ~A17!, the right-hand side of Eq. ~A29! is writ-
ten as

052

M x2M ADM

2
, ~A30!

implying M ADM5M x5M K , if the virial relation holds.

APPENDIX B: THE FIRST LAW FOR NEWTONIAN

BINARY SYSTEMS

In this appendix, we derive a first law of thermodynamics
for Newtonian gravity. We start with a first-order perturba-
tion of the energy of a perfect fluid

E5T1W1U , ~B1!

where

T5E
V

1

2
rv

2dV , W5E
V
S rFN1

1

8pG
¹iFN¹iFND dV ,

U5E
V

rudV . ~B2!

and FN and u denote the Newtonian potential and specific
internal energy.10 An integral equation

dE
V

f rdV5E
V

D f rdV1E
V

f D~rdV !, ~B3!

is satisfied for a perturbation.
The perturbation of the kinetic energy T can be expressed

as follows:

dT5E
V

rv
iDv i1E

V

1

2
v

2D~rdV !1E
V
@j j

v j¹i~rv
i!

1rj j
v

i¹iv j#dV2 R
]V

rv
i
v jj

jdS i ~B4!

where we used the relation

1

2
Dv

2
5v

iDv i2v
i
v j¹ij

j. ~B5!

The perturbation of the gravitational potential energy be-
comes

dW5E
V

FND~rdV !1E
V

rj i¹iFNdV

2

1

4pG
E

V
~¹2FN24pGr !dFNdV

1

1

4pG
R

]V

¹iFNdFNdS i . ~B6!

The perturbation of the internal energy becomes

10We use v
i for the fluid velocity vector in the inertial frame in

this appendix. Note that it was differently used for spatial velocity

vector in co-moving frame with ka as defined in Eq. ~10! in main

sections.
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dU5E
V

rTDsdV1E
V
S u1

P

r DD~rdV !

1E
V

j i¹iPdV2 R
]V

j iPdS i , ~B7!

where we used a relation

¹ij
idV5D~dV !, ~B8!

as well as a local thermodynamic relation,

Du5TDs1

P

r2
Dr . ~B9!

Surface integrals appeared in expressions for dT , dW , and
dU are all vanish. Combining Eqs. ~B4!, ~B6!, and ~B7!, we
have a perturbation of the Newtonian energy integral:

dE5dT1dW1dU

5E
V

rTDsdV1E
V
S 1

2
v

2
1FN1u1

P

r DD~rdV !1E
V

rv
iDv idV1E

V
Fj j

v j¹i~rv
i!

1j irS v
j¹jv i1

1

r
¹iP1¹iFND2

1

4pG
~¹2FN24pGr !dFNGdV

5E
V

rTDsdV1E
V
S 1

2
v

2
1FN1u1

P

r DD~rdV !1E
V

rv
iDv idV1E

V

j j
v jF]r

]t
1¹i~rv

i!GdV

1E
V

j irS ]v i

]t
1v

j¹jv i1

1

r
¹iP1¹iFND dV2

1

4pG
E

V
~¹2FN24pGr !dFNdV2E

V

j i
]rv i

]t
dV . ~B10!

Next, we derive a variation of the total angular momen-
tum J defined by

J5E
V

rv if
idV , ~B11!

where f i is a generator of rotation with Cartesian compo-
nents f i

5(2y ,x ,0). The variation of J is

dJ5E
V

rDv if
idV1E

V

rv iDf idV1E
V
v if

iD~rdV !.

~B12!

Using a relation

Df i
5df i

1£ jf
i
52£ fj i, ~B13!

the second term of Eq. ~B12! is rewritten as follows:

E
V

rv iDf idV52E
V

rv i£ fj idV52E
V

£ f~rv ij
i!dV

1E
V

j i£ f~rv i!dV

52 R
]V

rv ij
if jdS j1E

V

j i£ f~rv i!dV ,

~B14!

where we used ¹jf
j
50. Discarding the surface term in the

above expression and substituting in Eq. ~B12!, we have a
variation of the total angular momentum dJ as follows:

dJ5E
V
v if

iD~rdV !1E
V

rf iDv idV1E
V

j i£ f~rv i!dV .

~B15!

Finally we write down a general expression for the com-
bination of dE and VdJ , where V is a constant parameter,

dE2VdJ5E
V

rTDsdV1E
V
S 1

2
v

2
1FN1u1

P

r

2v iVf iDD~rdV !1E
V

r~v
i
2Vf i!Dv idV

1E
V

j j
v jF]r

]t
1¹i~rv

i!GdV

1E
V

j irS ]v i

]t
1v

j¹jv i1

1

r
¹iP1¹iFND dV

2

1

4pG
E

V
~¹2FN24pGr !dFNdV

2E
V

j iF]rv i

]t
1£ Vf~rv i!GdV . ~B16!
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As an application of the above general expression, con-
sider a Newtonian binary star system in circular orbit @41#. In
this case, the fluid variables Q admit a helical symmetry,
namely,

F ]

]t
1V£ fGQ50, ~B17!

that is, the last integral in Eq. ~B16! vanishes. When a mass
conservation equation, the Euler equation and the Poisson
equation for the Newtonian gravity are satisfied, namely,

]r

]t
1¹i~rv

i!50,

]v i

]t
1v

j¹jv i52

1

r
¹iP2¹iFN , and ¹2FN54pGr ,

~B18!

Eq. ~B16! takes a simpler form,

dE5VdJ1E
V

rTDsdV

1E
V
S 1

2
v

2
1FN1u1

P

r
2v iVf iDD~rdV !

1E
V

r~v
i
2Vf i!Dv idV . ~B19!

If we further assume that the perturbed flow is isentropic and
mass conserving,

Ds50 and D~rdV !50 ~B20!

and that the vorticity of each fluid element is conserved,

Dv i j5D~¹jv i2¹iv j!5¹jDv i2¹iDv j50, ~B21!

then Eq. ~B19! reduces to

dE5VdJ . ~B22!

Here we have used Eq. ~B21! to introduce a function C for
which

¹iC5Dv i ; ~B23!

this form of Dv i , together with helical symmetry imply that
the last term in Eq. ~B19! vanishes:

E
V

r~v
i
2Vf i!Dv idV5E

V

r~v
i
2Vf i!¹iCdV

5 R
]V

r~v
i
2Vf i!CdS i

1E
V
S ]r

]t
1£ Vfr DCdV

50

~B24!

where we used the mass conservation equation and
¹if

i
50.
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