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1 Introduction

The AdS/CFT correspondence maps asymptotically AdS solutions of Einstein’s equations to
states of a dual conformal field theory [1–3]. Static bulk solutions map to ‘phases’ of the CFT.
A thorough investigation of all static gravitational solutions consequently permits complete
understanding of the phase structure of the dual large N field theory, and so is of considerable
interest.

In this paper we follow [4] to study AdS Einstein Maxwell gravity interacting with a charged
massless scalar field. The bulk theory we study is governed by the Lagrangian

S =
1

8⇡G
5

Z
d5x

p�g


1

2
(R[g] + 12)� 1

4
Fµ⌫Fµ⌫ � |Dµ�|2

�
(1.1)

2

• AdS Abelian Higgs model:  AdS Einstein Maxwell gravity interacting with a charged massless scalar field
where Dµ = rµ � ieAµ, e, the charge of the scalar field, is a free parameter, and we have
set the cosmological length ` ⌘ 1. The action (1.1), sometimes called the AdS Abelian Higgs
model, may be regarded as a simple toy model for the charged scalar dynamics of systems
that appear in concrete examples of the AdS/CFT correspondence (see e.g. [5–7]). There
has been great interest in this model since it was realized that it allows for a phase transition
between the familiar Reissner-Nordström�AdS (RN AdS) black holes and hairy black holes, i.e.
solutions with a scalar condensate [8]. In the AdS/CFT dual to this system, such condensate
spontaneously breaks the global U(1) boundary symmetry, and so corresponds to a superfluid
phase of the boundary CFT. Bulk solutions that asymptote to AdS with planar sections (i.e.
Poincare patch AdS) are dual to phases of the dual field theory on spatial R3, and have been
extensively explored within the context of the AdS/CFT correspondence to learn something
about condensed matter phenomena [9, 10]; see [11–13] for reviews. The solutions we study
in this paper are dual to superfluid phases of the boundary field theory on a spatial S3. The
results of this paper must, of course, reduce to the planar model in the limit that the radius of
the S3 is taken to infinity; we will see below that this is indeed the case.

In this paper we perform a thorough analysis of the properties of three classes of static
charged solutions of the action (1.1). The solutions we study all asymptote to global AdS

5

space (i.e. AdS
5

with spherical sections), and so map to phases of the ‘dual large N theory’ on
S3. We investigate the properties of our solutions as a function of their mass, charge, and also
of the free parameter e in our model.

The first class of solutions we study in this paper is the set of ‘ground state solitons’
discovered in [4]. These ‘solitons’ are static lumps of a scalar condensate in global AdS

5

space.
1 At any given value of e these solitonic solutions appear in a one parameter family labeled
by their charge; the mass of solitonic solutions is determined as a function of their charge. At
infinitesimal values of the charge these solitonic solutions are extremely simple; they reduce
to AdS

5

space perturbed by the lowest energy linearized mode of the scalar field.2 In [4] this
linearized solitonic solution was used as the starting point of a perturbative construction for
solitonic solutions in a power series in their charge Q. In this paper we have used numerical
techniques to extend the construction of [4] to arbitrarily large values of the charge Q. Using
the analytic construction of [4] as the starting point of our numerical construction, we slowly
iterate to larger values of the charge. Our results agree perfectly with those presented in [4] at
small charge. However, we find some surprises at large charge.

Our numerics, presented in section 3, show that the qualitative properties of solitonic solu-
tions di↵er depending on the value of the parameter e. For e > esolcrit, where esolcrit is a critical
charge, the solitonic branch of solutions continues all the way to infinite charge; in other words
there exist solitons at arbitrarily large charge. On the other hand for e < esolcrit, the solitonic
branch of solutions terminates in a ‘Chandrashekhar’ singularity at a finite value of the mass
Mcrit and charge Qcrit (see [7] for similar behaviour in a closely related context). The approach
of the solitonic solution to the critical value is characterized by a spiral behaviour and critical
exponents familiar from the study of boson stars (see [7]). Numerically we find that esolcrit is

very close to
q

32

3

, a value that we will encounter again below.

As e is cranked up to esolcrit from below, our numerical results appear to indicate that Mcrit

and Qcrit diverge in a manner proportional to ln(e � esolcrit). We have drawn this conclusion
by noting that a graph of Qcrit versus ln(esolcrit � e) is very nearly a straight line at small
esolcrit � e. Because of the slow growth of the logarithm, however, we have not been able to

1The solitonic solutions map to ‘bose condensates’ in the dual CFT on S

3.
2The harmonic time dependence of the mode is gauged away yielding a static solution, at the expense of

turning on the value of A0 at the boundary.
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• Field content: gravity, Maxwell field and a charged complex scalar.

• Static and spherically  symmetric solutions:  
   expect a three  parameter family of solutions parametrized by {M,Q,e}.

• AdS  Reissner-Nordstrom BH:                     E,Q = E,Q (R,µ)

Regular extremal limit, with near horizon geometry AdS2 × S3, with Sext ≠ 0:    

            0 ≤ µ ≤ µext             with
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The AdS Abelian Higgs model

The bulk theory we study is governed by the Lagrangian

S =
1

8⇡G
5

Z
d5x

p�g


1

2

✓
R+

12

`

2

◆
� 1

4
Fµ⌫Fµ⌫ � (Dµ�)(Dµ

�)†
�
.

where Dµ = rµ � ieAµ and F = dA.

Comments:

Field content: gravity, Maxwell field and a charged complex scalar.

e is a free parameter - in String theory embeddings, e is fixed by the
details of the dimensional reduction.

We are going to focus static solutions: we expect to have a three
parameter family of solutions parametrized by {M,Q, e}.
We will study spherically symmetric solutions:

ds2 = �f(r)dt2 +
dr2

g(r)
+ r

2d⌦2

3

, A = At(r)dt, � = �(r).
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The AdS Reissner-Nordström black hole

If �(r) = 0, f = g, and there is an exact explicit solution to the AdS
Abelian Higgs Model:

f(r) =

✓
r

2

`

2

� R

2

`

2

◆✓
1 +

R

2 + `

2

r

2

� 2
3
R

2

`

2

µ

2

r

4

◆
, and At = µ

✓
1� R

2

r

2

◆
,

where r = R is location of the outer black hole H and µ its chemical
potential.

Properties:

The black hole depends on two asymptotic charges, E and Q:

E =
3⇡R2

8

✓
1 +

R

2

`

2

+
2
3
µ

2

◆
and Q =

⇡

2
R

2

µ.
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Regular extremal limit, with near horizon geometry AdS
2

⇥ S

3, with
S

ext

6= 0:

µ

ext

=

r
3
2

r
1 +

2R2

`

2

.
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• AdS  Reissner-Nordstrom  BH   has  two   instabilities:

1)  Superradiant  Instability:

     If  a  wave e-iωt  scatters off  a  charged  black  hole  with  0 < ω ≤ e μ, 

             it  returns  with  a  larger  amplitude - superradiant  scattering

     In  AdS,  the  outgoing  wave  reflects-off  infinity,  and  the  process  repeats  itself. 

             Multiple  Superradiance / Reflection  leads  to  instability.

Can  we  estimate  the  instability  onset?

     The  scalar  modes  that  can  propagate  in  the  RN-AdS background, in  the  limit  of  very  small  R, 

     are  effectively  the  normal  modes  of  global  AdS:     ω L5 = 4 + 2p.  Lowest mode has p = 0.
   

     On  the  other  hand,  small  extremal  black  holes  require 

      Assuming  that  the  instability  first  appears  at  extremality, we  get  superradiance  condition: 

  → Arbitrarily  small  extremal  black holes  suffer  from  the  superradiant  instability  when

2) Bar-mode  (non-axisymmetric)   instability: ( see  later topic  III )

3) Superradiant   instability : Scalar,
Electromagnetic
Gravitational
waves

• Waves  incident on  a  BH are amplified  if:

• Insert   mirror  around  BH:   get   BH  bomb  due to  multiple  amplification/reflection

ΩΩΩΩ<<<< mωωωω

V

r

• AdS  gravitational  barrier  wall  is  natural  mirror!

SO:

• The  threshold  mode                      is  a  bifurcation  to  what  solution?

• What  is  the   endpoint   of  the  instability ?     BH  sorrounded  by  radiation?

• ... Do  this  1st  in charged  &  then  rotating  BHs

Ω= mω

curvature invariant evaluated at the horizon blows up. The third solution of the theory, namely
the soliton family, is represented by the black curve and exists only up to a maximum charge,
as said before. Note that the soliton curve does not coincide with the (singular) extremal limit
of the hairy black holes; in particular, the soliton family does not arise as a zero size/entropy
limit of the hairy black hole. Wherever solitons exist, they are more massive than the extremal
hairy black hole of the same charge. We ask the reader to see sections 6.3 and 6.4 for a detailed
description of the phase diagram for 3 < e2 < 32

3

.
Finally, we discuss the large scalar charge regime e2 > 32/3, whose phase diagram is shown

in Fig. 14 for the representative case of e = 4. Again, the RNAdS black holes are represented
in the shaded red area, i.e. in the half-plane with �M � 0 with the extremal configuration at
�M = 0. As explained above, in this regime of scalar charge, solitons (black curve) exist for
arbitrarily large values of the ADM charge Q that uniquely parametrizes the family. As oppose
to the intermediate regime, hairy black holes (blue dotted area) now exist for all values of the
ADM charge Q in a certain range of �M . Again, the upper red curve that defines the highest
mass hairy black holes (for a given Q) is the curve where the hairy black holes merge with
the RNAdS family. This curve coincides with the linear instability onset curve that we have
determined with an independent code by solving the Klein-Gordon equation for charged scalar
perturbations in the RNAdS black hole. So, RNAdS black holes below this curve and above
their extremality curve �M = 0 are unstable to the scalar condensation and/or superradiant
instabilities. This red merger curve extends all the way down to Q = 0, as oppose to the case
3 < e2 < 32/3, where it intersects the extremal RNAdS family. Probably, the most interesting
feature of this diagram lies in the lower bound of the hairy black hole region (the “lowest”
blue curve in the diagram), where the situation is considerably di↵erent from the previous
intermediate scalar charge case. Indeed, this lower end of the hairy mass range undergoes
a phase transition at a critical charge, call it Qc2(e

2). For charges below this critical value,
Q < Qc2(e

2) the lowest mass hairy black hole is a regular soliton with infinite temperature.
That is, the extremal limit of the hairy black holes in this case is a zero size configuration
that coincides with the soliton branch (black curve). On the other hand, above the critical
charge, Q > Qc2(e

2), the lowest mass hairy black hole is extremal (i.e. of zero temperature)
and presumably of finite entropy. Exactly at the critical value, Q = Qc2(e

2), the lowest mass
hairy black hole is a regular soliton at zero temperature. We can understand the physical
origin of the critical charge Qc2(e

2). As we have explained above, small hairy black holes may
be thought of as an infinitesimal RNAdS black hole placed at the core of the soliton and the
resultant solution can accurately be modelled by a non-interacting mix of the soliton and the
RNAdS black hole. In this construction, thermodynamic equilibrium (stationarity) requires
that the chemical potential of the two components matches. But, the chemical potential of

the infinitesimal RNAdS black hole is bounded from above by its value at extremality,
q

3

2

.

Therefore, hairy black holes that, in the zero size limit, reduce to the soliton can exist only

in the cases where the chemical potential of the soliton obeys µ 
q

3

2

.The critical charge

is determined by the requirement that the chemical potential of the soliton at charge Qc2(e
2)

precisely matches
q

3

2

. Finally we note that when e2 > 32

3

hairy black hole solutions and solitons

both exist at arbitrarily large charge Q. The large charge limit of these solutions reduce to hairy
black branes and translationally invariant solitons in the scaling limit predicted by conformal
invariance. The reader is invited to see sections 7.4 and 7.5 for a detailed discussion on the
phase diagram of e2 > 32

3

.
The plan of the paper is as follows. Section 3 is entirely devoted to the study of the

soliton family of solutions for all values of the scalar charge. Section 4 introduces the Reissner-
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4/L5 < e

This condition is not only su�cient, but also necessary for the instability of extremal black
holes if R � 1 (q̃ � 3p

2

), as shown in [15].

4.1.2 Superradiant instability for small black holes

For R < 1, i.e for e2 � 32

9

, the stability is not ensured by an analysis of the near-horizon region.
Indeed, the leading instability of small extremal black holes is of the superradiant rather than
Breitenlöhner-Freedman variety6 (see [4]); the corresponding unstable modes are not localized
entirely within the near horizon region. At small values of the black hole charge the extremal
RN AdS black hole undergoes the superradiant instability provided

q̃ � q̃sr(e
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In summary we expect that hairy black holes exist in our system whenever

q̃ � q̃
0

(e2), with

(
q̃
0

(e2) = q̃BF (e2) for e2 < 32

9

(R > 1),

q̃
0

(e2)  q̃sr(e2) for e2 � 32

9

(R < 1),
(4.10)

where the function q̃o(e2) represents the smallest charge at which an extremal RN AdS black
hole is unstable.7 It was demonstrated in [4] that arbitrarily small extremal black holes in (1.1)
su↵er from the superradiant instability when e2 > 32

3

. It follows that q̃o(
32

3

) = 0. Therefore it is
natural to consider two di↵erent regions in the parameter space of hairy black holes, 3 < e2 < 32

3

and e2 > 32

3

. We will analyse these regions separately in later sections.

4.2 Numerical results

We now present a numerical analysis of the linearized instability of the RN AdS black hole,
which complements the considerations in the previous subsection. We consider the wave equa-
tion for a massless scalar field of charge e in the background of the RN AdS black hole and
we look for marginally stable (that is, time-independent) spherically symmetric modes. The
existence of such modes signals a bifurcation point in the phase diagram, and a new family of
black holes with a non-zero scalar condensate (i.e. a hairy black hole) should emerge from the
RN AdS family. We find that such modes exist provided that e2 > 3, which indicates that hairy
black holes will exist if that the scalar charge e satisfies this condition, as predicted above.

The equation that we are going to solve is

D2� = 0 (4.11)

for �(r) real and where Dµ = rµ� i eAµ is the gauge covariant derivative on the RN AdS back-
ground. As discussed above, we will only consider time-independent and spherically symmetric
modes and, furthermore, we will impose the following asymptotic behavior,

�(r) ⇠ ✏

r4
for r ! 1 , (4.12)

6This picture of superradiance can be reconciled with the more traditional version of an instability �̂ ⇠ e

�iwt

with onset mode w = eµ by a change of gauge. Consider the gauge Â = A � µdt, for which the potential
vanishes at infinity. A static scalar field in the gauge A (corresponding to the bifurcation to a hairy black hole)
transforms to �̂ ⇠ e

�ieµt in the gauge Â.
7We assume here that all black holes of a given charge q̃ are stable if the extremal black hole at that charge

is stable. This expectation is intuitively reasonable, and has been borne out by all explicit computations to
date.
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curvature invariant evaluated at the horizon blows up. The third solution of the theory, namely
the soliton family, is represented by the black curve and exists only up to a maximum charge,
as said before. Note that the soliton curve does not coincide with the (singular) extremal limit
of the hairy black holes; in particular, the soliton family does not arise as a zero size/entropy
limit of the hairy black hole. Wherever solitons exist, they are more massive than the extremal
hairy black hole of the same charge. We ask the reader to see sections 6.3 and 6.4 for a detailed
description of the phase diagram for 3 < e2 < 32

3

.
Finally, we discuss the large scalar charge regime e2 > 32/3, whose phase diagram is shown

in Fig. 14 for the representative case of e = 4. Again, the RNAdS black holes are represented
in the shaded red area, i.e. in the half-plane with �M � 0 with the extremal configuration at
�M = 0. As explained above, in this regime of scalar charge, solitons (black curve) exist for
arbitrarily large values of the ADM charge Q that uniquely parametrizes the family. As oppose
to the intermediate regime, hairy black holes (blue dotted area) now exist for all values of the
ADM charge Q in a certain range of �M . Again, the upper red curve that defines the highest
mass hairy black holes (for a given Q) is the curve where the hairy black holes merge with
the RNAdS family. This curve coincides with the linear instability onset curve that we have
determined with an independent code by solving the Klein-Gordon equation for charged scalar
perturbations in the RNAdS black hole. So, RNAdS black holes below this curve and above
their extremality curve �M = 0 are unstable to the scalar condensation and/or superradiant
instabilities. This red merger curve extends all the way down to Q = 0, as oppose to the case
3 < e2 < 32/3, where it intersects the extremal RNAdS family. Probably, the most interesting
feature of this diagram lies in the lower bound of the hairy black hole region (the “lowest”
blue curve in the diagram), where the situation is considerably di↵erent from the previous
intermediate scalar charge case. Indeed, this lower end of the hairy mass range undergoes
a phase transition at a critical charge, call it Qc2(e

2). For charges below this critical value,
Q < Qc2(e

2) the lowest mass hairy black hole is a regular soliton with infinite temperature.
That is, the extremal limit of the hairy black holes in this case is a zero size configuration
that coincides with the soliton branch (black curve). On the other hand, above the critical
charge, Q > Qc2(e

2), the lowest mass hairy black hole is extremal (i.e. of zero temperature)
and presumably of finite entropy. Exactly at the critical value, Q = Qc2(e

2), the lowest mass
hairy black hole is a regular soliton at zero temperature. We can understand the physical
origin of the critical charge Qc2(e

2). As we have explained above, small hairy black holes may
be thought of as an infinitesimal RNAdS black hole placed at the core of the soliton and the
resultant solution can accurately be modelled by a non-interacting mix of the soliton and the
RNAdS black hole. In this construction, thermodynamic equilibrium (stationarity) requires
that the chemical potential of the two components matches. But, the chemical potential of

the infinitesimal RNAdS black hole is bounded from above by its value at extremality,
q

3

2

.

Therefore, hairy black holes that, in the zero size limit, reduce to the soliton can exist only

in the cases where the chemical potential of the soliton obeys µ 
q

3

2

.The critical charge

is determined by the requirement that the chemical potential of the soliton at charge Qc2(e
2)

precisely matches
q

3

2

. Finally we note that when e2 > 32

3

hairy black hole solutions and solitons

both exist at arbitrarily large charge Q. The large charge limit of these solutions reduce to hairy
black branes and translationally invariant solitons in the scaling limit predicted by conformal
invariance. The reader is invited to see sections 7.4 and 7.5 for a detailed discussion on the
phase diagram of e2 > 32

3

.
The plan of the paper is as follows. Section 3 is entirely devoted to the study of the

soliton family of solutions for all values of the scalar charge. Section 4 introduces the Reissner-
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2) Near-Horizon  scalar  condensation  instability:  

• Consider  charged massive  scalar  field:    ☐φ-µ2 φ = 0
 Normalizable modes  →  scalar field must obey the Breitenlohner-Freedman  (BF)  bound:

• Take  any  extreme, asymptotically AdSd  BH  whose  near-horizon  geometry  

   contains  an AdS2  factor w/ radius  LAdS2: 

     the  BF  bound  associated  to  this  AdS2 ,   µ2 |NH BF =-1/4 L2AdS2   is  different  from  the BF  of  AdSd.  

 In particular  if:

        then  the  asymptotic  AdSd  space  will  be  stable  

        but  the  near-horizon  geometry  is  unstable. 

  → This  suggests that the full BH 

       will be unstable against scalar condensation 

→  Confirmed in
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2) Near-Horizon  scalar  condensation  instability:  

• Return  to  the  particular   RN-AdS case where  we  start  with  massless  scalar.
   linearized  equation  for  charged φ   on  NH  RN-AdS  reduces  to  eq for a massive  scalar with effective mass:

• AdS2  is unstable whenever  it  violates  the  2d  BF  bound:

→  extremal RN-AdS is unstable whenever

• The RHS  is a monotonically decreasing function of R. At large R, this  reduces to

It  follows  that  large  extremal  RN-AdS   BHs  are  unstable  when  e2 > 3. 

The endpoint of the instability involves a condensate of the scalar field. 

By the Hawking area increase theorem it also has a horizon. 

Consequently, the endpoint of this instability is a hairy black hole.

spherical horizon topology. This family includes an extremal black hole where the tempera-
ture vanishes. A stability analysis of this RNAdS family allows to anticipate the existence of
other configurations in the phase diagram. Indeed, the RNAdS black hole is unstable to the
condensation of the scalar field. In the final phase diagram, the onset of the instability signals
a bifurcation curve where a new family of black holes with scalar hair merges with the RNAdS
solution. The former family is described by three parameters: the energy M , the charge Q and
the asymptotic amplitude ✏ of the scalar field (in the holographic description, ✏ is the expecta-
tion value of the operator dual to the scalar field �). It is important to look into the nature of
these two instabilities to understand a natural division in the parameter space of solutions.

For large black holes, the scalar condensation unstable modes are localized in the near-
horizon region of the RNAdS black hole. This is better seen if we take the extreme RNAdS black
hole. Its near-horizon geometry is AdS

2

⇥ S3. A keypoint is that the e↵ective Breitenlöhner-
Freedman (BF) bound [?, ?] required for stability of the near-horizon AdS

2

lies above that
required for stability of the asymptotic AdS

5

. This indicates that a scalar field which satisfies the
AdS

5

BF bound but violates the AdS
2

near-horizon BF bound will be unstable in the extreme
RNAdS background (by continuity, this instability should then extend to near-extreme black
holes). This argument was originally discussed in [?] for planar RNAdS black holes. Ref. [4]
confirmed that the violation of the AdS

2

near-horizon BF bound is indeed responsible for the
scalar condensation, in any black hole system that has an extremal configuration with an AdS

2

(not that this includes rotating system and cases where neither the black hole or the scalar
are charged). In the system at hand, it follows from the analysis of [4] that a su�cient and
necessary condition for large extreme RNAdS black holes, i.e. with horizon radius R � 1, to
be unstable to the scalar condensation instability is that the charge e of the scalar field obeys
the relation e2 � 2(1+3R2

)

2

3R2
(1+2R2

)

� 3 + O(1/R2). That is, in the planar limit (R ! 1), very

large extremal RNAdS black holes are unstable when e2 > 3. As R decreases to R = 1 the
lower bound for e2 increases. For R < 1, the stability is not ensured by an analysis of the
near-horizon region [1, 4]. Actually, the leading instability of small extremal black holes is of
the superradiant nature rather than of the Breitenlöhner-Freedman origin; the corresponding
unstable modes are not localized entirely within the near horizon region. Consider a gauge
where the gauge potential vanishes asyptotically, A(1) = 0, and at the horizon it is given
by the chemical potential, A(R) = µ. Superradiant modes obey the condition !̃  eµ, where
!̃ is the frequency of the scalar mode in the proposed gauge. Upon scattering, such modes
extract energy and charge from the black hole. Since the RNAdS background is asymptotically
globally AdS, we have reflective boundary conditions that ensure that the scattering/reflection
process keeps running leading to the growth of the superradiant modes outside the horizon
and thus to an instability. Ref. [1] showed that arbitrarily small extremal RNAdS black holes
su↵er from the superradiant instability when the scalar charge is above a certain critical value.
The origin of this lower bound is simple. The scalar modes that can propagate in the RNAdS
background, in the limit of very small horizon radius, are e↵ectively the quasinormal modes of
global AdS. In d = 5, the lowest quasinormal mode frequency is !̃ = 4. Moreover, the RNAdS
chemical potential has an upper limit that is saturated at the extreme configuration. In the
small radius limit, this occurs at µ = 3/2+O(R2). Plugging these relations in the superradiant
condition, !̃  eµ, it follows that arbitrarily small extremal RNAdS black holes su↵er from the
superradiant instability when the scalar charge obeys e2 > 32

3

. Again, by continuity we expect
this instability to extend to near-extremal RNAdS for values of e above this bound.

To confirm these expectations, we will study the Klein-Gordon equation for linearized
charged scalar perturbations of the scalar field in the RNAdS background in section 4.2. We
will look for the threshold unstable modes, that is to the time-independent spherically sym-
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Figure 12: Mass versus scalar field at the origin, with two soliton branches represented for e = 3.2 <

esolcrit. The upper branch, which exists for arbitrarily large charges, was found in [28]. The two
branches merge for e2 � e

2

solcrit.

where M is the mass, Q is the charge, S is the entropy and T is the temperature of the black
hole. The rescaled parameters m and q̃ will be used later for convenience.

4.1 Linear instability

In this subsection, we consider the stability of the RN AdS black hole (4.1) under scalar
condensation. Let us focus on the extremal solutions,
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�
,

(4.4)

which are parameterized by the horizon radius R. The charge of the extremal black hole is
given as a function of its radius by

q̃ = R2

r
3

2
(1 + 2R2). (4.5)

4.1.1 Near horizon instability for large black holes

In the near horizon limit r�R ⌧ R, the metric (4.4) reduces to AdS
2

⇥S3. In this region, the
linearized equation for the charged scalar field � (see (1.1)) about this background reduces to
the equation for a massive minimally coupled scalar with

m2

sl
2

AdS2
= �3e2R2

8

1 + 2R2

(1 + 3R2)2
,
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Figure 13: Left: logM vs logQ for the second soliton branch, in the case e = 3.2. The black dots
correspond to our numerical data and the red curve corresponds to the best fit of our data to a function
of the of form M = AQ

↵ in the large charges regime. We find that ↵ ' 1.287, which is close to the
scaling (3.10) required by conformal invariance, and A ' 1.095. Right:. M vs. ✏. As this plot shows,
for large values of these quantities the relation between them is approximately linear, in accordance
with (3.10). The best fit to M = A✏

↵ is ↵ ⇡ 1.030 and A ' 1.727.

where lAdS2 is the radius of the AdS
2

region. As is well known [14], a minimally coupled scalar
in AdS

2

is unstable whenever

m2

sl
2

AdS2
< �1

4
.

It follows that the extremal black hole of horizon radius R is unstable whenever

e2 � 2(1 + 3R2)2

3R2(1 + 2R2)
. (4.6)

The RHS of (4.6) is a monotonically decreasing function of R. At large R, (4.6) reduces to

e2 � 3 +
1

2R2

+O(1/R4). (4.7)

It follows that very large extremal RN AdS black holes are unstable when e2 > 3. The end
point of the instability involves a condensate of the scalar field. By the Hawking area increase
theorem it also has a horizon. Consequently, the end point of this instability is a hairy black
hole.

It follows from the previous analysis that hairy black holes of charge q̃ exist in the system
(1.1) whenever5

q̃ �
�
e
�p

9e2 � 24� 3e
�
+ 12

�q
e
�
3e+

p
9e2 � 24

�� 6

24 (e2 � 3)3/2
= q̃BF (e

2). (4.8)

5In order to obtain this equation, we solved (4.6) to obtain R

2 as a function of e2, and then plugged the
solution to this equation into (4.5).
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where lAdS2 is the radius of the AdS
2

region. As is well known [14], a minimally coupled scalar
in AdS

2

is unstable whenever
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AdS2
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4
.

It follows that the extremal black hole of horizon radius R is unstable whenever

e2 � 2(1 + 3R2)2

3R2(1 + 2R2)
. (4.6)

The RHS of (4.6) is a monotonically decreasing function of R. At large R, (4.6) reduces to

e2 � 3 +
1

2R2

+O(1/R4). (4.7)

It follows that very large extremal RN AdS black holes are unstable when e2 > 3. The end
point of the instability involves a condensate of the scalar field. By the Hawking area increase
theorem it also has a horizon. Consequently, the end point of this instability is a hairy black
hole.

It follows from the previous analysis that hairy black holes of charge q̃ exist in the system
(1.1) whenever5

q̃ �
�
e
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5In order to obtain this equation, we solved (4.6) to obtain R

2 as a function of e2, and then plugged the
solution to this equation into (4.5).
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Figure 14: Critical value of the scalar charge e for the existence of an instability as a function of the
mass M and charge Q of the RN AdS background. The minimum value of e2 monotonically decreases
from 32

3

to 3 as the size of the black hole increases. �M is the mass di↵erence with respect to the
extremal RN AdS black hole of the same charge.

so that ✏ is the vacuum expectation value of the operator dual to �. In addition, we will also
require that � is regular at the horizon. These boundary conditions can be easily implemented
redefining the field �(r) as

�(r) = p�(r)

✓
R

r

◆
4

, (4.13)

with
p0�
��
r!1 = 0 ,

�
p0� � 4 p�

� ��
r=R

= 0 . (4.14)

With these boundary conditions we can solve (4.11) as a boundary value problem using shooting
as in [8]. However, in this paper we will follow a slightly di↵erent route. Following [15], we cast
(4.11) as a generalised eigenvalue problem,

L(r)�(r) = e2 ⇤(r)�(r) , (4.15)

where the scalar charge e appears as the generalised eigenvalue. Here L(r) is a second order
linear di↵erential operator. Then, for a given RN AdS background uniquely specified by (R, µ),
our strategy consists in finding the eigenvalue e for which there exists a mode that satisfies the
above boundary conditions.

The results are depicted in Fig. 14. For a given black hole size R, we find that the minimum
value of e2 for instability is obtained for black holes in the extremal limit. Also, our results
indicate that the minimum value of e2 monotonically decreases from 32

3

to 3 as the black hole
size increases, and for e2 < 3 all black holes are stable under scalar condensation. On the other
hand, for e2 > 32

3

all extremal black holes are unstable.
These results agree with the analytical predictions. In Fig. 15, we plot the minimum charge

of unstable RN AdS black holes for values of e2 close to (but below) 32

3

; the prediction of (4.10)
is confirmed.
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This condition is not only su�cient, but also necessary for the instability of extremal black
holes if R � 1 (q̃ � 3p

2

), as shown in [15].

4.1.2 Superradiant instability for small black holes

For R < 1, i.e for e2 � 32

9

, the stability is not ensured by an analysis of the near-horizon region.
Indeed, the leading instability of small extremal black holes is of the superradiant rather than
Breitenlöhner-Freedman variety6 (see [4]); the corresponding unstable modes are not localized
entirely within the near horizon region. At small values of the black hole charge the extremal
RN AdS black hole undergoes the superradiant instability provided

q̃ � q̃sr(e
2) =

1

2

r
3

2

✓
1� 3e2
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◆
+O

 ✓
1� 3e2

32

◆
2

!
. (4.9)

In summary we expect that hairy black holes exist in our system whenever

q̃ � q̃
0

(e2), with

(
q̃
0

(e2) = q̃BF (e2) for e2 < 32

9

(R > 1),

q̃
0

(e2)  q̃sr(e2) for e2 � 32

9

(R < 1),
(4.10)

where the function q̃o(e2) represents the smallest charge at which an extremal RN AdS black
hole is unstable.7 It was demonstrated in [4] that arbitrarily small extremal black holes in (1.1)
su↵er from the superradiant instability when e2 > 32

3

. It follows that q̃o(
32

3

) = 0. Therefore it is
natural to consider two di↵erent regions in the parameter space of hairy black holes, 3 < e2 < 32

3

and e2 > 32

3

. We will analyse these regions separately in later sections.

4.2 Numerical results

We now present a numerical analysis of the linearized instability of the RN AdS black hole,
which complements the considerations in the previous subsection. We consider the wave equa-
tion for a massless scalar field of charge e in the background of the RN AdS black hole and
we look for marginally stable (that is, time-independent) spherically symmetric modes. The
existence of such modes signals a bifurcation point in the phase diagram, and a new family of
black holes with a non-zero scalar condensate (i.e. a hairy black hole) should emerge from the
RN AdS family. We find that such modes exist provided that e2 > 3, which indicates that hairy
black holes will exist if that the scalar charge e satisfies this condition, as predicted above.

The equation that we are going to solve is

D2� = 0 (4.11)

for �(r) real and where Dµ = rµ� i eAµ is the gauge covariant derivative on the RN AdS back-
ground. As discussed above, we will only consider time-independent and spherically symmetric
modes and, furthermore, we will impose the following asymptotic behavior,

�(r) ⇠ ✏

r4
for r ! 1 , (4.12)

6This picture of superradiance can be reconciled with the more traditional version of an instability �̂ ⇠ e

�iwt

with onset mode w = eµ by a change of gauge. Consider the gauge Â = A � µdt, for which the potential
vanishes at infinity. A static scalar field in the gauge A (corresponding to the bifurcation to a hairy black hole)
transforms to �̂ ⇠ e

�ieµt in the gauge Â.
7We assume here that all black holes of a given charge q̃ are stable if the extremal black hole at that charge

is stable. This expectation is intuitively reasonable, and has been borne out by all explicit computations to
date.
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holes if R � 1 (q̃ � 3p

2

), as shown in [15].
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, the stability is not ensured by an analysis of the near-horizon region.
Indeed, the leading instability of small extremal black holes is of the superradiant rather than
Breitenlöhner-Freedman variety6 (see [4]); the corresponding unstable modes are not localized
entirely within the near horizon region. At small values of the black hole charge the extremal
RN AdS black hole undergoes the superradiant instability provided

q̃ � q̃sr(e
2) =
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In summary we expect that hairy black holes exist in our system whenever

q̃ � q̃
0

(e2), with

(
q̃
0

(e2) = q̃BF (e2) for e2 < 32

9

(R > 1),

q̃
0

(e2)  q̃sr(e2) for e2 � 32

9

(R < 1),
(4.10)

where the function q̃o(e2) represents the smallest charge at which an extremal RN AdS black
hole is unstable.7 It was demonstrated in [4] that arbitrarily small extremal black holes in (1.1)
su↵er from the superradiant instability when e2 > 32

3

. It follows that q̃o(
32

3

) = 0. Therefore it is
natural to consider two di↵erent regions in the parameter space of hairy black holes, 3 < e2 < 32

3

and e2 > 32

3

. We will analyse these regions separately in later sections.

4.2 Numerical results

We now present a numerical analysis of the linearized instability of the RN AdS black hole,
which complements the considerations in the previous subsection. We consider the wave equa-
tion for a massless scalar field of charge e in the background of the RN AdS black hole and
we look for marginally stable (that is, time-independent) spherically symmetric modes. The
existence of such modes signals a bifurcation point in the phase diagram, and a new family of
black holes with a non-zero scalar condensate (i.e. a hairy black hole) should emerge from the
RN AdS family. We find that such modes exist provided that e2 > 3, which indicates that hairy
black holes will exist if that the scalar charge e satisfies this condition, as predicted above.

The equation that we are going to solve is

D2� = 0 (4.11)

for �(r) real and where Dµ = rµ� i eAµ is the gauge covariant derivative on the RN AdS back-
ground. As discussed above, we will only consider time-independent and spherically symmetric
modes and, furthermore, we will impose the following asymptotic behavior,

�(r) ⇠ ✏

r4
for r ! 1 , (4.12)

6This picture of superradiance can be reconciled with the more traditional version of an instability �̂ ⇠ e

�iwt

with onset mode w = eµ by a change of gauge. Consider the gauge Â = A � µdt, for which the potential
vanishes at infinity. A static scalar field in the gauge A (corresponding to the bifurcation to a hairy black hole)
transforms to �̂ ⇠ e

�ieµt in the gauge Â.
7We assume here that all black holes of a given charge q̃ are stable if the extremal black hole at that charge

is stable. This expectation is intuitively reasonable, and has been borne out by all explicit computations to
date.
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RN-AdS   BHs  (apparently)  stable  for  e2 < 3

Very large  extremal  RN-AdS   BHs  are  unstable  when  e2 > 3.

Arbitrarily  small  extremal  black holes  suffer  from  the  superradiant  instability  when  e2 > 32 / 3 

→  This  suggests  we  should  look into 3  regimes:
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Figure 14: Critical value of the scalar charge e for the existence of an instability as a function of the
mass M and charge Q of the RN AdS background. The minimum value of e2 monotonically decreases
from 32

3

to 3 as the size of the black hole increases. �M is the mass di↵erence with respect to the
extremal RN AdS black hole of the same charge.

so that ✏ is the vacuum expectation value of the operator dual to �. In addition, we will also
require that � is regular at the horizon. These boundary conditions can be easily implemented
redefining the field �(r) as

�(r) = p�(r)

✓
R

r

◆
4

, (4.13)

with
p0�
��
r!1 = 0 ,

�
p0� � 4 p�

� ��
r=R

= 0 . (4.14)

With these boundary conditions we can solve (4.11) as a boundary value problem using shooting
as in [8]. However, in this paper we will follow a slightly di↵erent route. Following [15], we cast
(4.11) as a generalised eigenvalue problem,

L(r)�(r) = e2 ⇤(r)�(r) , (4.15)

where the scalar charge e appears as the generalised eigenvalue. Here L(r) is a second order
linear di↵erential operator. Then, for a given RN AdS background uniquely specified by (R, µ),
our strategy consists in finding the eigenvalue e for which there exists a mode that satisfies the
above boundary conditions.

The results are depicted in Fig. 14. For a given black hole size R, we find that the minimum
value of e2 for instability is obtained for black holes in the extremal limit. Also, our results
indicate that the minimum value of e2 monotonically decreases from 32

3

to 3 as the black hole
size increases, and for e2 < 3 all black holes are stable under scalar condensation. On the other
hand, for e2 > 32

3

all extremal black holes are unstable.
These results agree with the analytical predictions. In Fig. 15, we plot the minimum charge

of unstable RN AdS black holes for values of e2 close to (but below) 32

3

; the prediction of (4.10)
is confirmed.
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Figure 5: Left: Kretschmann invariant evaluated at r = 0 as a function of f(0) for the e = 1
solitons. As f(0) ! 0 the Kretschmann invariant diverges at the origin, which signals the appearance
of a curvature singularity there. The red dashed line corresponds to the value of the Kretschmann
invariant for pure AdS

5

. Right: Phase diagram in the microcanonical ensemble for e = 1. On the
y-axis of this plot we depict �M = M �M

ext

, where M

ext

is the mass of the extremal RN AdS black
hole with the same charge Q. RN AdS black holes occupy the shaded region and the soliton family
of solutions is given by the black curve. This curve terminates at a naked singularity at some finite
Q. In red we show the perturbative results of [4]; the agreement between the perturbative calculation
and our numerical results is remarkable at small values of Q but they disagree at su�ciently large Q.

the logarithm prevents us from obtaining more direct evidence for the divergence in q̃crit as e
approaches esolcrit from below.4

In order to further study the approach of e to esolcrit from below, in Fig. 4 (right) we have
plotted Q as a function of f(0) for e = 3., 3.1, 3.2, 3.29, 3.5, 4. (from bottom to top curves in
this plot). Recall that f(r) is the coe�cient of �dt2 in the metric of the solitonic solution;
f(0) going to zero indicates a Chandrashekhar singularity in the solution. For e < esolcrit, f(0)
vanishes at finite charge. As e approaches esolcrit the approach of the curves in Fig. 4 (right)
presumably creep logarithmically up the y axis. For e > esolcrit the curves presumably never
intersect the y axis.

3.2.1 Approach to q̃crit at e < esolcrit

In the rest of this subsection we describe the approach of the solitonic branch of solutions to
q̃crit at a fixed value of e < esolcrit in more detail.

At q̃ = q̃crit the solution becomes singular. This singularity is signalled by the fact that the
function f in (3.1) develops a zero at the origin r = 0 at this particular (and finite) value of
q̃crit. In turn, this implies that the curvature invariants diverge at this point. For instance, in
Fig. 5 (left) we depict the Kretschmann invariant evaluated at r = 0 as a function of f(0) for

4In particular our data is consistent with the possibility that the linear behaviour in Fig. 4 levels out at very
small e � esolcrit leading to a moderate finite value of q̃max at e = esolcrit. A definitive statement here needs
further - preferably analytic - work.
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Figure 7: Left: Q as a function of f(0). The charge exhibits a (possibly infinite) series of damped
oscillations around the critical value. Right ✏ vs. Q. The expectation value of the scalar field as a
function of the charge Q forms a spiral near the critical point.

not uniquely parametrize the family of solutions. Instead, as discussed above, this quantity
(and the other physical quantities too) exhibits a (possibly infinite) series of self-similar damped
oscillations as we approach the singular solution, which corresponds to f(0) = 0. In the right
panel of Fig. 7 we depict ✏ vs. Q, which shows a spiralling behavior towards the singular
solution.

We close the discussion by noting that we have checked that the behaviour described in this
subsection applies to values of e2 that di↵er from 32

3

by less than 1%. We have also checked,
on the other hand, that solitons exist for arbitrarily large charge for e2 that exceed 32

3

by 1%.
This is the basis of our claim that e2solcrit ⇡ 32

3

.

3.2.2 Approach to the singularity

In this brief subsection we study, from yet another angle, how the solitonic branch of solutions
behaves as e is increased above e = esolcrit. In Fig. 8 we display a set of graphs for the solitonic
charge as a function of the value of the scalar field at zero, �(0), for di↵erent values of e2 that
go through the phase transition. Note that for e2 < e2solcrit the amplitude of the oscillations
becomes larger as we approach e2solcrit, and the oscillations completely disappear for e2 > e2solcrit.
In other words, if we plotted �(0) vs. Q we would see that the spiral unwraps for e2 > e2solcrit.
For e2 > e2solcrit we note that �(0) approaches a constant for large Q and this constant is not
too far from 2

e
. This is consistent with a singular limit as in [29] and the results in Appendix A.

Similarly, the graph of Q vs. f(0) (see the right panel in Fig. 4) is monotonic for e2 > e2solcrit.

3.3 Results: e2 � e2
solcrit

⇡ 32
3

For e2 > 32

3

the behavior of the soliton family in the phase diagram changes completely. Whilst
an unjustified extrapolation of the perturbative results of [4] to large charge suggest that solitons
should have a Chandrasekhar bound for all values of e, our numerical results demonstrate that
for e2 > esolcrit ⇡ 32

3

solitons can exist for arbitrarily large values of the charge. In Fig. 9 (left)

14

∆M = M − Mext,   where Mext is  the  mass  of  the  extremal  RN AdS   BH  with  the  same  charge  Q



This condition is not only su�cient, but also necessary for the instability of extremal black
holes if R � 1 (q̃ � 3p

2

), as shown in [15].

4.1.2 Superradiant instability for small black holes

For R < 1, i.e for e2 � 32

9

, the stability is not ensured by an analysis of the near-horizon region.
Indeed, the leading instability of small extremal black holes is of the superradiant rather than
Breitenlöhner-Freedman variety6 (see [4]); the corresponding unstable modes are not localized
entirely within the near horizon region. At small values of the black hole charge the extremal
RN AdS black hole undergoes the superradiant instability provided
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In summary we expect that hairy black holes exist in our system whenever

q̃ � q̃
0

(e2), with

(
q̃
0

(e2) = q̃BF (e2) for e2 < 32

9

(R > 1),

q̃
0

(e2)  q̃sr(e2) for e2 � 32

9

(R < 1),
(4.10)

where the function q̃o(e2) represents the smallest charge at which an extremal RN AdS black
hole is unstable.7 It was demonstrated in [4] that arbitrarily small extremal black holes in (1.1)
su↵er from the superradiant instability when e2 > 32

3

. It follows that q̃o(
32

3

) = 0. Therefore it is
natural to consider two di↵erent regions in the parameter space of hairy black holes, 3 < e2 < 32

3

and e2 > 32

3

. We will analyse these regions separately in later sections.

4.2 Numerical results

We now present a numerical analysis of the linearized instability of the RN AdS black hole,
which complements the considerations in the previous subsection. We consider the wave equa-
tion for a massless scalar field of charge e in the background of the RN AdS black hole and
we look for marginally stable (that is, time-independent) spherically symmetric modes. The
existence of such modes signals a bifurcation point in the phase diagram, and a new family of
black holes with a non-zero scalar condensate (i.e. a hairy black hole) should emerge from the
RN AdS family. We find that such modes exist provided that e2 > 3, which indicates that hairy
black holes will exist if that the scalar charge e satisfies this condition, as predicted above.

The equation that we are going to solve is

D2� = 0 (4.11)

for �(r) real and where Dµ = rµ� i eAµ is the gauge covariant derivative on the RN AdS back-
ground. As discussed above, we will only consider time-independent and spherically symmetric
modes and, furthermore, we will impose the following asymptotic behavior,

�(r) ⇠ ✏

r4
for r ! 1 , (4.12)

6This picture of superradiance can be reconciled with the more traditional version of an instability �̂ ⇠ e

�iwt

with onset mode w = eµ by a change of gauge. Consider the gauge Â = A � µdt, for which the potential
vanishes at infinity. A static scalar field in the gauge A (corresponding to the bifurcation to a hairy black hole)
transforms to �̂ ⇠ e

�ieµt in the gauge Â.
7We assume here that all black holes of a given charge q̃ are stable if the extremal black hole at that charge

is stable. This expectation is intuitively reasonable, and has been borne out by all explicit computations to
date.
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Figure 18: Left: �M vs. Q for e = 3.2. The shaded region is the area occupied by RN AdS black
holes, the black curve corresponds to a soliton branch and the blue region corresponds to hairy black
holes (the ‘horizontal’ lines of the blue grid correspond to fixed values of ✏, and R decreases to the
left; the ‘diagonal’ blue lines near the green curve are segments of a hairy black hole with fixed R,
and ✏ grows to the right). The lower mass bound of hairy black holes is well described at small charge
by the dashed green line, which is the perturbative prediction. The red curve is the line of marginal
modes of the linear problem discussed in section 4.2; it agrees with the dashed magenta line for small
charge, which is the perturbative prediction. It is clear that the soliton curve and the hairy black
holes surface are not related in the range 3 < e

2

< 32/3. Right: same data with the entropy as third
axis. The red surface is the strip of RN AdS black holes between the marginal line of stability and
extremality.

In this section we have described the construction of a hairy black hole solutions labelled,
for instance, by their mass Q and charge M . Let us now set M = ⇣Q

4
3 . If Q = L3 is taken to

infinity at fixed ⇣ then we expect, on physical grounds that the limits

gP (⇢, ⇣) = lim
L!1

L2 g(⇢L)

fP (⇢, ⇣) = lim
L!1

f(⇢L)

L2

AP (⇢, ⇣) = lim
L!1

A(⇢L)

L
�P (⇢, ⇣) = lim

L!1
�(⇢L)

(5.45)

exist (see (3.8)) all appear to exist, so that the large charge hairy black hole may be rewritten
in new coordinates r = L ⇢, t = ⌧/L in the black brane form

ds2 = �fP (⇢, ⇣) d⌧
2 + gP (⇢, ⇣) d⇢

2 + ⇢2 (dxi)2

A = AP (⇢, ⇣) d⌧
(5.46)

We have numerical evidence that the limits (5.45) exist. We will leave the direct evidence for
the next Section, where we will compare the planar limit of solitons and hairy black holes. For
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This condition is not only su�cient, but also necessary for the instability of extremal black
holes if R � 1 (q̃ � 3p

2

), as shown in [15].

4.1.2 Superradiant instability for small black holes

For R < 1, i.e for e2 � 32

9

, the stability is not ensured by an analysis of the near-horizon region.
Indeed, the leading instability of small extremal black holes is of the superradiant rather than
Breitenlöhner-Freedman variety6 (see [4]); the corresponding unstable modes are not localized
entirely within the near horizon region. At small values of the black hole charge the extremal
RN AdS black hole undergoes the superradiant instability provided
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In summary we expect that hairy black holes exist in our system whenever
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0

(e2), with
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(R > 1),
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0
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(R < 1),
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where the function q̃o(e2) represents the smallest charge at which an extremal RN AdS black
hole is unstable.7 It was demonstrated in [4] that arbitrarily small extremal black holes in (1.1)
su↵er from the superradiant instability when e2 > 32

3

. It follows that q̃o(
32

3

) = 0. Therefore it is
natural to consider two di↵erent regions in the parameter space of hairy black holes, 3 < e2 < 32

3

and e2 > 32

3

. We will analyse these regions separately in later sections.

4.2 Numerical results

We now present a numerical analysis of the linearized instability of the RN AdS black hole,
which complements the considerations in the previous subsection. We consider the wave equa-
tion for a massless scalar field of charge e in the background of the RN AdS black hole and
we look for marginally stable (that is, time-independent) spherically symmetric modes. The
existence of such modes signals a bifurcation point in the phase diagram, and a new family of
black holes with a non-zero scalar condensate (i.e. a hairy black hole) should emerge from the
RN AdS family. We find that such modes exist provided that e2 > 3, which indicates that hairy
black holes will exist if that the scalar charge e satisfies this condition, as predicted above.

The equation that we are going to solve is

D2� = 0 (4.11)

for �(r) real and where Dµ = rµ� i eAµ is the gauge covariant derivative on the RN AdS back-
ground. As discussed above, we will only consider time-independent and spherically symmetric
modes and, furthermore, we will impose the following asymptotic behavior,

�(r) ⇠ ✏

r4
for r ! 1 , (4.12)

6This picture of superradiance can be reconciled with the more traditional version of an instability �̂ ⇠ e

�iwt

with onset mode w = eµ by a change of gauge. Consider the gauge Â = A � µdt, for which the potential
vanishes at infinity. A static scalar field in the gauge A (corresponding to the bifurcation to a hairy black hole)
transforms to �̂ ⇠ e

�ieµt in the gauge Â.
7We assume here that all black holes of a given charge q̃ are stable if the extremal black hole at that charge

is stable. This expectation is intuitively reasonable, and has been borne out by all explicit computations to
date.
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Figure 24: Left: �M vs. Q for e = 4. The black curve corresponds to the soliton and the blue region
corresponds to hairy black holes. The red curve is the line of marginal modes of the linear problem
discussed in section 4.2, and the shaded region is the area occupied by RN AdS black holes. The black
curve now lies entirely below the region occupied by RN AdS black holes and it continues for arbitrarily
large values of Q. The blue curves end at the black curve for small charges (Q . 0.75), indicating
that the soliton branch is the endpoint of the hairy black holes family. However, for large charges
(Q & 0.75), the lower mass bound of the hairy black holes is below the soliton. These numerical results
reproduce the behaviour predicted in Fig. 22, now for e = 4. Right: same data with the entropy as
third axis. The red surface is the strip of RN AdS black holes between the marginal line of stability
and extremality.

As in the previous section, we expect that hairy black holes at e2 � 32

3

admit the planar
scaling limit (5.45). We provide numerical evidence that such a limit exists for e = 4 in Fig. 27.
In particular, we confirm that M scales as Q

4
3 and, equivalently, as ✏ for large charges. These

results agree with the soliton scaling, according to Fig. 10.
We can do better and contruct approximately the one parameter set of planar solutions

(5.46) through an analysis for large charges. Our results are presented in Fig. 28 for e = 4. We
show the behaviour of the metric function fP for fixed ⇣ (here ⇣ ' 0.8, which corresponds to
e = 4, according to the scaling in Fig. 27). We present the results for both the solitons and
the extremal hairy black holes, which we approximate by the lowest mass black holes we can
find numerically for a given charge. The two limits appear to coincide, within our accuracy.
This provides evidence that the solitons and the extremal hairy black holes have the same large
charge limit, which we expect to be the zero temperature limit of the black branes studied by
Hartnoll et al. [9,10]. We expect also that our non-extremal hairy black holes have as a planar
limit the black branes at finite temperature.
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CONCLUSION: 

• First  non-linear  construction  of  Hairy  BHs  that  bifurcate  from  original  unstable  BH  family    
       at  the  superradiant / NH  scalar  condensation     merger  curve

• Complex but  interesting   BH / soliton  phase  diagram  structure ... Universal ?

• Study  Time  evolution  of  these  instabilities  to  find  their  endpoint.
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• d=5  AdS  Einstein gravity minimally coupled to 2 complex massless scalar fields  Π : 

• Look for boson star and BH  solutions of this theory whose gravitational and scalar fields obey the ansatz:
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We will look for boson star and black hole solutions of this theory whose gravitational and
scalar fields obey the ansatz:
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Here, f, g, h,⌦ and ⇧ are real functions only of the radial coordinate r, i.e. the ansatz is
cohomogeneity-1. Surfaces of constant time t and radial r coordinates have the geometry of a
homogeneously squashed S3, written as an S1 fibred over S2 ⌘ CP 1. The fibre is parameterized
by the coordinate  , which has period 2⇡, while ✓,� are the standard coordinates on S2. Since
� also has period 2⇡, it might appear that ~⇧ is not single valued, but the Hopf fibration requires
that  !  + ⇡ when �! �+ 2⇡. Thus ~⇧ is indeed single valued on spacetime.

The motivation for the particular ansatz (2.2) for gab will become clear later in this section.
This metric has five linearly independent Killing vector fields, namely @t, @ and the three
rotations of S2. However, it is easy to check that the only linear combination which leaves ~⇧
invariant is

K = @t + !@ . (2.4)

Since a symmetry of the solution must leave both the metric and matter fields invariant, any
solution with nonzero scalar fields will have only one Killing field. Of course, one does not
usually expect there to be solutions in which the matter fields have much less symmetry than
the metric. However the ansatz (2.3) is special2 in that its stress tensor

Tab =
⇣
@a~⇧

⇤@b~⇧+ @a~⇧@b~⇧
⇤
⌘
� g

ab

⇣
@c~⇧@

c~⇧⇤
⌘

(2.5)

has the same symmetry as the metric (2.2). One way to see this is to think of the two complex
components of ~⇧ as coordinates on C2. The fact that |~⇧|2 is only a function of radius means
that at each (r, t), ~⇧ maps the squashed 3-sphere in spacetime into a round 3-sphere. The first
term in the stress tensor is just the pull-back of the highly symmetric metric on this sphere
and the second term is proportional to the spacetime metric.

We thus expect our ansatz to have nontrivial solutions, and indeed the field equations
Gab � 6`�2gab = Tab and r2~⇧ = 0, lead to a consistent set of ODE’s:
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2It was first considered in [6].
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Here, f, g, h,⌦ and ⇧ are real functions only of the radial coordinate r, i.e. the ansatz is
cohomogeneity-1. Surfaces of constant time t and radial r coordinates have the geometry of a
homogeneously squashed S3, written as an S1 fibred over S2 ⌘ CP 1. The fibre is parameterized
by the coordinate  , which has period 2⇡, while ✓,� are the standard coordinates on S2. Since
� also has period 2⇡, it might appear that ~⇧ is not single valued, but the Hopf fibration requires
that  !  + ⇡ when �! �+ 2⇡. Thus ~⇧ is indeed single valued on spacetime.

The motivation for the particular ansatz (2.2) for gab will become clear later in this section.
This metric has five linearly independent Killing vector fields, namely @t, @ and the three
rotations of S2. However, it is easy to check that the only linear combination which leaves ~⇧
invariant is

K = @t + !@ . (2.4)

Since a symmetry of the solution must leave both the metric and matter fields invariant, any
solution with nonzero scalar fields will have only one Killing field. Of course, one does not
usually expect there to be solutions in which the matter fields have much less symmetry than
the metric. However the ansatz (2.3) is special2 in that its stress tensor
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has the same symmetry as the metric (2.2). One way to see this is to think of the two complex
components of ~⇧ as coordinates on C2. The fact that |~⇧|2 is only a function of radius means
that at each (r, t), ~⇧ maps the squashed 3-sphere in spacetime into a round 3-sphere. The first
term in the stress tensor is just the pull-back of the highly symmetric metric on this sphere
and the second term is proportional to the spacetime metric.

We thus expect our ansatz to have nontrivial solutions, and indeed the field equations
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• MP-AdS  with  equal  J  is  case  Π=0,  g = 1/h.
   Unstable  to  m-superradiant  modes  above  m-line.
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• Boson stars are smooth horizonless solutions 
      ( with  harmonic  time  dependence )  
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Figure 1: Plot of angular velocity versus horizon size. MP-AdS black holes exist in the shaded
regions and its boundary corresponds to extremal black holes. Curves of ⌦H(r+,m) correspond-
ing to the merger lines are displayed for di↵erent values of m. Above each line, black holes are
unstable to perturbations with that m. Below ⌦H` = 1, black holes are stable. The inset plot
zooms in the region where the m = 1 merger exists.

4.1.2 Growth rates

At this point, we know exactly where the rotating hairy black holes branch-o↵ the MP-AdS
solution. Now, we want to quantify how unstable the MP-AdS black holes are. For this we
need to provide the growth rates of the superradiant instability which a✏icts the MP-AdS
black holes. Namely, we need to go further in solving (4.3) and consider solutions for which
! 6= m⌦H . In order to work with analytic functions only, we define the auxilary function q as
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where we have implicitly performed the change of variables y = 1 � r2

+

/r2. Note that y is a
compact variable taking values in the unit interval. By construction, q(y) is an analytic function
both at the future event horizon and at asymptotic infinity. Substituting this expression into
(4.3), gives the following quadratic Sturm-Liouville problem

L
0

q � !?L1

q � !2

?L2

q = 0, (4.8)

where each Li is a second order di↵erential operator in y, independent of !?. The procedure
is now clear: we first transform q(y) into a vector, say ~q, where each of its entries is given by
q(y) evaluated at the Chebyshev points yj. In this discretization scheme, the operators Li are
matrices, say Li, that act on ~q. Consequently, equation (4.8) reduces to a generalized eigenvalue
problem in !?, ✓ �L

1

L
0

I 0

�
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
L
2
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0 I

�◆
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�
= 0, (4.9)

where I is the identity matrix. This linear system can be easily solved by the in-builtMathemat-

ica routine Eigensystem. In order to generate the growth rates, we can choose values for r
+

/`,
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Here, f, g, h,⌦ and ⇧ are real functions only of the radial coordinate r, i.e. the ansatz is
cohomogeneity-1. Surfaces of constant time t and radial r coordinates have the geometry of a
homogeneously squashed S3, written as an S1 fibred over S2 ⌘ CP 1. The fibre is parameterized
by the coordinate  , which has period 2⇡, while ✓,� are the standard coordinates on S2. Since
� also has period 2⇡, it might appear that ~⇧ is not single valued, but the Hopf fibration requires
that  !  + ⇡ when �! �+ 2⇡. Thus ~⇧ is indeed single valued on spacetime.

The motivation for the particular ansatz (2.2) for gab will become clear later in this section.
This metric has five linearly independent Killing vector fields, namely @t, @ and the three
rotations of S2. However, it is easy to check that the only linear combination which leaves ~⇧
invariant is

K = @t + !@ . (2.4)

Since a symmetry of the solution must leave both the metric and matter fields invariant, any
solution with nonzero scalar fields will have only one Killing field. Of course, one does not
usually expect there to be solutions in which the matter fields have much less symmetry than
the metric. However the ansatz (2.3) is special2 in that its stress tensor
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has the same symmetry as the metric (2.2). One way to see this is to think of the two complex
components of ~⇧ as coordinates on C2. The fact that |~⇧|2 is only a function of radius means
that at each (r, t), ~⇧ maps the squashed 3-sphere in spacetime into a round 3-sphere. The first
term in the stress tensor is just the pull-back of the highly symmetric metric on this sphere
and the second term is proportional to the spacetime metric.

We thus expect our ansatz to have nontrivial solutions, and indeed the field equations
Gab � 6`�2gab = Tab and r2~⇧ = 0, lead to a consistent set of ODE’s:
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Here, f, g, h,⌦ and ⇧ are real functions only of the radial coordinate r, i.e. the ansatz is
cohomogeneity-1. Surfaces of constant time t and radial r coordinates have the geometry of a
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• Symmetry of the solution must leave both the metric and matter fields invariant:
  This metric has 5 linearly independent Killing vector fields, namely ∂t, ∂ψ and the three rotations of S2. 

  However,  the only linear combination which leaves Π⃗ invariant is:

• Not  usual  to  have  solutions where  matter  fields  have much  less  symmetry than the metric ! 

   Doublet scalar field  ansatz  is  special;  it conspires in such a way that Tab only depends on radial  coord:

where ⌅ ⌘ h+⇧2� 2r2/`2� 2 and 0 denotes di↵erentiation with respect to r. The last two equations
can be regarded as constraint equations, which under the flow of the remaining five, obey to:
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The motivation to consider a model with a complex doublet scalar instead of a (simpler) standard
scalar field is worth of emphasis. The energy-momentum tensor for a complex doublet scalar field

is Tab =
⇣
@a~⇧⇤@b~⇧+ @a~⇧@b~⇧⇤

⌘
� g

ab

⇣
@c~⇧@c~⇧⇤

⌘
while a standard complex scalar field � would

have a similar Tab with the replacement ~⇧ ! �. In both cases, taking the field to be complex and
assuming a Fourier decomposition along the time t and azimuthal coordinates  ,� of S3 guarantees
that Tab is independent of t, ,�. The Tab for � would however have contributions depending on
the polar coordinate ✓. When plugged in the Einstein equation such a Tab then necessarily sources
a gravitational field that is cohomogeneity-2, i.e. with a radial and polar dependence. The simple
ansatz (2) would then not be appropriate and finding a hairy solution would require solving a couple
system of several PDEs; certainly not an easy task. On the other hand, the doublet scalar field has
the extraordinary property that its two components described in (3) conspire in such a way that the
associated Tab sources no polar coordinate contributions. This is clear from the equations of motion
(4). The problem is now cohomegeneity-1 and we have the less complicated task of solving a coupled
system of ODEs. Note also that a more general ansatz for the doublet scalar would consider a Fourier
decomposition eim , i.e. an arbitrary integer azimuthal quantum number m not necessarily restricted
to the case m = 1 that we consider. Although we certainly do not discard the possibility of using a
construction to still find a cohomogeneity-1 ansatz for the gravitational field also when m > 1, this
is not a trivial task and we will not attempt it here. Moreover, as we will prove latter, the hairy
(black hole) solutions with m = 1 are certainly the more interesting ones when seen as a branch of
solutions that bifurcate from the non-hairy family at the threshold of the superradiant instability of
the latter. Indeed, we will find that the superradiant instability is stronger for the m = 1 mode.
Finally, the motivation to consider the particular ansatz (2) for gab will become clear in the following
two subsections.

The Killing properties of the potential hairy solutions described by (2) and (3) are highly non-
standard. Actually, the system has a single Killing symmetry which boosts its interest in the case
where an horizon is present since no such black hole has ever been found before. A detailed discussion
is therefore in order. In the absence of the doublet scalar field, the gravitational field (2) has five
linearly independent Killing vector fields, namely @t, @ and the three Killing vector fields of S2 here
labelled as ⇠

(i), i = 1, 2, 3. This is no longer true if the scalar field is present. Indeed, although
these vectors are still isometries of the gravitational field (2), their action does not leave the scalar
field (3) invariant. To find the Killing symmetries of the hairy solutions we must then consider the
most general linear combination K = a@t + b@ + ci⇠

(i) for constant a, b, ci. By construction, any
combination (a, b, ci) satisfies the Killing equations for the gravitational field, but a Killing vector of
the full solution must also satisfy the Killing equation for the scalar field. In sum, to be a Killing
vector, K must satisfy

LKg = 0 and LK⇧↵ = 0 for ↵ = 1, 2 , (6)

where ⇧↵ are the two components of the doublet scalar field ~⇧. We find that the hairy solutions (2),
(3) have only one Killing symmetry. The associated Killing vector field and its norm are

K = @t + !@ , |K|2 = �fg + r2H(! � ⌦)2 , (7)

with ! being the frequency of the doublet scalar introduced in (3). The upshot is that the hairy
solutions that we will construct in later sections are not time-independent neither axisymmetic.
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Figure 7: Phase diagram for small values of the energy and angular momentum. From top to
bottom, analytical estimate for the merger line, exact merger line, extremal line of the MP-AdS
black holes, analytical estimate for the bosons stars and finally the exact data for the bosons
stars.

5 Discussion

By exploiting a clever ansatz for two (complex) scalar fields [6], we have constructed hairy
black holes with only a single Killing vector. The ansatz corresponds to an m = 1 mode of
the scalar fields. When the horizon area shrinks to zero, the solutions reduce to rotating boson
stars. These solutions were constructed using two complementary approaches: a perturbative
analytic approach for very small black holes, and numerical methods for larger ones. The phase
diagram of these solutions was given in Fig. 6 and it was found that they exhibit nonuniqueness.

We now make a few comments about the stability of our solutions. First consider the boson
stars. We know that AdS is linearly stable, and because boson stars with small E and J are
just perturbations of AdS, we expect them to also be linearly stable. In fact, we expect the
normal modes of these boson stars to be simple deformations of the AdS normal modes (3.2).
For larger E and J , we expect the boson stars to eventually become unstable. For nonrotating
boson stars this usually occurs at the maximum value of E, i.e. , at the first cusp. However,
in the rotating case, it is clear from Fig. 4 that the maximum of E does not coincide with
an extremum of the frequency !. Thus, if one looks for a zero mode to mark the transition
between stability and instability, it will not occur at the maximum mass.

We now turn to black holes. If we consider E and J in the region where MP-AdS black
holes are unstable, then our hairy black holes are almost certainly stable within our m = 1
scalar ansatz. They represent the endpoint of the superradiant instability for this mode and
have larger entropy than the MP-AdS solutions. Outside this region of (E, J) the hairy black
holes probably remain stable to m = 1 perturbations for a while, but then become unstable
(like the boson stars). However, in all cases, since our hairy black holes have ⌦H` > 4, it is
clear from Fig. 1 that they are likely to be unstable to m > 1 perturbations. It is natural to
ask what is the endpoint of this instability in the full theory. This raises an interesting puzzle.

If the black hole settles down, the scalar fields at the horizon must satisfy Kµrµ
~⇧ = 0

where Kµ is the null generator of the horizon. This ensures that there is no flux of scalar field
into the black hole. If the final black hole has ⌦H` > 1 it will probably still be unstable to
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(a) Energy of the boson star (solid line) as a function of its
angular momentum. The inset plot shows (E2 � E1)/`

2 as a
function of J/`3. (E1, E2 are defined in the main text).
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(b) Complete phase diagram for rotating hairy solutions. �E

is the energy relative to the lower branch of boson stars.

Figure 6: Phase diagrams of rotating hairy solutions. The dashed blue curve indicates the
location of the extremal MP-AdS black holes, and regular MP-AdS black holes only exist above
it. The solid purple curve represents the boson stars, the dotted red curves represent lines of
constant r

2

/` = r
+

/` and the green “vertical” solid curves are lines of constant ⌦H`. Finally,
the dotted-dashed green curve represents the best approximation to the singular extremal hairy
black holes.
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• Energy  of  the  boson star  
   as a  function  of  its  angular momentum

• Extremal  line  of  the MP-AdS   BH

• Analytical estimate for the merger line, 
   Exact merger line, 

• Extremal line of the  MP-AdS  BHs, 

• Analytical  estimate  for  the  bosons  stars 
   Exact  data  for  the  bosons  stars ( Dots ).

Zoom  for  small  J All  J
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• Dashed blue curve:  extremal MP-AdS  
        (regular MP-AdS only exist above it). 
• Solid purple curve: boson stars.
• Dotted red curves:  
       hairy BH  lines  of  constant  r2/L     
       (r1 ↗	 	 along  const  r2  line )
• Green “vertical” solid curves:
        hairy BH  lines of constant  ΩH L. 

•Dotted-dashed green curve:
    the best approximation to 
    the singular extremal hairy BHs.

r2/L ↑  

ΩH L  ↑

∆E  is the energy relative to the lower branch of boson stars

• Close to the merger, the SMP < Shairy BH.  SMP = Shairy BH at merger  →  2nd order phase transition. 

• However, for sufficiently large J, the MP-AdS  coexist with  hairy  BHs, and  SMP > Shairy BH. 
   Moreover, the  transition  is  now 1st  order, because  these  solutions  never  merge  for  this  range  of  J.
• In sum, in a 3d plot of {S/l3,∆E/l2,J/l3}:
  J < Jcrit :the hairy BH  family is a 2d surface bounded by the merger line and the boson star curve

  J > Jcrit: Surface continues but is now bounded by the boson star line &  extremal hairy BH curve.   

  This 2d surface never intersects with itself and has a sequence of (regular) “cusp lines”.
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CONCLUSION: 

• BHs  with  a  scalar  field  condensate  &  orbitating  around  horizon.

• First  example  of  stationary  BH  with  single  isometry: 
               it is  stationary  but  not  time  symmetric  nor  axisymmetric 

• This  seems  to  contradict  rigidity  theorems
                        [ Hawking,'72; Hollands, Ishibashi, Wald, '06; Isenberg, Moncrief, '06 ]

            which show that stationary black holes must be axisymmetric...

            (RT assumes  ∃  stationary  KV  ∂t    that  is  not  normal  to  H ... ⇒���������	
��
������������������  ���������	
��
������������������  ∃���������	
��
������������������  ∂ψ ) 

       Well,  these  theorems  are  not  applicable  to  these  BHs,  since  our  

              (stationary)  single  KVF  generates  the  horizon, ie  it  is  normal  to  horizon

•  What  is  the  endpoint  of  the  superradiant  instability  in  this  system ??????


