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We consider compact binary systems, modeled in general relativity as vacuum or perfect-fluid spacetimes
with a helical Killing vector k¢, heuristically, the generator of time translations in a corotating frame. Systems
that are stationary in this sense are not asymptotically flat, but have asymptotic behavior corresponding to equal
amounts of ingoing and outgoing radiation. For black-hole binaries, a rigidity theorem implies that the Killing
vector lies along the horizon’s generators, and from this one can deduce the zeroth law (constant surface
gravity of the horizon). Remarkably, although the mass and angular momentum of such a system are not
defined, there is an exact first law, relating the change in the asymptotic Noether charge to the changes in the
vorticity, baryon mass, and entropy of the fluid, and in the area of black holes. Binary systems with M () small
have an approximate asymptopia in which one can write the first law in terms of the asymptotic mass and
angular momentum. Asymptotic flatness is precise in two classes of solutions used to model binary systems:
spacetimes satisfying the post-Newtonian equations, and solutions to a modified set of field equations that have
a spatially conformally flat metric. (The spatial conformal flatness formalism with helical symmetry, however,
is consistent with maximal slicing only if one replaces the extrinsic curvature in the field equations by an
artificially tracefree expression in terms of the shift vector.) For these spacetimes, nearby equilibria whose stars
have the same vorticity obey the relation M =) 67, from which one can obtain a turning point criterion that

governs the stability of orbits.
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I. INTRODUCTION

Beginning with papers by Blackburn and Detweiler [1,2],
several authors have used spacetimes with a helical Killing
vector! to model binary systems in the context of general
relativity. Such spacetimes can be regarded as having equal
amounts of incoming and outgoing radiation; they are a
counterpart in general relativity of the stationary solution due
to Schild [4] that describes two oppositely charged particles
whose electromagnetic field is the half-advanced + half-
retarded solution of the orbiting charges. Because the radia-
tion field of such a stationary solution has infinite energy,
spacetimes that describe the corresponding general relativis-
tic binaries are not asymptotically flat. Instead, the
asymptotic mass rises linearly with a naturally defined radial
coordinate.

The formal lack of asymptotic flatness has been handled
in several related ways. As Detweiler has emphasized, one
can define an approximate asymptotic region for systems in
which the energy emitted in gravitational waves in a dynami-
cal time is small compared to the mass of the system. In this
“local wave zone,” the geometry describes gravitational
waves propagating on a Schwarzschild background. In the

'In a spacetime with a rotational Killing vector ¢ and a timelike
Killing vector 7%, each combination %+ Q ¢, with ) constant and
nonzero, will be called a helical (or helicoidal) Killing vector. We
give a precise definition in Sec. II and discuss its relation to a
previous definition by Bonazzola er al. [3].
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more restrictive context of the post-Newtonian approxima-
tion, one regains asymptotic flatness, because there is no ra-
diation through second post-Newtonian order. Finally, a
number of authors [5-9] considered spacetimes with confor-
mally flat spacelike slices that satisfy a truncated set of field
equations consisting of the initial value equations, a field
equation for the spatial conformal factor, and the equation of
hydrostatic equilibrium. Like the post-Newtonian space-
times, these conformally flat spacetimes are nonradiative and
(as we show) are asymptotically flat.

We consider binary systems modeled in the exact theory
(without asymptotic flatness) and then apply our results to
the post-Newtonian spacetimes and spatially conformally flat
spacetimes that retain asymptotic flatness. In each case one
uses the Killing vector, k%, to define a conserved current and
associated charges. For the exact vacuum and perfect-fluid
spacetimes, the Noether current of the helical Killing vector
assigns to each spacetime a charge Q. (See, for example,
Refs. [10—15].) Despite the lack of asymptotic flatness one
can choose the current to make Q finite, and Q is indepen-
dent of the 2-surface S on which it is evaluated, as long as S
lies outside the matter and all black holes. The Noether cur-
rent assigns to each black hole a charge that can be identified
with its entropy (its area, in the spacetimes we consider); and
we obtain a version of the first law [Eq. (55) below] that
expresses the change 60 in terms of changes in the vorticity,
baryon mass, and entropy of the fluid, and in the area of
black holes. Independent work by Baker and Detweiler [16]
obtains a similar first law for spacetimes with approximate
asymptotic flatness at finite distance from the binary.
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In the asymptotically flat spacetimes mentioned above,
the helical Killing vector has the asymptotic form k%=t“
+Q¢“, where ¢ and ¢ generate asymptotic symmetries
associated with time translations and rotations. Neighboring
perfect-fluid equilibria in a post-Newtonian or a spatially
conformally flat framework satisfy a first law of thermody-
namics of the form

5M=Q§J+f [TAdS+ puAdMg+v*AdC,]
s
+21 SA
. GKL' i

Here M and J are the Arnowitt-Deser-Misner (ADM) mass
and angular momentum of the spacetime [see Egs. (108),

(109)]; T and u are the redshifted temperature and chemical
potential; dM p is the baryon mass of a fluid element; and
dC, is related to the circulation of a fluid element [see Egs.
(56).(57)].

Note that, in the full theory, models of binaries with a
helical Killing vector can only have corotating black holes. If
their generators do not lie along the Killing vector the black
holes will have nonzero shear and thus (assuming positive
energy) increasing area; and this is inconsistent with the as-
sumption of a helical Killing vector. In an appendix, we de-
rive a virial relation for binary neutron-star systems in a con-
formally flat framework and show that the relation is
equivalent to the equality of the Komar and ADM mass.

One other class of asymptotically flat spacetimes with a
single Killing vector is worth mentioning. These are nonaxi-
symmetric stars whose figure is stationary in an inertial
frame, the analog in general relativity of the Newtonian
Dedekind ellipsoids. We expect that such stationary, nonaxi-
symmetric perfect-fluid spacetimes exist; their velocity fields
have nonzero shear, however, and cannot be stationary when
viscosity is present. [17]

Conventions: Spacetime indices are Greek, spatial indices
Latin, and the metric signature is — + + +. Readers familiar
with abstract indices can regard indices early in the alphabet
as abstract, while i,j,k,l are concrete, associated with a chart
{x}. We use the dual form of Stokes’ theorem for the diver-
gence of an antisymmetric tensor A% A7, namely

\Y A‘*"'mdSa... =f A“"'ﬁ’dSa...
fz Y B s By

where dS,= eaﬁy(gdSBVA‘s,dSaﬁz eaﬁy,gdSV‘S. For example,
in an oriented chart 7, {x'} with 3 a surface of constant ¢ and
d% a surface of constant ¢ and x', dS,=V,¢ \/—_gde,dSaﬁ
= %(VatVﬁx' — ValeBt) J—gd’x. Finally, if § is a 2-surface
in a 3-space % and €, is the volume form on 3, associated
with a 3-metric y,,, we write dS,= €,,.dS"¢; for S a sur-
face of constant r, dS,=V,r\yd’x.
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I1. Helical Killing vectors, event horizons, and the
zeroth law

We consider globally hyperbolic spacetimes M, g,z that
have a symmetry vector k%, a Killing vector that generates a
symmetry of the matter fields. Our particular interest is in
stationary binary systems, systems whose Killing vector k¢
has helical integral curves with a fixed period 7; but our
results hold for a broader class of spacetimes with a single
Killing vector.

We begin by using the periodic orbits just mentioned to
define a helical vector field. We want a definition that agrees,
for stationary, axisymmetric spacetimes, with Killing vectors
of the form t*+Q ¢, where ¢ is the asymptotically time-
like Killing vector and ¢* the rotational Killing vector. Let
X, be the family of diffeos generated by £, moving each
point P e M a parameter distance ¢ along the integral curve
of k% through P. Although a helical vector is spacelike at
distances from the axis larger than 7/2, its integral curves
spiral each period to points that are timelike separated from
their starting points; at least they are timelike separated when
one is outside a finite region that encloses any horizon or
ergosphere. Without this last caveat, one could define a heli-
cal vector by the requirement that, for each point P, x7(P)
be timelike separated from P. To include the caveat, one
requires that the condition hold only outside some sphere.
Let S be a spacelike sphere, and let 7 be the timelike surface
swept out by the action of x, on S: 7(S)=U,x,(S); we call
7 the history of S.

Definition II.1. A vector field k* is helical if there is a
smallest T>0 for which P and x(P) are timelike separated
for every P outside the history T of some sphere.

When the spacetime admits a foliation by timelike lines,
this definition is equivalent to the following definition, essen-
tially that of Bonazzola et al. [3]:

Proposition 11.1. A vector field k® is helical if it can be
written in the form

ke=1"+ Q% (1)

where ¢% is spacelike and has circular orbits with parameter
length 2, except where it vanishes; ) is a constant; and, t¢
is timelike outside the history T of some sphere. Conversely,
if a vector field is helical, and if the spacetime can be foli-
ated by timelike curves that respect the action x1(P), then
k% can be written in the form (1).?

Because there are spacetimes with helical vectors that do
not allow foliations respecting the action y7(P), the Bonaz-
zola et al. definition is slightly more restrictive than ours;
they are also more restrictive in requiring the existence of a
2-dimensional submanifold, the axis of symmetry, on which
¢“ vanishes; and in requiring that 1 be timelike everywhere.
Note that, although the proposition displays the intuitive

2Without the requirement on the timelike character of %, any Kill-
ing vector can be written in the form 1%+ ) ¢“. To restrict helical to
the vector fields in which we are interested, we had to exclude the
spiral Killing vectors of Minkowski space that have the form s¢
+ ¢“, with s a constant spacelike vector.
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character of a helical vector, r* and ¢“ are far from unique.
Each foliation of M by a family of timelike curves that re-
spects xr gives a different decomposition of k% of the form
(1).

Proof of Proposition. The first part of the Proposition, that
a vector of the form (1) is helical, is immediate. We prove as
follows that a helical vector can be written in this form.
Define a scalar by requiring it to have the value 7 on x,(3),
with 2 a Cauchy surface. Let t* be the vector tangent to our
congruence of timelike curves, each parametrized by t.

Let i, be the family of diffeos generated by r“. Each
integral curve of k“ can be projected to a circle on 2 by
pushing it down to 3 along the timelike congruence: The
circle through each point P €2, is

t—c(t)=¢_pox,(P).

One obtains a circle with parameter length 27 by reparam-
etrizing ¢, defining C(s):=c[sT/(27)]. Finally, define ¢“
on 2, as the vector field tangent at each point P to the circles
C(t) through P; and drag ¢* by i, to extend it to M. Then
k“=1*+Q ¢, with Q=27/T. ]

In particular a spacetime that is stationary and axisymmet-
ric, with asymptotically timelike Killing vector #* and rota-
tional Killing vector ¢, has a family of helical Killing vec-
tors 1%+ Q ¢, for each ). Our primary concern, of course,
is with binary systems, spacetimes for which 7“ and ¢* are
not themselves Killing vectors, although, for one value of (),
k“=1*+ Q¢ is.

We have emphasized that spacetimes with a helical Kill-
ing vector cannot be asymptotically flat in the exact theory,
and a theorem by Gibbons and Stewart [18], showing that 7
(null infinity) cannot be periodic, makes this claim precise:
No spacetime can have a 7 (and hence no spacetime can be
asymptotically flat) if it is vacuum outside a compact region
and has a helical Killing vector. We can, however, use the
Killing vector k“ to define as follows the future and past
horizon and the future and past domains of outer communi-
cation of a spacetime with a helical Killing vector.

Definition I1.2. A point x e M is in the future (past) do-
main of outer communication, D~ if some future-directed
(past-directed) timelike curve c(N) through P eventually ex-
its and remains outside the history T of each sphere S: That
is, for each history T that encloses P, there is some \ for
which ¢(N) is outside of T, all N>\,

Definition I1.3. The future (past) event horizon H > is the
boundary of the future (past) domain of outer communica-
tion.

Proposition I1.2. Let the history T of a spacelike sphere lie
in D*. Then H==0I"(T).

Proof. Denote by int(7), the points inside a history 7. It
suffices to show that I (D H)Nint(7)=I1 (7)) Nint(7).
For any P eI (D ")Nint(7), there is a timelike curve from

P that exits 7 and hence intersects 7. Thus P
el (T7)Nint(7); and, from 7CD *=1"(7)CI (D), the
result follows. O

The main result of this section is that 7~ are Killing
horizons and hence that they satisfy the zeroth law of black-
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hole thermodynamics: That is, the Killing vector k¢ is tan-
gent on H * to the null generators; and the associated surface
gravity «, defined by

kPVgk*= Kk, (2)

is constant on each connected component of H .

To prove that H * is a Killing horizon (Prop. I1.5 below),
we will use an analogous theorem proved by Isenberg and
Moncrief [19,20] and a strengthened version by Friedrich,
Racz, and Wald [21] (FRW), for a class of spacetimes with a
compact null surface (see also earlier work by Hawking
[22]). Following FRW, we first show that the spacetime
N,gqp covers such a compact spacetime. Although our
spacetime is not in the class they study, FRW note that their
asymptotic conditions can be relaxed, and we easily extend
their proof to spacetimes of the kind considered here.

For convenience in matching our definition and proof to
that of FRW, we consider a subspacetime N=1I"(M)Nint7Z,
for some 7 that encloses the fluid and black holes. By choos-
ing a future set, we keep all black holes but discard the
bifurcation horizon and white holes that are part of the full
spacetime. (To obtain the corresponding results for white
holes—for the past horizon—one exchanges future and past.)
When the surface gravity « is nonzero, the past-directed null
generators reach the bifurcation horizon of M in finite affine
parameter length. This means that in N, they are past geode-
sically incomplete, and that past incompleteness is one of the
conditions required for the FRW proof. The Isenberg-
Moncrief version does not require past incompleteness, but
does demand that the horizon be analytic. N, g,z satisfies the
following conditions that define a spacetime of type A’.

Definition 11.4. A smooth spacetime N, g g will be said to
be of class A’ if it has the following properties. (i) The
spacetime has a Killing vector field k* that is transverse to a
Cauchy surface.’ (ii) N=1"(N). (iii) There is a history 7T for
which N=1"(T). (iv) The horizon H:=dI (N) consists of
smooth disconnected components each of which has topology
RXS2. (v) The generators of H are past incomplete. (Alter-
natively, H is analytic.)

Proposition I1.3. Let N,g.g be a spacetime of type A,
satisfying the null energy condition R*P1%1P=0, all null 1*.
Then on each component of the horizon, there exists a t
#0 such that X1, Maps each null geodesic generator of H to
itself.

We first need to establish for spacetimes of class A’ an
analog of Prop. 9.3.1 of Hawking and Ellis [23], showing
that the shear and divergence of the horizon generators van-
ish. This implies that the generators are Killing vectors of the
horizon, Lie-deriving its degenerate 3-metric.

Lemma Il.1. Let N,g ,p be a spacetime of class A'. On
each component of the horizon, the shear and expansion of
the null generators vanishes.

Proof of Lemma.Il. 1. Let S be a Cauchy surface transverse
to k¢, S,= x,(S), and let B,=S,NH. Because y, is an isom-

3A vector field k® is fransverse to a hypersurface S if k¢ is no-
where zero on S and nowhere tangent to S.
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etry, it maps H to itself. Then k* is tangent to 7, and the
family of slices F, foliates H. Because JF; is mapped to F,/
by the isometry x,_,, the area of F, is independent of .
This implies that the divergence 6 of the horizon’s generators
vanishes and that the generators have no past endpoints. Fi-
nally, using =0 and the null energy condition, the Ray-
chaudhuri equation (optical scalar equation),

do 1
P aif_ af_ _ p2
implies o,5=0. ]

Proof of Proposition.Il.3. Once Lemma.ll.1 is proved, the
proof of this proposition is exactly the proof of Prop. 2.1 in
FRW. O

Definition 11.5. A spacetime N,g oz is of class B if it con-
tains a compact orientable, smooth null hypersurface N that
is generated by closed null geodesics.

(These causality-violating spacetimes are introduced only
as part of the proof of Prop. II; the spacetimes considered in
this paper as models of physical systems are globally hyper-
bolic.)

Proposition I1.4. Let N,g .5 be a spacetime of type A'.
Then [int(N), g, g | is a covering spacetime of a spacetime
of type B.

The proof is immediate:

Proof of Prop.I1.4. Because k“ is transverse to a Cauchy
surface, x, has no fixed points for #0; in particular, for ¢
=ty of Prop. 113, Xty has no fixed points. Then the factor

space N=int(N)/ Xty with induced metric g,z has covering
spacetime int(N),g .. Because X, maps each generator of

H to itself, H="H/ Xt, is a null hypersurface generated by

closed null geodesics. O

Proposition I1.5. In a spacetime of class A''H is a Killing
horizon of k®. In particular, if, up to a constant scaling, k* is
the only Killing vector in N (or in any subspacetime), then k¢
is parallel to the null generators of H.

Proof. Any neighborhood of a component of the horizon
of [int(N),g,p] that is disjoint from the fluid covers a
vacuum spacetime of type B. Theorem 4.1 of FRW implies
that in a one-sided neighborhood of that component of the

horizon, there is a Killing vector K% normal to the the hori-

zon. The pullback K¢ of K“ to the covering space is then a
Killing vector on a one-sided neighborhood of the corre-
sponding component of H, normal on H to H: i.e., H is a
Killing horizon. If each neighborhood has £* as its only Kill-
ing vector (up to an overall scale), then k“<K“ on each
component of H, implying that H is a Killing horizon with
Killing vector k“. O

Corollary (Oth Law). The surface gravity k; is constant on
the ith component of H.

Proof. The proof of the zeroth law of event horizons given
in Bardeen et al. [24] establishes the result for any Killing
horizon in a spacetime satisfying the null energy condition.

The first law is the content of the next section. The second
law, that the area of a black hole cannot decrease, has mean-
ing here only if one extends the definition of event horizon in
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a way that requires neither a Killing vector nor asymptotic
flatness. Black-hole thermodynamics of general spacetimes
that are not asymptotically flat has been examined previously
[25-28] but the results here appear to be new.*

III. FIRST LAW FOR SYSTEMS WITH A SINGLE
KILLING VECTOR

We consider spacetimes with black holes and perfect-fluid
sources, which have a helical Killing vector or, more gener-
ally, a single Killing vector that is transverse to a Cauchy
surface and timelike on the support of the fluid. Although
such spacetimes will not, in general, be asymptotically flat,
one can obtain a generalized first law of thermodynamics in
terms of a Noether charge Q associated with the Killing vec-
tor field and with an action for the perfect-fluid spacetime.
For spacetimes that are asymptotically flat, the overall scal-
ing of a timelike Killing vector is chosen by requiring it to
have unit norm at spatial infinity. Here, without asymptotic
flatness, the overall scaling cannot be so determined. Instead,
in our discussion of the first law, the choice of a family of
spacetimes will include the choice of a Killing vector; but
readers should keep in mind that nothing in this section re-
stricts the freedom to choose another scaling of the Killing
vector for each member of the family of spacetimes.

We describe a perfect fluid by its four-velocity u“ and
stress tensor

TP= euuP+pq*¥, 4)
where p is the fluid’s pressure, € its energy density, and
q*P=g*F+u*uP (5)

is the projection orthogonal to u“. We assume that the fluid
satisfies an equation of state of the form

p=p(p.s), €=¢€(p,s), (6)

with p the baryon-mass density and s the entropy per unit
baryon mass. (That is, p:=mgn, with n the number density of

baryons and mp the average baryon mass.)
Given a family of perfect-fluid spacetimes specified by

Q(N)=[gap(N),u(N),p(N),s(N)], (7)

one defines the Eulerian change in each quantity by 6Q
=(d/d\)Q(N).

“In particular, in the isolated horizon framework, for a horizon
with a single Killing vector, one shows the existence of a charge E
defined on an isolated horizon for which E = k 5A [27]; in our case
this is satisfied by the charge 6Q;= 6Q;;+ 6Q; defined on the ith
disconnected component of the horizon by Egs. (49) and (53). Our
first law, in contrast, relates this change in the black-hole charges to
the changes in the Noether charge of a sphere surrounding all black
holes and all matter and to the changes in the entropy, baryon num-
ber, and circulation of the fluid. The existence of such a first law
depends precisely on what is not assumed in the isolated horizon
framework: a globally defined Killing vector.
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We introduce a Lagrangian displacement £ in the follow-
ing way: Let Q:=Q(\), and let ¥, be a diffeo mapping each
trajectory (worldline) of the initial fluid to a corresponding
trajectory of the configuration Q(\). Then the tangent £%(P)
to the path A\— W, (P) can be regarded as a vector joining
the fluid element at P in the configuration Q(\) to a fluid
element in a nearby configuration. The Lagrangian change in
a quantity at \=0,’ is then given by

d
AQ==E‘I’—AQ()\)|>\:OZ(5+£5)9 (8)

The first law will be written in terms of integrals over a
spacelike hypersurface 2., transverse to k%, whose boundary

19E=SUiBl~, (9)

is the union of black hole boundaries 5; (B;, is the ith dis-
connected component of 3 NH™), and a 2-sphere S that en-
closes the fluid and all black holes. Define a scalar ¢ by
setting /=0 on ¥ and requiring k*V, t=1.

We can write u® in the form,

u=u'(k“+v*), (10)

with u’: =u*V,t and v* a vector field on X,

vV, t=0. (11)
The fact that W, maps fluid trajectories to fluid trajectories
and the normalization u“u,= —1 imply [29-31]
@ ! a, B
Au =5 u‘u uAgg,. (12)

One obtains an action for a perfect-fluid spacetime by con-
sidering perturbations for which the entropy and baryon
mass of each fluid element are conserved; and we use this
action to define a Noether charge Q associated with k¢, for
each spacetime Q(MN). Then for general perturbations, in
which the entropy and baryon mass of each fluid element are
unconstrained, we use the charge Q to write a form of the
first law for perfect-fluid spacetimes that have one Killing
vector and a Killing horizon (and that are not, in general,
asymptotically flat).

When the entropy and baryon mass of each fluid element
are conserved along the family Q(\), we have

As=0 and A(pu“y—g)=0, (13)

implying

Ap 1
L _ g aB .
p 2q Agaﬁ7 (14)

SThe Lagrangian change is analogously defined at any \,: The
diffeo ¥, =V, , }\O\If;ol maps each fluid trajectory in the configu-
ration Q(\) to the corresponding trajectory of Q(\ +\), whence
AQ(Ng)=(d/dN)T _, QN +\g)y=o-
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and the local first law of thermodynamics for the fluid,

Ae=pTAs+hAp, (15)
with
e+
n=""r (16)
p
yields
Ae Ap 1
= = _g%B
p p 29 R8as (17)

From these relations, it follows that the scalar density

cz(LR—e) J—g (18)

167

is a Lagrangian density for a perfect fluid space time. That is,

1
L= 1= 8(RV=g) = Ale=g) +Vule£)V—g.

(19)
and [when As=0 and A(pu®y—g)=0], we have

1 1 1
=A(eV=g)=— (etp)qPAgupt 5 €8 PAgup

V=g

1
= 5 TaBAgaﬁ

1
=-3 TP g 0t E,VT P =V (T*PEp).
(20)

That £ is a Lagrangian density is then expressed by the
equation [32]

1 1
—— L=~ ——(G**— 87T ) 8¢ 15— £, VTP + Y, 0%,

\/—_g 167
21)

with

1
O=(e+p)q™Pept 1o (87787 =g g ") Vgbg 5.
(22)

Now one can associate with £ a family of Noether charges
[13,10-12,14,151°

%0ur Noether formalism is similar to Iyer’s extension of the Wald-
Iyer work to perfect fluid spacetimes [12]. Like Schutz and Sorkin
[13,14], however, we use vectors instead of forms, and our La-
grangian displacement arises from a map ¥, from the manifold to
itself, not, as in Iyer, from a projection onto the manifold of fluid
trajectories.
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0= fﬁQ“ﬁdSaﬁ, (23)
N
where
1
Q*F=— QV“kaLk“Bﬁ—kﬁB“, (24)

and B%(\) is any family of vector fields that satisfies
1 d
[—g d\
By choosing B4(0)=0, we make Q(A) finite; and, as we

will see, Q is independent of the sphere S, as long as S
encloses the fluid and any black holes. Outside the matter,

(B4-g)=0°. (25)

1 .
B= 17— (8"7gP = g"Pg ")\~ Vg8 ,s(A) + ON?),
(26)

where %ﬁ is the covariant derivative of the metric g,5(0).

The generalized first law will be found by evaluating the
change 6Q in this Noether charge, allowing perturbations
that change the baryon number and entropy of each fluid
element. We restrict the gauge in two ways: We use the dif-
feomorphism gauge freedom to set 6k“=0. The description
of fluid perturbations in terms of a Lagrangian displacement
&% has a second kind of gauge freedom: a class of trivial
displacements, including all displacements of the form fu®,
yield no Eulerian change in the fluid variables. We use this
freedom to set Ar=0. Because 6r=0 (¢ is not dynamical),
this is equivalent to the condition &=0. Equation (12) now
implies

Au' 1 s
—t=§u"‘u Agap. (27)
u

Then, from Egs. (12) and (27), we have Au®=Au'(k®
+v®), while, by Eq. (10), Au®=A[u'(k“+v*)]; thus

A(k*+v9)=0. (28)

For perturbations that include changes in baryon number
and entropy, Egs. (14) and (20) are replaced by

Ap_ 1 Alpy—gu)
qPAg .5t , (29)
p 2 py—gu'
and
;A(ev—gﬁpmﬁ " A(pu'N—g)
V—g u'N—g

1
- E Taﬁ5g aB+ gaVBTaB_ Va( T”‘Bgﬂ)’

(30)
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and the change in the Lagrangian density becomes

h

s

1
- (G*B— afB
1677(G 8TTF) 68 o

Apu'\—g)

——6L=—pTAs—

—£,VT*F+V,0° (31)

To find the change 6Q in the Noether charge, we first com-
pute the difference,

5{Q—Z Q,}, (32)

between the charge on the sphere S and the sum of the
charges on the black holes 5;. As we show below, this quan-
tity is invariant under gauge transformations that respect the
Killing symmetry. Write Q=Q+0Q; (Qg the Komar
charge, Q; an additional contribution involving the Lagrang-
ian density), with

= lﬁvakﬁd
Ox= =g §VdSas

50, = fﬁ (k*OP—kPO)dS 5, (33)
s
5(Q_2 Qi) :5(QK_Z Qki| T QL_Z Qu)~
(34)
From the identity
VgV kP =R gkP, (35)

we have

1 1
— = — — arp = — a B
0k~ 2 Oxi=~ 3 ﬁgv KPS 5= g LR kBdS,

(36)
__ ! f G%kPdS L J Rk%dS
T 8w)s BT TP qem)s a
(37)
Now
—T%3kPdS = — T 5(kP+0P)dS .+ T pPdS,,
=ek“dSa+(e+p)u“quBdSa,
(38)
whence
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k“ds,,

03 0 [ [z
+Jz(€+p)u““ﬁvﬁd5a
1
_ JEG(GQB_ 87T )kPdS,  (39)
and

5( QK_Zi QKi> =— f25£d3x+ JEA[(G-Fp)u”‘quﬁdSa]

1
— R @ a B
5st(G 5= 8TTp)kPdS . (40)

The second term on the right of Eq. (34) is given by

3§ (k“®@P—kPO*)dS .5
%

5(QL—E QL,»)
= LVB(k”‘@B—kB"‘)dSa

:f VBG)Bk“dSa—f £,0%s,,,
3 3

(41)
where we have used the relation V,k“=0 to obtain the last

equality, and VBG)B is given by Eq. (31). Then, adding Egs.
(40) and (41), and using the relations

A[(e-i—p)u“uﬁv'BdSa]=hu5vBA(pu“dSa)]
+UBA(hu5)pu“dSa
+(e+p)uugt (£PdS,, (42)
where AvP=—AkP=£ ,£P is used and
£,0%S = (e+p)qgt (£PdS .= (e+p)uupt (£PdS,,,
(43)
where £k§ﬁVﬁt=O is used, we obtain an expression for

8(0—2,0)):

fo-3 o],

T h
—Aspu®dS, + —+huﬂv’3
u' u'

X A(pudS ) +vPA(hug)pu®ds,

1
_ a _ a \1L.B
871_5L(G 5= 8TT5)kPdS,,
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+J —1 (GP—87T*P) 5
s 167 @B

+ fﬁVaT"é}kaSy. (44)

We next evaluate the black-hole charges Q;. Recall that,
by Prop. (IL.5), k“ is tangent, on each disconnected compo-
nent H;, to the null generators of the horizon, with surface
gravity k; given by

kPVgk®= Kk (45)

On each B;, let n® be the unique null vector field orthogonal
to 3; and satisfying n,k“=—1. The area element of B; is
then

1

dSO‘BIE

(kanﬁ—kﬂua)dA. (46)

Using the Killing equation, V%#=V!k#! and Eq. (2) to
evaluate the integrand of Qg;, we have

1
V“k'gf(kal‘tﬁ_kﬁna):kBVBka“a: K, (47)
implying

Qxi=— % fﬁsivakﬁdsaﬁ:%mi. (48)
Finally, following Bardeen et al. [24], we show that
5QL1':_L5K5A[' (49)
8
Using 8(V,kp) = 8(Viokg) = Vo 6k g, we have
S;= 8(n“kPV k 5)

= OnkPV k g+ nkPV, , Sk ) . (50)

Because the horizon is unchanged in our gauge, and k, is
parallel to the null normal to H;, 6k,=ak,, some function
a on H;. Then

5n“kBVakB= —on“kik = kn*Sk,,= — kK;a
= —an®k gV, kP=—n*5k gV, k"
=k“nPV, kg, (51)
where, in the last equality, we have used £ ;0k,=0. From

Egs. (50) and (51) and from the vanishing of do 5 and 56,
we have

1 a.. B B, a 1 o
5Ki=§(k n’+kPn )VaakﬁZ—EV ok,

[
== S kVPSg 0. (52)

Now
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80,,= fﬁ (k*OP—kPO*)dS .
B;

1
= a(oBé,ve_ ;BY,0€\Y 5
= B[_k(g g7 —g""g%)V, 08 se

1
Xf(kanﬁ_kﬁna)dA

= ay B
167 Bik \Y 5ga,BdA
1
= - _5KiAi' (53)
8m

The first law now follows from Eq. (44) for 8(Q—=,0)),
Eq. (48) for Q;, and Eq. (53) for O;;:

s0- |
b

+v'BA(huﬁ)pu“dSa

T h
p—Asu®dS + ——i—hulgv'8 A(pu“dsS,)
u' u'

1

1
+z 8_7TKi5Ai

1
- — 5f (G*3—8mT*p)kPdS,
3

8
]
3

When the family of spacetimes satisfies the field equations,
the last line vanishes and we obtain a first law of thermody-
namics in the form

s0- |
b

+vBA(huﬁ)pu”‘dSa

! ap ap B a |1y

(54)

T
p—IAsu“dSa-l—
u

h P Y
;-i—huﬁv A(pudS,)

1
+ 2, c—K;0A;.
2 g KioA, (55)
Equivalently, writing

r _ u
.= = : (56)

T::—
t t
u umnmg u

and

dMyg=pu®dS,, dS:=sdMg, dC,=hu,dMgy,

(57)

we have

_ _ 1
5Q=f [TAdS+ pAdMg+v*AdC, ]+ 2, S KidA;.
3 i
(58)
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The relation between this form and that for an asymptoti-
cally flat spacetime with two Killing vectors, t* and ¢, will
be found in Sec. IV B.

We noted above that the difference 6(Q—Q;) is gauge
invariant. In fact, we can see as follows that &(Qg
—2,0k;) and 6(Q;—2,0;,) are separately invariant under
gauge transformations that respect the symmetry k. The
gauge transformation associated with a vector field n“ is
given by

0,9=£,9, &*(n)=-—n" (59)
The corresponding Lagrangian change in any quantity is then
identically zero:

A,=8,+£ ,=0. (60)

From Egs. (41), (31), and (60) the change in &(Q,
—2,0;,) due to a gauge transformation is given by

5( QL_Z QLi):fEVBG)BkadSa: f25,7£d3x, (61)

when the field equations are satisfied. Decomposing 7 in the
manner

n*= nPVatk*+ 5%, (62)

with 7*V,r=0, and using £,7%=0, we have 6,L=£,L
=Va(L7%),

6( QL—Z QL,»)= Laa<£7‘7“>d3x=o, (63)

because £ vanishes outside the fluid (on ).
Similarly, from Eq. (37),

1
5(Q1<_2;4 Qki):_gészaBdeSa' (64)

Again, for a gauge transformation that respect the Killing
symmetry, the right side is an integral over the boundary %,
of a quantity that vanishes outside the fluid.

Lastly, we verify the assertion made previously, that Q is
independent of the 2-surface S on which it is evaluated, if S
encloses the fluid and any black holes. This is immediate for
Qk from Eq. (37) and (48). For Q (and Q,), it follows from
the fact that Q= Qg at A =0, together with the implication of
Eq. (54) that dQ/d\=8Q is independent of S along any
sequence of equilibria Q(N).

First law in Hamiltonian framework

In applying the first law to spacetimes that are spatially
conformally flat, we will need to write it in a 3+ 1 form, with
metric y,, on ¥ and its conjugate momentum 7’ as inde-
pendent variables. Until Eq. (79) of this section, the vector
field k“ that generates time evolution is not assumed to be a
Killing vector.
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Let % =3, be a Cauchy surface transverse to k¢, and let
3, =x(2), with yx, the family of diffeos generated by k“.
Denote by v,,(¢) the spatial metric on %,. Let n® be the
future-pointing unit normal to this foliation, and recall that
one can identify spatial tensors on X, with spacetime tensors
that are orthogonal on all of their indices to n“. In particular,
the projection 7,z orthogonal to n,,

yaﬁ:gaﬁ+nanﬁ’ (65)

is the 4-tensor associated with the family of 3-metrics y,,(7)
on the slices 2, . Although k¢ is not everywhere timelike, the
fact that it is transverse to a family of spacelike hypersur-
faces means that we can introduce a nonvanishing lapse a
and a shift w” that relate d,=k“ to n“ in the usual way,

k“=an®+ 0% ©“n,=0. (66)

Then, in a chart {¢,x'} for which 3, is a = const surface, the
metric g,3= Yap— Noltg has the form

ds?=—a’dt’+ y,(dx'+ 'dt)(dx'+ 'dt).  (67)

With D, the covariant derivative of the spatial metric vy, ,
the extrinsic curvature of ¥, is given by

1 1 )
Kab:_§£n7abzz(_7ab+Dawb+waa)’ (68)

where 7,,, is the pullback to % of £ «Yap» vanishing when k“

is a Killing vector.
By taking as

w“b,'yab ,a, o with

independent variables the quantities

,ﬂ_ab: _ (Kab_ ,yabK) '}’1/2, (69)
we now generalize the derivation of the first law to permit
independent variations 87, 8y, , Sa, Sw®.

In terms of Hamiltonian metric variables, the gravitational
Lagrangian density takes the form [33]

RN—g=m"y,,— aHg—0,C6+D,(— 2D%ay'?
-2’7+ 07—, (70)
where

He :=—2G*n ngy'"

1
:_3R,yl/2+(,n.abﬂ_ab_5ﬂ_2) y—l/Z’ (71)
Cé=—2G"Pyingy"*=—2D,m". (72)

Regarding L=[(1/16)R—€]—g as a function of
b, Yap - 0" and the fluid variables, we rewrite Eq. (31) in
the manner
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h
SL=—ay"*pTAs— —ZA(putaym)
u

+ m( —daH—dw’C,+ 57T”b[ Yar—D 0,
1
_waa_za Tab™ Eyabw 7_1/2

_ 5,yab(Gab_ SWS“b)ame _ é\_«aVIBTaBa,yl/Z

_ 1 ,
+D, 0"~ E(éﬂ-ab'}’ab) . (73)

Here, denoting the pullback to 3 of o, by ySo,, we have
set

Sab = TaﬁngbB ’
(74)

PH ::Taﬁnanﬁ’ ja::_TaﬂygnBa

Hi=Hg+16mpyy"?,  CU=CG—16mj y";

(75)

and the remaining quantities in the last two lines of Eq. (73)
are given in terms of (7°,y,,,a, ®%) by

1
O= —167{[—25(D“ay”2)+ (0. 0T+ mdw”
—2my60”) ]y P+ (Y Y =y Py ) (aDy 8y
—Dyady. )+ aletp)g, & —awi’E,}, (76)
) 1 i
Gab: 7Taba—l,y—I/Z_f_ 3Rab_§,yab 3R+ 2’7TaL’7TbC_ 77.77.017

1 1
_ E ')’ah7TCd’7Tcd+ Z ’)’ab’7T2> ,y*l

1
_ ;(Dana_ ,yabDZa)

2 1
4 ; WC(bDC(Ua)’)/7 12 _ ;Dc( ,n_abwc‘) ,y* 1/2’ (77)

and

aégV TP =§[D o (aT®") + D apy—j D’ 0= D (w")].
(78)

For k% a Killing vector and A% any vector field Lie de-
rived by k%, we have the identities

VaAaV_g:DagaJ—7 (79)
f (kaAﬁ—kBA“)dsaﬁzf AdS,, (80)
a3 a3,

where
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ga=aAayZ‘+a)aAan"‘, (81)

and dS,, is along the outward normal to 2 in 3. In particu-
of Eq. (76) is related to ©% by 0,
, implying

lar, the vector @a
=a0,y/+t 0,01

60, = J 0%s,, 60.,=- f 0ds,. (82
s B;

Q can be expressed in terms of (7%, y,, , &, w®) by writing

Vak,e')’gn'g: '}’gva(kﬁnﬂ) - nga”ﬁkﬁ

=—D,a+K,w’, (83)
with K= —(7,,— v, ™)y~ "% Then
1 a a b
0x—2 Qxi=g-| (D'a=K',w")ds,
i mJ g3
1
= R“ gkPdS . (84)
8w
with [34]
R%gkPn,|s=D (Da—K*,0"). (85)

We can verify directly that R“ﬁkﬁna takes the form (85),
when written in Hamiltonian variables, using the Hamil-
tonian forms already given for H, Cg, . and G*°. Equation
(66) implies

1 1
R%gkPn |s=— il P Hg— 37 2C g0+ zav’ahG“b
(86)
Equation (77) gives
1 2 1 1
ab_ _ _Mpo S 2 1 _ab_ __ 2
Y G 3 R+aD aty (277 T 477)

2 1
+ ;’n’"bDawby_ 12_ ;Du(ww”)y_ 2. (87)

and substituting this and the forms (71) and (72), of H and
Cg, in Eq. (86), we obtain

—12_ l a.,—1n

R“Bkﬁna|E=Da Dea+ 7 wly 7 Ty

=D, (D‘a— K% w"). (88)

Consequently, Eq. (40) holds with R and G%gn, given by
Egs. (70), (71), and (72), and with Agaﬂ defined as a func-
tion of (7, ,a,w"), independent of ¢

Finally, combining Eq. (40), Eq. (73) and Eq. (82) in the
Lagrangian derivation, as we obtain Eq. (54):
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5( Q—Z Qi> = L(TAdS+,&AdMB+v“AdCa)

+ T6m . &Tab[Dawb-l-waa

+2a

1
Wab_z 7ab77) Y 1/2}

—adH— w*8C,+ af 8y,,(G*—8mwSs?)
+167E, VTP y“z] d’x. (89)

Here the last two integrals in Eq. (54) are combined by using
20[(Gh—8mTR)kPn,]= SaH+ adH+ dw'C, + w'8C, .
When the field equations are satisfied, and 7%° is given by

1
,n_ab: _ ;(D(awb) _ ,yabDCwC) 71/2’ (90)
we have

5Q:f [TAdS+ pAdM z+v*AdC, 1+ >, k;5A;.
3 i
(91)

IV. APPLICATION TO THE INSPIRALING BINARY
BLACK HOLE-NEUTRON STAR SYSTEM

A. Comparing configurations in quasistationary systems

Our study of a generalized first law was spurred by the
fact that equilibria stationary in a rotating frame—spacetimes
with helical Killing vectors—are used in several approaches
to binary inspiral. In each of these cases, one approximates
the inspiral phase of binary coalescence by an evolutionary
path through a sequence of equilibria. The first law has a
strikingly simple form when used to compare such dynami-
cally related spacetimes: For isentropic fluids, dynamical
evolution conserves the baryon mass, entropy, and vorticity
of each fluid element, and we show that the first law be-
comes

1
0=gn 2 KidA; (92)

or
50=0, (93)

for perfect fluid spacetime with no black holes. In the gauge
that we have chosen (6k“=0), when the spacetime is as-
ymptotically flat and k¢ has the asymptotic form r“+ Q @<,
with 1% and ¢“ timelike and rotational Killing vectors of a
flat asymptotic metric, we find

50=5M—Q 6, (94)

with M and J the ADM mass and angular momentum
at spatial infinity. In particular, the first law in this form
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describes (i) comoving binaries, flows with v“=0; and (ii)
irrotational binaries, potential flows hu,=V,®, with

A(hu,)=V,Ad. (95)

For an isentropic fluid, conservation of rest mass, entropy,
and vorticity have the form

£.(pV—g)=0, £,5=0,
with the relativistic vorticity o,z given by

Wap= qayqﬁé[v'y(hu(?) - Vﬁ(hu'y)] = Va(huﬁ) - V,B(hua)
7)

The perturbed conservation laws have the first integrals
A(pu®y—g)=0,

appropriate to the difference between two flows that are re-
lated by a dynamical evolution. It immediately follows that
the first and second terms of Eq. (55) vanish for isentropic
flows.

To see that the third term vanishes when the perturbed
vorticity vanishes, we use [d,£ /]=0 to write

£,0,=0, (96)

As=0, Aw,z=0, (98)

OZAwaﬁ:VaA(huﬁ)_VBA(hua)’ (99)

implying Ahu,=V,A®, as in Eq. (95). The third term in Eq.
(55) can then be written

vaA(hu/_;)puadSa=f vPVeADpu'k*dS,  (100)
3 3
:f Vi(vPADpu')k*dS,
3

- f Vs(vPpu') ADK*dS,,.
3
(101)

The first term in this last equality vanishes, because it is the
integral of a total divergence. [Write (VBAB)k“=VB(ABk“
—A“kﬁ) and use Stokes’ theorem; or, more concretely, write
kedS = \/—_gd3x.] For the second term, recalling the defi-
nition of v in Eq. (10), we have
Va(vPpu')=V(puf) = £ (pu') = pu'Vgk?,  (102)

with each term on the right separately vanishing.

Thus, for spacetimes related by a perturbation that locally
conserves baryon mass, entropy and vorticity, the first law
has the form (92), as claimed.

B. Asymptotically flat systems

We will use the 3+1 formalism of Sec. IIT A to evaluate
00=00k+0Q;. In the post-Newtonian and in the
Isenberg-Wilson-Mathews spacetimes that have been used to
describe binary systems, the 3-metric has the asymptotic
form
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Yar=FapTO(r™ "), (103)

where r=(5,x'x/)!, with {x} a chart for which f;;=5;;.

By writing k“=an“+ w?, as in Sec. IIl A, we choose a
shift @ associated with a comoving chart at spatial infinity.
That is,

w'=Q ¢+ B, B=0(r %, (104)

and ¢“ is a rotational Killing vector of the flat metric f,,
¢*=x"(0,)"—x*(3,)".

The extrinsic curvature and lapse have asymptotic behavior

where
(105)

K,,=0(r"%, a=1+0(""), D,a=0(r?).
(106)

To evaluate 6Q, we first define two asymptotic masses
and the asymptotic angular momentum. A mass M g seen by
a test particle in Keplerian orbit is associated with the
asymptotic form of the lapse,

1 1
= a —1i 2
Mg: 47TJOOD ads, rl:rrolo 477Lré’,ar dQ, (107)
where

f = limf
©  rowd S,

with S, a sphere of constant r. In terms of the metric poten-
tials, M g has the form of the Komar mass associated with a
timelike asymptotic Killing vector .

The ADM mass is computed from the 3-metric:

1 ‘
M spm= 16_7Tf (facfhd_f“bftd)ab%ddsa

1
= — | —_— 2
,lg?c ZWL'Q,W dqQ. (108)

Finally, the angular momentum associated with the
asymptotic rotational Killing vector is given by

1 1
— a b — a b
J SWLW ,BbdS, 87TLK ,BbdS, . (109)

As in the first equality of Eq. (84), we have

1
- —Dig+ K¢ b

1
- a  _ pa b
87TLO(D a—K*Q¢")dS,, (110)
whence, by Egs. (107) and (109)
1
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We obtain 6Q; from Egs. (82) and (76). Using ¢*D,r
=0 and the asymptotic behavior given above, we have

0= L{[—2f”25ma—25(wa Q¢
167 b

+28m, QP12 (f = P YDy 8y gl
+0(r %), (112)

1
5QL:m{—25Jm1)aadsa+25LK“bQ¢”dSa
—206 f K, ¢bdS,+ f (fe s

_fabfc‘d)DbéycddSa:|

1

5 OM i+ 8(Q) — Q.87+ SM apm

1

Adding Eq. (113) to §(111), we have
1 1

in agreement with the usual first law.

C. The first law for spacetimes with a conformally flat
spatial geometry

As mentioned earlier, several groups have recently ob-
tained quasi-equilibrium sequences [6—9], approximating bi-
nary inspiral by a sequence of Isenberg-Wilson-Mathews
spacetimes  (IWM  spacetimes),  spacetimes  whose
3-geometry is conformally flat and whose five metric poten-
tials satisfy a truncated set of five field equations. More pre-
cisely, the metric of a IWM spacetime satisfies the constraint
equations and the spatial trace of the Einstein equation, to-
gether with the maximal slicing condition for its conformally
flat slices; and its matter satisfies the equation of motion,
VBT“B =0 (see, e.g., Isenberg [35] or Flanagan [36]).

As Detweiler has pointed out, when the spacetime has a
helical (or timelike) Killing vector, one cannot in general
solve all of these equations simultaneously for a metric with
conformally flat spacelike slices. One must omit one relation
to accommodate the new constraint that the existence of a
Killing vector imposes on the extrinsic curvature, K, . We
note first that, if one omits the K=0 condition, the resulting
spatially conformally flat spacetime satisfies an exact first
law, despite the fact that only a truncated set of field equa-
tions are imposed.

In the second part of this section, we note that one can
alternatively retain the K=0 condition if one simply defines
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a tensor K, by the form [Eq. (123) below] that the extrinsic
curvature would take in a spacetime with a helical Killing
vector foliated by K=0 slices. We show that the first law is
exact in this framework. This is surprising, in view of the

artificiality of the definition of K,, and the fact that one
component of the Einstein equation is not satisfied in the
IWM framework.

In each case, one has a spacetime foliated by hypersur-
faces whose spatial metrics have the form

Y= Fup - (115)
with f,, a flat metric. The corresponding 4-tensors,
Yap™ ¢4fa/3, (116)
are Lie derived by the Killing vector k“:
£1Yap=0, £44=0, £,f,5=0. (117)

In particular (although we will not use the fact in this sec-
tion),
k“=t*+Q¢“, (118)
with ¢“ a rotational Killing vector of f,, .
In the first case (with K not required to vanish), the space-
time satisfies on each X, the equations
H=0, (C,=0,

Yapr(GP—87T)=0,  VzT*F=0,

(119)

together with the relation (90) expressing 7 in terms of the
metric. Because

oy
5Yub:47 Yab (120)

it is exactly this set of equations that occur in the action and
in the 3+ 1 form of the first law (89), when one compares
two spatially conformally flat spacetimes.

Finally, comparing asymptotically flat spacetimes of this
kind, with no local change in entropy, baryon number, or
vorticity, we have

SM=Q68]+ D, k;5A,;. (121)
We consider next solutions (%”b,ﬂyab,a,w“,e,u“), to the
same set (119) of equations, now with 7=0:

~ab _ _I‘{ab

™ v (122)

with K, the tracefree part of the extrinsic curvature:

. 1 2 .
Kab:_ Dawb+waa_ §7achwL .

a (123)

One writes H, C,, Vq,(G**—87T4"), and V,;T“E as they
occur in the Hamiltonian formalism (for the metric), as func-
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tions of (w“b,yab ,a,w) and the matter variables; one sub-
stitutes for 7, and 7%° the expressions

Yab= ¢4fab ’

1 2
“ab_ _ a b+ b, a__ — .ab c —1/2
T w Dw”+D°w 3 D .o |y 7,
(124)

and one solves the resulting system of equations for
(Y, a,0;€,0%)

H=0, C,=0, (G"—8mS®)y,,=0, VzT*¢=0,

(125)

where
H=H(T, @, 0% €,u),
C“=C“(7T”b,yab ,a,w%e,u”),

Gab Yab= Gab ’ygh( %ab’ Yab » &, wa; E»ua) .
(126)

Then, for a family of such solutions, the quantities da, dw,
and 8vy,,=4(6¢Yl¥)y,, occurring on the right of the first

law (89) multiply expressions that vanish. Because 87 is
traceless, the expression involving 877 has the form

[P —12z
— 67D ,w,+Dyw,F2ay” ]

167
: b 2 ¢ —1n22
“ 16w om D“wb+D"wa_§7achw +2ay wg,
-0 (127)

Equation (89) thus yields

A

50, — % 5J REkPdS .= L[TAdSJrﬁAdMBJr v'AdC,].
(128)

To recover the first law in the form
oM =Q46J, (129)

we must show that
—1 5[ RekPdS = —1 5f VekBds 3 130
8 2 /3 (23 8 (92 ap ( )

This is not obvious, because, in replacing the extrinsic cur-
vature by its tracefree part, we invalidate the Killing identity
(35):

VsV ekP#RY( T, a0 kP (131)
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Remarkably, however, the n, components of the two sides of
this inequality differ by a divergence; and the asymptotic
behavior of the spacetime implies the equality

= lfvakﬁds = 1]1%%%5 132
Ox=~g-|. wp= " g | RpkPdSa. (132)

That is, from Eq. (85), we have

VgV kPn | s =RakPn,|s=D,(D"a—Kjo"); (133)
and
RGkPn,|s=D (D“a—Kjw"). (134)
Then
VeV kP o|s —RgkPn,ls =D [(Kj—Kj) ']
1
=— gDa(w"K).
(135)
As noted in Sec. IV B,
0'=Q0¢*+ B%, with B*=0(r?), (136)

where ¢“ is a rotational Killing vector of the flat metric f,; ;
and K=0(r"?).” We then have

1 -
QK:_G Rﬁk dSa

1 1
— pay B -
= RoKPdS,,

- b
87l 24 ) s @ KdSs

! RekPdS
8wy P @

(137)
as claimed.
From Eq. (108), we conclude

SM=Q35J, (138)

along a family of conformally flat solutions to the TWM
equations, written in terms of (7, ¢, a, w%).

Note that the equation & BVaT“B =0 is satisfied, because,
for an isentropic fluid, the equation of hydrostatic equilib-
rium, conservation of rest-mass, and the one-parameter equa-
tion of state together imply V,7*#=0. To see this explicitly,
we decompose the divergence of the stress tensor as follows:

"If, however, one allows a nonzero 3-momentum, with boosted-
Schwarzschild asymptotics, then =1+ f(r)/r+0O(r ?) and B¢
=0(r~!). Because K is given by (1/a)[(6/4)Q¢*D ¢+ D B],
one can only demand K= o™, BK= o(r 2, allowing a finite
contribution to Qg .
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vV, T4F= (qpy=upuy)VoT*7=plu?V,(hup)+Vgh]

FughV,(pu®)—pTVgs. (139)
In constructing an isentropic (s=const) equilibrium model,
conservation of rest mass is assumed, and a barotropic equa-
tion of state p=p(p) is used. Helical symmetry and the as-
sumption that the fluid flow is either co-rotational or irrota-
tional then leads to a first integral of the Euler equation
u?V,(hug)+Vgh=0. It is this first integral, specialized to a
conformally flat metric, that is solved in the IWM formalism,
implying that V,7*#=0. Thus, as claimed, all terms involv-
ing the field equations vanish in Eq. (54), and the first law
holds for IWM spacetimes in the form (55).

As in the exact theory, when the system includes black
holes, the «;0A; terms refer to Killing horizons. The IWM
spacetimes do not satisfy the Raychaudhuri equation for the
null generators of the horizon; as a result, as noted in the
Introduction, Killing horizons in IWM spacetimes need not
co-rotate with the orbital motion.

V. DISCUSSION

The first law can be used to deduce a criterion for orbital
stability for the asymptotically flat models of binary equilib-
ria discussed above, using a theorem of Sorkin [37]. Con-
sider a one-parameter family Q(\) of binary equilibrium
models along which baryon number, entropy and circulation
are locally constant (the Lagrangian changes As, AdMy,

and AdC, vanish). Suppose that /=0 at a point \, along the
sequence, and that (0J#0 at \,. Then the part of the se-

quence for which (1J>0 is unstable for X\ near \,.
The result relies on a first law in the form

dM=QdJ (140)
and on the fact that the equilibria are extrema of mass with J
constant. As we have seen, this is the case for a configuration
space in which baryon number, entropy, and circulation are
fixed for each fluid element. For asymptotically flat models
with one or more black holes, if one also fixes the area of the
horizon along a sequence, then the same criterion above can
be used to diagnose stability.

In general, the proof of the theorem shows only that the
spacetime is secularly unstable on one side of the turning
point. In the present context, however, the theorem shows the
existence of nearby configurations with lower mass that can
be reached by perturbations that conserve baryon number,
entropy, and circulation; this suggests that the criteria locates
the onset of dynamical instability.

When one models stationary binary systems in full GR,
the lack of asymptotic flatness leads to several ambiguities.
For binary charges in Minkowski space, one can obtain a
one-parameter family of equilibria if one simply replaces
asymptotic regularity (finite energy) by a condition that the
electromagnetic field be given by the half-advanced + half-
retarded Green’s function. In GR, it remains to be seen
whether one can find an analogous asymptotic condition.
Simply requiring equal amounts of ingoing and outgoing ra-
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diation is a weaker condition even in Minkowski space; in
GR one must have asymptotic conditions as restrictive as
asymptotic flatness to avoid ambiguity in each asymptotic
multipole. Finally, as mentioned in Sec. III, the helical Kill-
ing vector has an arbitrary scaling that one must resolve to
obtain a unique value for the charge Q of the first law.
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APPENDIX A: VIRIAL RELATION IN IWM SPACETIMES

In this appendix, we derive a virial relation for quasiequi-
librium states in IWM spacetimes. Incidentally, we show that
the virial relation is equivalent to the relation M x=M ypp.°

As described in Sec. IV C, we use a 3+ 1 formalism, with
3-metric y,,=*f,,, and with a helical Killing vector that
has the form

k=1+Q ¢*, (A1)
where ¢“ is a rotational Killing vector of the flat metric f,, .
Throughout this appendix, we use Cartesian coordinates
t.{x"} for which f,,, has components f;;= &;; and *= & . In
the IWM formalism, one imposes the maximal slicing con-
dition K=0 on the family of #=const surfaces ,; and, in-
stead of solving the full Einstein equation, one solves the
Hamiltonian constraint, the momentum constraint and the
equation for the slicing condition. Here, however, as in Sec.
IV C, to obtain a set of equations consistent with the exis-
tence of a helical Killing vector, we replace the extrinsic

curvature in this set of equations by its tracefree part, K.
The basic equations are then

5

v
Ay=—27py— ?K{ =Sy, (A2)

0;(\NykD) =8 iy, (A3)

A A

4 k 7 4 )i —
AX:Z’]TXIJI (pH+2Sk)+§le/f i j:SX’
(A4)

where A denotes the flat Laplacian for three space, \/;
=det(y;;)= J°, and y=a. [See Egs. (74) for definition of

$The relation M =M 4py for stationary and asymptotically flat
spacetimes has been proven by Beig [38], and by Ashtekar and
Magnon-Ashtekar [39]. A virial relation relying on this has been
derived by Gourgoulhon and Bonazzola [40].
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pu- ji and S;;.] The energy-momentum tensor is assumed to
be nonzero only inside the light cylinder (x*+y?)?<Q ™1
The shift vector B of Eq. (104) satisfies

BY=—an*+1°. (A5)

The Cartesian components IA({ are given in terms of 8’ by

ol ) j g gl— 2 sig gt
Ki=5_| 08"+ 0,8 0 B'~ 5 8/08").  (A6)

The asymptotic behavior of geometric variables is that of
Egs. (103)—(106),

y=1+0(r"), (A7)
x=1+0(™ "), (A8)
B'=0(r"2), (A9)
Ki=0(r73), (A10)

appropriate for an asymptotically flat spacetime in a chart for
which the total ADM 3-momentum vanishes:

1 )
= j —
P=g- é)r%K,\/}daj 0, (A11)

where dUJ:(Djr)rde and \/; is computed in Cartesian
coordinates.

We now derive the virial relation and show the equiva-
lence of Komar and ADM mass for quasiequilibria of two
neutron stars. For r—o, y and ¢ behave as 1 —M X/2r
+0(r~?) and 1+ M spp/2r+ O(r~?). From this asymptotic
behavior, we can define M, and M ,py; by the surface inte-
grals,

1

M. =—
X 2 |,

1 .
Since M, =—M xpy+2Mg, our goal is to show M,

=M xpm-
Using Gauss’s law, they can be rewritten in the manner

1 5
Mx=ﬁf (S + 879,x0,¥)d’x, (A13)

1 .
MADMZEJ (XS,/;_ 5ij9il/’(7j)()d3x- (A14)

PHYSICAL REVIEW D 65 064035

We next derive a relation that will be used several times in

. SEipi_ [—fiq i
Lhe calculations that follow. From x ¢ K/K'= JVyK? d;B', we
ave

J X¢51%§1%jid3x=f VR, Bldx
=- J (NyRDB'd*x+ 3€ VyRiBlda,

=—87TJ' Jyj.Bidx, (A15)
where we use the asymptotic behaviors at r—o and Eq.
(A3) to obtain the last line. $ without specification of a sur-
face denotes a surface integral over 9%: §=¢,_ ... From the
vanishing of the total ADM 3-momentum (more precisely,
from the vanishing of [,_..KI\/ydS ;) and from the momen-
tum constraint (A3), we have

0= f jiydx,

(Al6)

which may be interpreted as the linear momentum of a neu-
tron star.

Using Egs. (A13) and (A14), we write the difference be-
tween M spy and M, in the form

1 Scky S soip
MX_MADM:; 2axyrSi+ §X¢ KiK;

d*x

+ 890,40, x

1 .
=2 J [ﬁ{jkvkﬂalﬁ}— 3V

d’x, (A17)

| B
+—879.40,
2775 d;d;x

where we use S7=ju,Y/(au’)+3P, vF=u*/u'? Ylu,

=u'(v*+B%), and Eq. (A15). In the following we show that

the relation M, =M spy is equivalent to the virial relation.
To derive the virial relation, we first write the general

relativistic Euler equation 'V, T% =0 in the form

3Gy + 0 yo!) + a(ayP) + puiarx

1 4 . 1 ! i
—(pu+ 28D XU = Vi1 B'+ 5 XS ;07 =0,
(A18)
9The above definition for v* is used only in this appendix. Note

that v* was differently used for spatial velocity vector in co-moving
frame with k“ as defined in Eq. (10) in main sections.
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where y"/=y"7y*. Equation (A18) is a fully general relativ-
istic expression. In the IWM spacetimes, y"/=7,;=§;; and
consequently, the last term in Eq. (A18) is neglected.

In the following calculation, we choose the x!-axis so
that, on some time-slice 2,,, it lies along the centers of the
two members of the binary system.

As in the Newtonian case, the virial relation can be de-

rived by taking inner product with x* and by performing an
integral over three space, i.e.,

J M0, Y) + 0, yo)) + daNyP) + pui o

—(pu+2SHx ¥ o p—lyj,0,8'1=0. (A19)

Below, we shall carry out integrals separately. For simplicity,

we omit hats ( A) in the following.
(1) First term: Since we assume the existence of the heli-
cal Killing vector, we have a relation

0, J;=—QL3($' T)+ T,0, '], (A20)

where we use d,¢'=0 and J,=j, V. In the present coordi-

nates, ¢'=(—x?,x' —b,0). After an integration by parts, we
obtain

f ko, T d*x=Q f (¢* Ti— Tix* o) d’x. (A21)

From a relation x*d, ¢'= ¢'+ 6*'b, we immediately find

f xkﬁt(jk\/;)dsx:_bﬂsz yd*x=—bQPys,
(A22)

where Pyg is interpreted as the linear momentum of a neu-
tron star [see Eq. (A16)].

. 1 ) .
- f Vyvjptapid’x=—— f 3 (\NyKDx o pid’x
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(2) Second and third terms: An integration by parts imme-
diately yields

(A23)

fxkaj(jkvj\/;)dSXZ_fjkvk\/;dSXa

(A24)

f xké’k(a\/;P)d%c:—?)f a\/;Pd3x.

(3) Fourth and fifth terms: Using Eqgs. (A2) and (A4), we
can rewrite these terms as

P’ I x— (pu+2S)x ¥t

L gt Axa - R (a
=5 LAYIXTAXIY = —— | =/
2 167 Jy

(A25)

Taking into account an identity,
f [(“ap) Ax+ (x“px) Aldx = f 80 xpd’x,

(A26)

we find

f HpupPax—(pu+2S) x 9o, pldx

(4) Sixth term:

KK

15"1(9 J.p+ ka(a)cﬁ
~ iX0i —, _ X 0| —F— X.
2 AT 167 \/;

(A27)

1 ; . . ) 1 ' '
~ | DKist 00,8+ ko g0 o § \ykixtapa,

1 . ) S 1 . ) .
=3 f [au(yKDxta,B1+ 2\ yK] 9, d x + o— 35 VH(Kix = Kix) ;B doy

1

8

24y

axk 12177 1ri . .
=— — | | == a (¥ KIK) +2a\yKIK}'

1 . . .
dPx+ 37 § \/;/(Kgxk—fof)ajﬂ’d(rk
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a\yKIK'— ¢12K{5Kjx"ak(
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x__

on P ey SKIKix*doy

ol

1 4
k k.j i
+5o 3E Vy(Kix*—Kix)a,Bd o,

161 {877'\/;] B + Y KIK x g (%)

1 L
T8 é \/;fo-’&jﬁ’da'k,

where we use Egs. (A3) and (Al15). Because of the
asymptotic behavior, the surface terms at r—o° in the last
line of Eq. (A28) vanish. Equation (A16) implies that the
center of mass of the system does not move in the x? direc-
tion, that the sum of the momenta of the neutron stars van-
ishes.

Gathering the results of Egs. (1)—(6), we obtain the rela-
tion

I
o=—f (jkvk\/?y+3aﬁp+ S0

Ve ) s
—3 vieB* | dx. (A29)
This is the virial relation for a neutron star binary system in
quasiequilibrium.

From Eq. (A17), the right-hand side of Eq. (A29) is writ-
ten as

M, ~M
0= — —X " ADM 5 ADM. (A30)

implying M xpy=M =M, if the virial relation holds.
APPENDIX B: THE FIRST LAW FOR NEWTONIAN

BINARY SYSTEMS

In this appendix, we derive a first law of thermodynamics
for Newtonian gravity. We start with a first-order perturba-
tion of the energy of a perfect fluid

E=T+W+U, (B1)
where
1
T= fzpvde W= f pCI)N+ V(IDNV(I)N
v
U=f pudV. (B2)
1%

dPx+ — a¢6K-{K;xkdok

167

(A28)

and ®y and u denote the Newtonian potential and specific
internal energy.'® An integral equation

6JprdV= JVAfpdV-i- ijA(pdV), (B3)

is satisfied for a perturbation.
The perturbation of the kinetic energy 7 can be expressed
as follows:

. 1 . .
5T=J’ pv’Av,»+J —va(pdV)-i-J’ [&'v,;Vi(pv')
% v2 v
+p§jviV,-vj]dV— jg pvivjfde,- (B4)
av
where we used the relation
1 ) . ) .
EAU =v'Av;—v'v;V,¢. (B5)

The perturbation of the gravitational potential energy be-
comes

5W:f CI)NA(pdV)—i-j pEV.DAV
Vv 14

+ m (QVVi(DNﬁcDNdSi . (B6)

The perturbation of the internal energy becomes

We use v for the fluid velocity vector in the inertial frame in
this appendix. Note that it was differently used for spatial velocity
vector in co-moving frame with k% as defined in Eq. (10) in main
sections.
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P
5U=j pTAst-FJ (u—l—— A(pdV)
v v P
+ f EV.PdV— 35 £Pds;, (B7)
1% v
where we used a relation
V,EdV=A(dV), (B8)

OE= 06T+ 6W+ 66U

1
:f pTAst+f (EU +dytut+—
1%

. ) 1
+&'p| v/Viv,+ ;V,-P-FV,-CI)N) -

1 P
=prAst+J —v2+dytut+—
v vi2 P

ol

——HﬂVv + VP+V<I)N)dV

Next, we derive a variation of the total angular momen-
tum J defined by

J=J' pv;d'dV, (B11)
\4

where qéi is a generator of rotation with Cartesian compo-
nents ¢'=(—y,x,0). The variation of J is

5J=J pAv[¢>idV+J pviA¢idV+j v;d'A(pdV).
v 14 14
(B12)
Using a relation
Ap'=6¢'+£ p'=

—£ 4&, (B13)

the second term of Eq. (B12) is rewritten as follows:
Jpv,-Aqs"dv:—J pv L ¢§"dV:—f £ 4(pv,E)dV
v v 4

+ Jvflf #(pv)dV

== ivpvifiqudsj"‘ fvfif: ¢(Pvi)dv,
(B14)

A(pdV)+f pviAvidV+f
|4 1%

A(pdV)+f pviAvidV—i-J Ev
% v

47G

PHYSICAL REVIEW D 65 064035
as well as a local thermodynamic relation,
P
Au=TAs+ —Ap. (B9)
2
p
Surface integrals appeared in expressions for 67, 6W, and

SU are all vanish. Combining Egs. (B4), (B6), and (B7), we
have a perturbation of the Newtonian energy integral:

gvjVi(PUi)

—G(V2¢>N—4wGp)5<DN dv

ap+V Hldv
i\ ot i(pv')

i

.dpv
(V2®N—4wGp)5¢Ndv—f §17dv. (B10)
\%4

where we used deﬂ =0. Discarding the surface term in the
above expression and substituting in Eq. (B12), we have a
variation of the total angular momentum 6J as follows:

8= fvvi¢iA(pdV)+fvp¢iAvidV+ fvfi£ g(pv;)dV.
(B15)

Finally we write down a general expression for the com-
bination of dE and ) 8J, where () is a constant parameter,

1 P

5E—Q5J=jpTAst+J v+ dytu+ —
2

14 14 P

—v,~Q¢i)A(pdV)+ fvp(vi—ﬂ¢i)AvidV
el
e

4G

Ll

—+V.(pv')|dV

—+v]Vv+ VP+V(I)N)
J(V%DN 47Gp) 6P dV

(B16)
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As an application of the above general expression, con-
sider a Newtonian binary star system in circular orbit [41]. In
this case, the fluid variables Q admit a helical symmetry,
namely,

(B17)

J

that is, the last integral in Eq. (B16) vanishes. When a mass
conservation equation, the Euler equation and the Poisson
equation for the Newtonian gravity are satisfied, namely,

z9p+v H=0
E ((pv')=0,

(9Ui . 1
—+v/Vu,;=— ;V,-P—V,(I)N, and V2®Oy=47Gp,

ot
(B18)

Eq. (B16) takes a simpler form,
SE=Q0dJ+ f pTAsdV
14

+[ 13
vi2

P .
— 02+ Dyt u+ ;—U[Q(;S’ A(pdV)

+f p(v'—=Q¢)Av,dV. (B19)
\4

If we further assume that the perturbed flow is isentropic and
mass conserving,
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As=0 and A(pdV)=0 (B20)

and that the vorticity of each fluid element is conserved,

A(J)IJZA(VJU,_V,UJ)ZVJAUI_VlAUJZO, (B21)
then Eq. (B19) reduces to
SE=Q4J. (B22)

Here we have used Eq. (B21) to introduce a function ¥ for
which
Vi¥=Av;; (B23)

this form of Av;, together with helical symmetry imply that
the last term in Eq. (B19) vanishes:

fp(vi—Q¢i)AvidV=fp(vi—Q¢i)Vi\Ide
\4 \%4

3§ p(v'=Q¢)Wds,
av

d
g
14

p
—+£ Wd
Y swP) 14

=0
(B24)

where we used the mass conservation equation and

Vi¢'=0.
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