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We present a formulation for computing equilibria composed of a rotating black hole and a massive
self-gravitating torus in general relativity. Such a system is a plausible outcome formed after stellar core
collapse of massive and supermassive stars as well as after a merger of a black hole-neutron star binary. In
our formulation, the black hole is modeled in the puncture framework. The numerical solutions for
equilibria are computed for rapidly rotating black holes and for a wide range of mass ratio of the black
hole and torus. The equilibria obtained in this paper can be used for studying nonaxisymmetric
instabilities, runaway instability, and magnetorotational instability of a self-gravitating accretion torus
around a rotating black hole in numerical relativity. We also remark that the relation among the area, mass,
and spin of rotating black holes are slightly modified by the torus.
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I. INTRODUCTION

A system composed of a rotating black hole and a self-
gravitating torus is a possible outcome formed after stellar
core collapse of a massive star [1], after the merger of a
black hole-neutron star binary [2– 4], and after the collapse
of a supermassive star [5]. Because the torus is likely to be
very hot due to shock heating in the formation process, the
stellar-mass outcome could be a central engine of gamma-
ray bursts [1,6]. It also may be a strong source of gravita-
tional waves because the self-gravitating torus is often
unstable against nonaxisymmetric deformation [7]. A class
of torus is also subject to the runaway instability which has
been studied in a number of articles; e.g., [8] and refer-
ences cited therein. These facts motivate study for the
black hole-torus system.

For the study of dynamical properties of a black hole-
torus system such as stabilities against nonaxisymmetric
deformation and against runaway instability, numerical
simulation in general relativity is the best approach. Until
quite recently, the numerical method for the long-term
evolution of a system composed of a black hole and matter
had not been developed in full general relativity, and
hence, simulation for the black hole-torus system has not
been done yet. However, numerical relativity has been
significantly developed in the past few years. For example,
it has already been a feasible task to perform general
relativistic hydrodynamic simulations for the merger of
binary neutron stars [9,10], for stellar core collapse with
a realistic equation of state [11], for the collapse of super-
massive stars [5,12], and for magnetorotational collapse
[13], which were unsolved issues several years ago. A
long-term evolution for black hole spacetime was only
one remaining issue to be resolved a few years ago.
However, the method for handling the black hole in the
so-called moving puncture framework was discovered [14]
(see also [15,16] for the original idea of the puncture
framework). This framework enables one (even the begin-
ner of numerical relativity) to perform a simulation for

black hole spacetimes without special difficulty. (See also
[17–19] for the progress in other approaches based on the
black hole excision.) Soon after the discovery of the mov-
ing puncture framework, simulations for the merger of
binary black holes [14] and black hole-neutron star bi-
naries [4] have been performed.

Namely, it has already been possible to study most of the
general relativistic astrophysical phenomena by numerical
relativity, if an appropriate initial condition (and a super-
computer of certain power) is prepared. In this paper, we
present a formulation for providing equilibrium states
composed of a rotating black hole and self-gravitating
torus in the puncture framework. We do not use the con-
formal flatness approximation because rapidly rotating
black holes cannot be computed accurately with this ap-
proximation. With our formulation, equilibria of a rapidly
rotating black hole and massive torus can be computed, as
demonstrated in Sec. III. The solutions obtained in this
method will be adopted for general relativistic simulation
in the moving puncture framework and will be helpful for
studying dynamical and astrophysical issues mentioned in
the first paragraph.

It should be noted that equilibria of a black hole and
torus was already computed by the pioneer work of
Nishida and Eriguchi many years ago [20] and recently
by Ansorg and Petroff [21]. In the present paper, we
propose a different formulation from theirs in the puncture
framework. In addition, we suggest different indicators of
black hole mass from that used in [20,21] because the exact
definition for a nonisolated black hole is still unknown and
the previous one might not be a good indicator. We remark
that characteristic physical properties of the black hole
surrounded by massive torus we find are quite different
from those reported previously. In our definition of black
hole mass, the relations among the area, mass, and spin
angular momentum of the black hole surrounded by mas-
sive torus are only slightly different from those of Kerr
black holes. On the other hand, the relations of angular
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velocity and surface gravity as functions of mass and spin
are significantly different from those of Kerr black holes.

The paper is organized as follows. In Sec. II, we present
our formulation for equilibria of rotating black hole-torus
systems. Three candidates of the black hole mass in the
presence of the torus are suggested. In Sec. III, numerical
results in our formulation are presented paying attention to
the properties of the black hole. Section IV is devoted to a
summary. Throughout this paper, we adopt geometrical
units in which G � 1 � c, where G and c denote the
gravitational constant and the speed of light, respectively.
Latin and Greek indices denote spatial and spacetime
components.

II. FORMULATION

A. Basic equations

We derive the basic equations for a system of the rotat-
ing black hole and self-gravitating torus in axisymmetric
equilibrium which are suitable for preparing initial data of
the numerical relativity simulation in the moving puncture
framework. First, we write the line element in the quasi-
isotropic form [22–24]
 

ds2 � ��2dt2 �  4�e2q�dr2 � r2d�2�

� r2sin2���dt� d’�2�; (1)

where � is the lapse function,  is the conformal factor, �
is the shift vector of the ’ component, and e2q denotes the
conformal metric for the rr and �� parts. These field
variables are functions of r and �. In this paper, the
3� 1 formalism of general relativity is used since our
purpose is to prepare an initial condition for numerical
relativity simulation.

In the following, we assume that the torus is composed
of the perfect fluid for which the energy-momentum tensor
is

 T�� � �hu�u� � Pg��; (2)

where �, h, u�, P, and g�� are the rest-mass density,
specific enthalpy, four-velocity, pressure, and spacetime
metric, respectively. In this paper, we adopt the polytropic
equation of state (EOS)

 P � K��; (3)

where K and � are the polytropic and adiabatic constants,
respectively. In this EOS, the specific internal energy " and
h are written by

 " �
K

�� 1
���1; (4)

 h � 1� �": (5)

Nonzero components of the four-velocity are u’ and ut.
The normalization relation u�u� � �1 gives the relation
between them

 ��ut�2 � 1�
u2
’

 4r2sin2�
: (6)

From u’, the angular velocity �, defined by u’=ut, is
derived

 � � ���
u’

 4utr2sin2�
: (7)

In stationary axisymmetric spacetime, the Euler equa-
tion is integrated to give

 

h
ut
�
Z
hu’d� � C; (8)

where C is a constant (see Appendix A for the derivation of
Eq. (8) and an extension of this relation in the presence of
toroidal magnetic fields). Note that Eq. (8) holds irrespec-
tive of the chosen EOS as far as the fluid is isentropic.

In this paper, we choose the constant specific angular
momentum as the rotation law, namely,

 j � hu’ � const: (9)

Then, the first integral of the Euler equation is

 

h
ut
� j� � C; (10)

or

 �

��������������������������������
h2 �

j2

 4r2sin2�

s
� j� � C: (11)

Equation (11) is the basic equation for providing h for
given constants j and C. After h is obtained, � and P
are determined using Eqs. (3) and (5) for given values of
K and �.

We here choose the j � constant law for simplicity (we
do not consider astrophysical application of the equilibria
computed below). An astrophysically realistic one would
be different from this since tori of j � constant law are
known to be often unstable against nonaxisymmetric de-
formation and runaway collapse. In our formulation, equi-
libria can be computed with other rotation laws if they are
written in the form j � j���. In the numerical simulation
which will be performed in the future, we will present
equilibria in other rotation laws.

The basic equations for the metric functions are derived
from the equations in the 3� 1 formalism of general
relativity. Taking into account that the analytic solution
for Kerr black holes in the puncture framework (and in the
3� 1 formalism) has been already found by Krivan and
Price [25], we derive the basic equations based on their
formulation in the following. The formulation derived in
this strategy guarantees that in the zero limit of torus mass,
the numerical solution automatically reduces to a Kerr
solution.

In stationary axisymmetric spacetime with the line ele-
ment (1), nonzero components of the extrinsic curvature
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Kij are Kr’ and K�’. Defining the weighted extrinsic
curvature,

 K̂ ij �  2Kij; (12)

the momentum constraint equation of a nontrivial compo-
nent (’ component) is written as

 

1

r2

@�r2K̂r’�

@r
�

1

r2 sin�

@�sin�K̂�’�

@�
� 8�Tt’� 

6e2q:

(13)

Because the momentum constraint is linear in K̂ij, the
nonzero components may be split as

 K̂ r’ �
HEsin2�

r2 �
 6

2�
r2sin2�@r�T; (14)

 K̂ �’ �
HF sin�

r
�
 6

2�
r2sin2�@��T; (15)

where the first term of each denotes the contribution from a
rotating black hole and the second term is that from a torus.
�T is the shift vector associated with the torus and equal to
�� �K where �K is derived from

 

@�K

@r
�

2HE�

r4 6
: (16)

HE and HF satisfy a relation derived from the momentum
constraint as [23]

 r
@HE

@r
sin3��

@HFsin2�
@�

� 0: (17)

We assign the solutions for Kerr black holes to HE and HF
[see Eqs. (36) and (37)]. Then, �K is equal to the shift
vector of the Kerr black hole in the absence of the torus.

Using the evolution equation for tr�Kij�, the Hamiltonian
constraint, and the momentum constraint, the equations for
� � � ,  , and �T are derived as

 �� �
�e2q ~R

8
� 2���H � 2S��e2q 4 �

7A2�

4 8 ; (18)

 � �
 e2q ~R

8
� 2��He

2q 5 �
A2

4 7 ; (19)

 

��T �

�
2

r
�

7

 
@ 
@r
�

1

�

@�

@r

�
@�T

@r

�
1

r2

�
2 cot��

7

 
@ 
@�
�

1

�

@�

@�

�
@�T

@�
�

16��e2qJ

r2sin2�
;

(20)

where

 A2 �
K̂2
r’

r2sin2�
�

K̂2
�’

r4sin2�
; (21)

 �H � �2Ttt � �h��ut�2 � P; (22)

 J � �Tt’ � ��utj; (23)

 S � � 2r sin���2T’’ � �h���ut�2 � 1� � 3P; (24)

and ~R is the Ricci scalar with respect to the conformal
three-metric

 

~R � �2e�2q
�
@2

@r2 �
1

r
@
@r
�

1

r2

@2

@�2

�
q: (25)

� denotes the flat Laplacian,

 � �
@2

@r2 �
2

r
@
@r
�

1

r2

�
@2

@�2 � cot�
@
@�

�
: (26)

The equation for q is derived from the evolution equa-
tions for Kij. In the present case, the evolution equation
leads to
 

Iij � �Rij � 2�KilK
l
j �DiDj�� Kim

@�m

@xj
� Kjm

@�m

@xi

� 8��
�
Sij �

1

2
�ij��H � S�

�
� 0; (27)

where Rij and Di are the Ricci tensor and covariant de-
rivative with respect to the three-metric �ij, and Sij �
�huiuj � P�ij. Then, from the relation

 Irr �
I��
r2 �

3e2qI’’
r2sin2�

� 0; (28)

an elliptic-type equation of q is derived:
 �
@2

@r2 �
1

r
@
@r
�

1

r2

@2

@�2

�
q � �8�e2q

�
 4P�

�hu2
’

r2sin2�

�

�
3A2

 8 � 2
�
1

r
@
@r
�

cot�

r2

@
@�

�

	 ln�� � �
4

� 

�
@�

@r
@ 
@r

�
1

r2

@�

@�
@ 
@�

�
: (29)

Substituting Eq. (29) into Eq. (19), the equation for  is
rewritten as
 

� � �2�
�
�H � P�

�hu2
’

 4r2sin2�

�
e2q 5 �

A2

 7

�
 
2

�
1

r
@
@r
�

cot�

r2

@
@�

�
ln�� �

�
1

�

�
@�

@r
@ 
@r
�

1

r2

@�

@�
@ 
@�

�
; (30)

Using Eqs. (18), (19), (25), and (29), we find that � 
obeys a simple equation
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�
��

1

r
@
@r
�

cot�

r2

@
@�

�
�� � � 16�� 5e2qP: (31)

Hence, it is better to choose this equation instead of that for
� as one of basic equations.

If HE and HF are chosen to be equal to those of a Kerr
black hole, the derived equations satisfy the Kerr solution
in the quasi-isotropic coordinate in the absence of the
torus. The specific forms are [25]

 �K �

������������������������������������������������������������
�K�K

�r2
K � a

2��K � 2ma2rKsin2�

s
; (32)

 �K � �
2marK

�r2
K � a

2��K � 2ma2rKsin2�
; (33)

  K �
1

r1=2

�
r2

K � a
2 �

2ma2rKsin2�
�K

�
1=4
; (34)

 eqK �
�K������������������������������������������������������������

�r2
K � a

2��K � 2ma2rKsin2�
q ; (35)

 HE �
ma��r2

K � a
2��K � 2r2

K�r
2
K � a

2��

�2
K

; (36)

 HF �
�2ma3rK�1=2

K cos�sin2�

�2
K

; (37)

wherem and a�jaj<m� are the mass and spin parameter of

the Kerr black hole, rK is the radial coordinate in the
Boyer-Lindquist coordinate, and

 �K � r2
K � a

2cos2�; (38)

 �K � r2
K � 2mrK � a

2: (39)

The relation between r and rK [25] is

 rK � r
�
1�

m
r
�
m2 � a2

4r2

�
; (40)

or equivalently

 r �
rK �m� �1=2

K

2
: (41)

We derive the equations for the field variables in the
puncture framework [15]. This is possible because the
elliptic operator for  and � in the basic equations are
the flat operator. Assuming that the puncture is located at
r � 0, we write  and � in the form

  �
�
1�

rs

r

�
e	; (42)

 � �
�

1�
rs

r

�
e�	B; (43)

where rs is set to be
������������������
m2 � a2
p

=2 following [25], and	 and
B are new functions of r and �. Using Eqs. (42) and (43),
the elliptic-type equations for 	, B�� eb�, �T, and q are
rewritten as

 �
@2

@r2 �
2r

r2 � r2
s

@
@r
�

1

r2

�
@2

@�2 � cot�
@
@�

��
	 � �2�e2q 4

�
�H � P�

�hu2
’

 4r2sin2�

�
�
A2

 8 �
@	
@r

@b
@r
�

1

r2

@	
@�

@b
@�

�
1

2

�
r� rs

r�r� rs�

@b
@r
�

cot�

r2

@b
@�

�
� S	; (44)

 

�
@2

@r2 �
3r2 � r2

s

r�r2 � r2
s �

@
@r
�

1

r2

�
@2

@�2 � 2 cot�
@
@�

��
B � 16�Be2q 4P; (45)

 

�
@2

@r2 �

�
4r2 � 8rsr� 2r2

s

r�r2 � r2
s �

� 8
@	
@r
�
@b
@r

�
@
@r
�

1

r2

�
@2

@�2 �

�
3 cot�� 8

@	
@�
�
@b
@�

�
@
@�

��
�T �

16��e2qJ

r2sin2�
; (46)

 �
@2

@r2 �
1

r
@
@r
�

1

r2

@2

@�2

�
q � �8�e2q

�
 4P�

�hu2
’

r2sin2�

�
�

3A2

 8 � 2
�
r� rs

r�r� rs�

@
@r
�

cot�

r2

@
@�

�
b

�

�
8rs

r2 � r2
s

� 4
@�b�	�

@r

�
@	
@r
�

4

r2

@	
@�

@�b�	�
@�

� Sq: (47)
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The equation for �K is

 

@�K

@r
� 2HEBe�8	 �r� rs�r

2

�r� rs�
7 : (48)

Equations (44)–(48) are the basic field equations to be
solved in the puncture framework.

B. Boundary conditions

Although the basic equations (44)–(48) are written in
the puncture framework, they also have an inversion sym-
metry with respect to the two-surface of r � rs. In the
absence of the torus, this is easily found by the coordinate
transformation

 �r �
r2

s

r
: (49)

Namely, the equations obtained by the transformation of
(49) are identical with those obtained by simply changing
the variable from r to �r. This implies that the following
relations hold:

 	�r� � 	��r�; (50)

 B�r� � B� �r�; (51)

 �T�r� � �T� �r�; (52)

 �K�r� � �K��r�; (53)

 q�r� � q� �r�: (54)

Even in the presence of the torus, the inversion symmetry
holds if we assume the relations

 ��r� � ���r�; (55)

 u’�r� � �u’� �r�; (56)

 ut�r� � �ut� �r�: (57)

The minus sign for the second and third relations comes
from the fact that ��r� � ����r�.

Assuming the presence of the inversion-symmetry rela-
tions for the matter (55)–(57), Eqs. (44)–(47) may be
solved only for the region rs 
 r <1 with the boundary
conditions at r � rs

 

@	
@r
�
@B
@r
�
@�T

@r
�
@q
@r
� 0: (58)

Then, the solutions for r < rs are obtained from Eqs. (50)–
(54) with �r > rs. The topology of the spacetime considered
here is schematically described in Fig. 1.

The boundary conditions for r! 1 are

 	!
M1

2r
; (59)

 B! �
B1

r2 ; (60)

 �T ! �
2J1

r3 ; (61)

 q!
q1sin2�

r2 ; (62)

where M1, B1, J1, and q1 are constants. M1 and J1 may be
used for deriving the total mass and angular momentum of
the system (see Sec. II C). They are computed from

 M1 � �2
Z 1
rs
�r2 � r2

s�dr
Z �=2

0
sin�d�S	; (63)

 J1 � 4�
Z 1
rs
r2dr

Z �=2

0
sin�d���ut 6e2qj: (64)

We note that these boundary conditions are physically the
same as those in [24].

Note that q should be zero along the rotation axis
because of the regularity there. This is reflected in the
boundary condition (62). Another point which should be
kept in mind is that the asymptotic behavior of the homo-
geneous solution for q is proportional to lnr. In spite of this
fact, the asymptotic behavior (62) has to be satisfied. This
requires the relation

 

Z 1
rs

rdr
Z �=2

0
d�Sq � 0: (65)

Equation (65) is known as a virial identity introduced by
Bonazzola and Gourgoulhon [26]. This identity is useful
for checking accuracy of numerical results. We note that
there is the other virial identity. We describe it in Sec. II C
[see Eq. (95)].

Because the inversion-symmetric boundary condition is
imposed, the two-surface of r � rs satisfies the relation for
the apparent horizon, which agrees with the event horizon
in the stationary spacetime [27]. The angular velocity of
the event horizon should be equal to�� [28], and hence,�
at r � rs should be constant. This is guaranteed in the

FIG. 1 (color online). Schematic picture for topology of the
black hole-torus system considered in this paper. The thin and
thick circles denote the event horizon and torus.
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present formulation as proven in the following: For � to be
constant, @�=@� has to be zero at r � rs. From Eq. (20),
we find that it is equivalent to the following condition
because @�=@r � 0 at r � rs:

 

@
@r

�
1

�
@�
@r

�
� 0: (66)

For this equation to be satisfied, @�=@r near r � rs has to
satisfy

 

@�
@r
� C��f1�O��r� rs�

2�g; (67)

where C� is a constant. Namely, the terms proportional to
�	 �r� rs� should be vanishing. This is indeed guaran-
teed in the present formulation because � and � satisfy
inversion asymmetry and symmetry with respect to the r �
rs surface, respectively. Therefore, � is constant on the
event horizon. Numerical results also show that this is the
case.

In solving the equation for �T, we have to be careful
about the boundary condition at r � rs. The inversion-
symmetric condition requires

 �T � �T0 � �T2�r� rs�2 �O��r� rs�4�; (68)

where �T0 and �T2 are constants. Substituting this relation
into Eq. (46), it is found that these two constants cannot be
determined. This implies that they are homogeneous com-
ponents and can be arbitrarily given. To eliminate such
components, we impose the boundary condition

 �T � O��r� rs�
4�: (69)

In this boundary condition, the angular velocity and angu-
lar momentum of black holes are not affected by �T (see
Sec. II C).

Equation (48) is an ordinary differential equation of first
order. A solution of this is derived by integration with the
boundary condition at r! 1 as �K ! 0. Specifically, the
integration is carried out from r � rs toward infinity with
an arbitrary initial value (we usually choose the value of
the Kerr black hole for given massm and spin a). Then, the
value of �K for r� m approaches to a constant.
Subtraction of this constant from the numerical solution
results in a solution because Eq. (48) is linear in �K.

Before closing this section, we note the following.
Because of the presence of the inversion symmetry, the
equations are solved for an excised region of r � rs in the
present formulation. In this sense, the computation is per-
formed using the excision technique. However, the basic
equations are written in the puncture framework. Thus, the
numerical solutions for the puncture framework (i.e., the
solutions for the whole region) are easily reconstructed
from the obtained solution of inversion symmetry. Such a
solution can be used as initial data for numerical simula-
tion in the moving puncture framework.

C. Quantities of black hole, torus, and system

The properties of a black hole surrounded by torus are
analyzed from the quantities on the event horizon (i.e., on
the two-surface of r � rs). Specifically, a Komar-charge
MH, angular momentum JH, the area AH, proper length
along a constant meridian Cp, circumference along the
equatorial surface Ce, angular velocity �H, and surface
gravity 
 of a black hole are computed from

 MH �
Z �=2

0
 2r2 @�

@r
sin�d�� 2�HJH; (70)

 JH �
1

4

Z �=2

0

r4 6

�
@�
@r

sin3�d�; (71)

 AH � 4�
Z �=2

0
 4eqr2 sin�d�; (72)

 Cp � 4rs

Z �=2

0
 2eqd�; (73)

 Ce � 2�rs �� � �=2�2; (74)

 �H � �� � ��K � const; (75)

 
 �
@�
@r
 �2e�q �

Be�4	�q

8rs
� const: (76)

MH, JH, �H, and 
 are defined according to the formula by
Bardeen, Carter, and Hawking [24,28], and obey the Smarr
relation [29]

 MH �



4�
AH � 2�HJH: (77)

In the absence of a torus (i.e. for a Kerr black hole),

 MH � m; (78)

 JH � ma; (79)

 AH � 8�m2�1�
�����������������������
1� a2=m2

q
�; (80)

 �H � a=2mr�; (81)

 
 �
������������������
m2 � a2

p
=2mr�; (82)

 Ce � 4�m; (83)

where r� � m�
������������������
m2 � a2
p

is the radial coordinate of the
event horizon in the Boyer-Lindquist coordinate. It is
worthy to note that Ce (as well as MH) for Kerr black holes
is independent of spin a. Thus, the mass of the black hole
may be determined fromCe=4� in the absence of the torus.
Even in the presence of the torus, this quantity may be
useful for approximately determining black hole mass (at

MASARU SHIBATA PHYSICAL REVIEW D 76, 064035 (2007)

064035-6



least for the case that mass of the torus is much smaller
than the black hole mass). Thus, we define

 MC �
Ce
4�

(84)

as a measure of black hole mass.
In the present choice of the boundary condition for � at

r � rs, JH is always ma irrespective of the mass and spin
of torus. On the other hand, MH, AH, 
, and �H depend on
the property of the torus.

As pointed out in [24], the Komar-charge MH, defined
by the surface integral on the event horizon, may or may
not be a good indicator of the black hole mass in the
presence of the torus. In [20,30] it is regarded as the black
hole mass but no justification is shown. It may be nothing
but a characteristic charge of mass dimension. Indeed, the
numerical results shown below (see the discussion associ-
ated with Fig. 4, and also see the results shown in [30])
suggest that MH might not be a good indicator of the black
hole mass.

On the other hand, the area is a physical quantity, which
is related to the irreducible mass [27] by

 Mirr �

���������
AH

16�

s
: (85)

Also, in axisymmetric spacetimes, JH is regarded as the
angular momentum of a black hole [24]. Thus, remember-
ing the following formula held for Kerr black holes,

 2M2
irr � m2 �m

������������������
m2 � a2

p
; (86)

the mass of a black hole may be approximately estimated
by the Christodoulou’s formula [31]

 MBH � Mirr

��������������������
1�

J2
H

4M4
irr

s
: (87)

In Sec. III, we compare MH, MC, and MBH.
The rest-mass M
 and the angular momentum J
 of the

torus are defined by

 M
 � 4�
Z 1
rs

r2dr
Z �=2

0
sin�d��
; (88)

 J
 � 4�
Z 1
rs

r2dr
Z �=2

0
sin�d��
j; (89)

where �
 is the rest-mass density defined by

 �
 � ��ut 6e2q: (90)

J
 is equal to J1, and to M
j for the rotation profile of j �
const.

The total gravitational massM and angular momentum J
of the system are computed from the Komar integral [24]

 M � MH �MT; (91)

 J � JH � J
; (92)

where

 MT � 8�
Z 1
rs
r2dr

Z �=2

0
sin�d�	

�
�Ttt �

1

2
T��

�
� 6e2q:

(93)

The mass of the system is also computed from the
Arnowitt-Deser-Misner (ADM) formula [32]. Using the
asymptotic behavior of the three-metric, the ADM mass
is calculated to be

 MADM �
������������������
m2 � a2

p
�M1; (94)

where M1 is defined in Eq. (59). In the stationary space-
time, the virial relation M � MADM, i.e.,

 MH �MT �
������������������
m2 � a2

p
�M1 (95)

has to be satisfied [33]. Thus, the accuracy of numerical
results can be measured from the magnitude of j1�
M=MADMj.

In addition, we define rotational kinetic, internal, and
gravitational potential energy of the torus

 T � 4�
Z 1
rs

r2dr
Z �=2

0
sin�d�

1

2
�
j�; (96)

 U � 4�
Z 1
rs

r2dr
Z �=2

0
sin�d��
"; (97)

 W � MADM �MBH �M
 � T �U; (98)

where W < 0. We note that in W, not only gravitational
potential energy due to the self-gravity of the torus but also
binding energy between the black hole and torus are
included.

III. NUMERICAL COMPUTATION

A. Setting and calibration

Numerical computations were performed assuming the
reflection symmetry with respect to the equatorial plane
and the inversion symmetry with respect to the two-surface
of r � rs. A nonuniform grid for r and a uniform grid for
cos� are adopted with the fiducial grid size �Nr; N�� �
�800; 100�. Specifically, the grid is determined by

 ri � rs �
fi � 1

f� 1
�r; for i � 1� Nr; (99)

 cos�j �
1

N�

�
j�

1

2

�
for j � 1� N�: (100)

Equation (99) implies that the radial grid spacing increases
as ri�1 � ri � f�ri � ri�1�. The fiducial values of f and
�r are f � 1:01 and rs=50. The outer boundaries are
located at r� 5700rs in this setting.
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The numerical scheme is essentially the same as that
used in [34]. Namely, we iteratively solve the field equa-
tions (44)–(48) as the boundary value problem and deter-
mine the density of the torus from the first integral of the
Euler equation (11). For a numerical solution of the field
equations, we used the second-order finite-differencing
schemes.

As the first test of our numerical code, we solved
Eqs. (44), (47), and (48) in the absence of matter to
examine if the numerical solution agrees with that of a
Kerr black hole with a good accuracy. In Fig. 2, we show
the relative error of the numerical solution of 	 and q for
a � 0:99m with the grid settings (a) �Nr; N�;�r=rs� �
�800; 100; 1=50�, (b) (730, 100, 1/25), (c) (660, 100, 1/
12.5), (d) (590, 100, 1/6.25), and (e) (1200, 100, 1/50).
For (a)–(d), we chose f � 1:01 and for (e), f � 1:006 66.
For all the cases, the outer boundary is located at
� 5700rs. Figure 2 shows that for our fiducial grid setting
with �Nr; N�;�r=rs� � �800; 100; 1=50�, the numerical er-
ror is smaller than �10�3 for r & 100m. In the vicinity of
the black hole in which the grid spacing is smallest, the
numerical error decreases approximately at second order
and with the fiducial grid, the error is of O�10�4�. On the
other hand, in the zone with r * 10m, the numerical error
is larger and the convergence is slow. One reason is that the
grid spacing in the outer region is much larger than that in
the inner region. Actually, in the case (e) for which the grid
spacing is smaller than those for (a)–(d) in the outer region,
the numerical error is suppressed (in particular for 	). The
other reason is that the numerical error is systematically
generated by the incomplete boundary conditions at the
outer boundaries and along the symmetric axis: In our
present treatment, the boundary conditions are imposed
taking into account the behavior of the lowest-order multi-
pole. This treatment restricts improving the accuracy be-
yond a certain level. To derive more accurate results, the
higher-order multipoles should be taken into account with

a better numerical approach (e.g., [35]). However, the
numerical error �10�3 is small enough for the purpose
of the present paper.

The tests were also performed changing N�. We found
that the numerical results depend very weakly on it as far as
N� � 100. We also varied the value of a, and found that the
magnitude and behavior of the numerical error are essen-
tially the same as far as ja=mj is not close to unity. For
jaj ! m (in the limit of the extreme Kerr solution), how-
ever, we found it difficult to get solutions. This is because
of the fact that rs approaches zero for jaj ! m (i.e., the
coordinate distance between the event horizon and the
spatial infinity in the bottom-sheet world approaches
zero); in such a case, resolving the region near the event
horizon with �r� rs requires a huge grid number. The
present numerical approach is not suitable for such an
extreme case.

Convergence of numerical solutions for different grid
resolutions was also checked in the presence of the torus.
We found that the numerical solutions for 	, B, and �
converge approximately at second order. For that of q, the
convergence is slow. This is probably because of the fact
that an unphysical solution resulting from the insufficient
boundary condition slightly contaminates the numerical
solution. (Note that we have to exclude the homogeneous
solution, q / lnr, from the numerical solution for Eq. (47),
but with the approximate boundary condition used in this
work, such a homogeneous term is excluded in an insuffi-
cient way.) In Appendix B, we briefly describe the method
for checking the convergence and present the results.

The accuracy of the numerical results for the black hole-
torus system is measured from

 Error �
j
R
1
rs
rdr

R�=2
0 d�SqjR

1
rs
rdr

R�=2
0 d� 3A2

 8

: (101)
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FIG. 2 (color online). The relative error of the numerical solutions of 	 and q for the Kerr black hole with a � 0:99m as a function
of r=m in the equatorial plane. The solid, long-dashed, dotted, dashed, and thin solid curves denote the results for the grid settings (a)–
(e), respectively.
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This should be zero for the exact solution due to the virial
identity (65) [26]. We found that the magnitude of ‘‘error’’
for the typical grid size is less than 0.1% and decreases
with improving the grid resolution and with increasing the
characteristic orbital radius of the torus.

We also checked if two masses M and MADM computed
by Eqs. (91) and (94) agree each other. We found that they
agree within �0:1% error for most of the models. The
exception is the case in which a * 0:9m, M
 * m, and the
radius of the inner edge of the torus is close to that of the
innermost stable circular orbit. In such a case, the error is
�1% in the typical grid size. Irrespective of a=m, the error
slightly increases with M
 while it decreases with improv-
ing the grid resolution or with increasing the orbital radius
of the torus. We note that we estimate the magnitude of the
error for MC, MH, and MBH from the computations of
different grid settings, and found that the error is much
smaller than j1�M=MADMj for the fiducial setting.

In numerical computation of an equilibrium sequence of
the black hole-torus system, we first specifym and a. Here,
m is a scaling parameter, i.e., all the quantities of mass and
radius dimensions linearly increase with m. Thus, we
simply set it to be unity. Since m and a are given, rs is
also fixed to be

������������������
m2 � a2
p

=2. To efficiently see the effect of
the torus on the properties of a black hole, tori of close
orbits around rotating black holes are chosen in numerical
computation. To specify a torus, we first give the coordi-
nate radii of the inner and outer edges in the equatorial
plane (denoted by r1 and r2), and " at r � 2r1r2=�r1 � r2�
(denoted by "0). We chose the value of r1 to be slightly
larger than the radius of the innermost stable circular orbit
around the black hole. With the increase of "0 for fixed
values of r1 and r2, the mass of the torus increases.

Computations were performed for a wide variety of
parameter sets �a; r1; r2�. We found that numerical solu-
tions can be obtained for a wide range of M
=m as long as
the black hole is not extremely rapidly rotating as jaj �m.
In the present paper, we focus only on the case jaj 
 0:9m
although we checked that the numerical computation is
feasible even for jaj � 0:995m in the fiducial grid setting.
For jaj ! m, the properties of the black hole reported in
Sec. III B might be modified, in particular, for a very
compact torus of the inner edge close to the event horizon.
We do not study such an extreme case in this paper.

In the following, we present numerical results for 7
parameter sets of �a=m; r1=m; r2=m�: (i) (0.9, 1.5, 20),
(ii) (0.9, 5, 20), (iii) (0.9, 10, 20), (iv) (0.5, 3.5, 20),
(v) (0.1, 5, 20), (vi) ��0:5; 7; 20�, and (vii) ��0:9; 8; 20�.
Here, the negative value of a implies that the torus is
counterrotating against the black hole. We compute se-
quences of equilibria changing the mass of torus while
fixing m, a, r1, and r2.

We choose � � 4=3 polytropic EOS for the torus. This
choice is reasonable because the torus around a black hole
formed from stellar core collapse or merger of a black
hole-neutron star binary is often hot and the pressure is
dominated by degenerate pressure of relativistic electrons
as well as by radiation pressure. Of course, a more realistic
EOS will be necessary in considering an astrophysical
application.

B. Results

In Fig. 3(a), we display the density contour curves for
the case (i) with M
=m � 0:4. It is found that the torus has
a donut-shape with the maximum thickness comparable to
the width r2 � r1. This is a universal feature that holds for

R / m

Z / m
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 0  5  10  15  20  25
 0
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R / m

Z / m
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FIG. 3 (color online). (a) Density contours for the case (i) with M
=m � 0:400. The contours are plotted for � � 0:8�max 	 10i=2

where i � 0–9. The event horizon is located for r � 0:218m. (b) The same as (a) but for a � 0:99m. The event horizon is located for
r � 0:0705m.
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the j � constant rotation profile. We note that for a profile
in which j increases with the decrease of �, the thickness
is not as wide as r2 � r1. In Fig. 3(b), we also display the
density contour curves for a � 0:99m with M
=m � 0:4,
r1 � 1:5m, and r2 � 20m for demonstrating that the com-
putation is feasible even for rapidly rotating black holes.
Comparison of Fig. 3(a) and 3(b) shows that the density
profile depends weakly on the value of a=m although for
the larger value of a=m with given values of m, r1, r2, and
M
, the torus becomes more compact (i.e., the averaged
value of the cylindrical radius is smaller).

The values of jT=Wj are always larger than 0.3 for
compact tori considered in this paper. Because they are
much larger than the well-known value for the onset of
dynamical instability against nonaxisymmetric deforma-
tion �0:27 [36], equilibria are likely to be unstable.
Exploring the nonaxisymmetric stability of such equilibria
is an issue in the future. In the following, we focus on the
study for the properties of black holes surrounded by a
massive torus.

Figure 4 shows 	 and �� as functions of r in the
equatorial plane for the case (i) with M
=m � 0:043,
0.400, and 0.800 and for (v) with M
=m � 0:093, 0.405,
and 0.835. For the case (i) in which the black hole is rapidly
rotating, the values of 	 (and hence  ) near the event
horizon depends weakly on the mass of the torus.

Because  primarily determines the strength of gravity,
this suggests that the properties of the black hole depend
weakly on the torus for (i).

For the case (v) in which the black hole is slowly
rotating, the values of 	 near the event horizon depend
strongly on the mass of the torus (note that for a � 0,	!
0 in the limit M
 ! 0). This is reflected in a sensitive
dependence of the black hole mass on the torus mass
(see Fig. 5). In this case, the magnitude of A2

[cf. Eq. (21)] near the event horizon increases sensitively
with M
 and with the angular momentum of the torus,
because the angular momentum of the system is small in
the absence of the torus. A2 is not a local quantity and
hence affects the gravity near the event horizon, resulting
in the increase of the black hole mass. In other words, the
properties of the black hole depend sensitively on the
angular momentum of the torus if the black hole is slowly
rotating.

For r > r1, the magnitude of 	 increases with M
 irre-
spective of the value of a. This is reflected in the increase
of the total mass M. For the case of small values of a, the
profile of 	 is primarily determined by the torus for M
 �
m as shown in Fig. 4(c).

As in the case of 	, the magnitude of j�j for r > r1

increases with M
 reflecting the fact that the total angular
momentum of the system increases. On the other hand, the
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FIG. 4 (color online). 	 and�� as functions of r in the equatorial plane (a, b) for the case (i) with M
=m � 0:043, 0.400, and 0.800
and (c, d) for the case (v) with M
=m � 0:093, 0.405, and 0.835.
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value of j�j on the event horizon decreases with the
increase of M
, implying that the spin angular velocity of
the black hole decreases [cf. Eq. (75)]. For the case (v), the
magnitude of j�j is much smaller than that for (i). Because
of this, the profile of � is modified strongly by the angular
momentum of the torus.

Figure 5 shows (a) MBH and MC, (b) MH, (c) Mirr, and
(d) M�M
 as functions of M
. Figure 5(a) indicates that
MBH and MC coincide well. For the case (i) in which r1 is
very small and the black hole is rapidly rotating �a �
0:9m�, the difference of two quantities is fairly large, but
it is still at most �3%. The coincidence is very good for
slightly larger values of r1 (e.g., see the results for (ii) in
which a � 0:9m and r1=m � 5), implying that the rela-
tively poor coincidence occurs only for very small values
of r1. Remembering thatMC andMBH are equal to the mass

of Kerr black holes in the absence of the torus, the numeri-
cal results suggest that these two values may be approxi-
mately equal to the black hole mass even in the presence of
the torus.

On the other hand, Fig. 5(b) shows that MH decreases
with the increase of M
, and hence, disagrees considerably
withMBH andMC. This raises a question thatMH might not
be a good indicator of the black hole mass in the presence
of the torus. In addition, there are two facts which suggest
that MH might not be a good indicator of the black hole
mass. The first one is found from Figs. 5(b) and 5(c), which
show that with the increase of Mirr, MH decreases for a
given value of JH. In particular,MH is smaller than Mirr for
the case (i) withM
 * m. If the black hole mass is assumed
to be derived from the area by a formula similar to Eq. (80)
even in the presence of the torus, Mirr should be smaller

FIG. 5 (color online). (a) MBH and MC as functions of M
 for the cases (i), (ii), (iv), (v), (vi). (b) The same as (a) but for MH. (c) The
same as (a) but for Mirr. (d) The same as (b) but for M�M
.
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than the black hole mass by definition of ‘‘irreducible’’
mass, and thus, MH could not be the black hole mass at
least for such a case. In order for MH to be the black hole
mass, the relation among the area, the mass, and the spin
has to be significantly different from Eq. (80). In contrast,
MBH and MC increase withMirr, and are always larger than
Mirr. If they were in approximate agreement with the black
hole mass, the relation for the area will be similar to
Eq. (80).

The second fact is found from the relation between M�
M
 and M
. Because the black hole and torus constitute a
bound system, the total mass of the system M should be
smaller than the sum ofM
 and black hole mass because of
the presence of negative binding energy. This implies that
M�M
 should be smaller than the black hole mass.
Comparing M�M
 with MBH or MC by Figs. 5(a) and
5(d), we find that the relation M�M
 <MBH or MC
always holds. By contrast, MH is smaller than M�M
.
If MH is the black hole mass, it is very difficult to physi-
cally explain this numerical result.

Figure 5 shows thatMH is smaller thanMBH andMC by a
factor�0:1M
, which is of order of the absolute magnitude
of binding energy between the black hole and torus. This
suggests that MH contains not only the component of bare
black hole mass but also an amount of binding energy
between the black hole and torus. This fact has been al-
ready pointed out in [24] briefly. In Appendix C, we clarify
this point again, considering the Newtonian limit of
Eq. (91).

In the following, we regard MBH as the black hole mass.
MC may be a better measure than MBH, but these two

approximately agree and the difference is at most �3%
even for the system of the very compact torus such as the
case (i) and typically much smaller. In the analysis shown
below, such a small difference does not change the
conclusion.

In Fig. 6, we show a nondimensional spin parameter
JH=M2

BH as a function ofM
 for the cases (i) and (iv)–(vii).
Irrespective of the values of a, r1, and r2, the spin parame-
ter decreases with the increase of M
. This indicates that
the black hole spin would never exceed unity. Comparing
the results for (i) and (iii), we find that for the larger values
of orbital radius of the torus, the change rate of the spin
parameter (jd�JH=M2

BH�=dM
j) is smaller. For r1=m� 10,
the black hole spin is modified at most�5% even forM
 �
2MBH.

As found in [21], another nondimensional parameter
JH=M

2
H exceeds unity for a � 0:9m even with a small

value of M
 * m. However, there is no reason to believe
that MH is a good indicator of the black hole mass, as
mentioned above. Hence, we do not consider JH=M

2
H as the

spin parameter.
In Fig. 7, we show Cp=Ce as a function of JH=M

2
BH for

the cases (i) and (iii)–(vii). Reflecting the fact that the spin
parameter of the black hole decreases with the increase of
M
, so does Cp=Ce. It is also seen that the relation between
Cp=Ce and the spin parameter is in a fair agreement with

FIG. 7 (color online). Cp=Ce as a function of JH=M
2
BH for (i)

and (iii)–(vii). For comparison, the relation for Kerr black holes
is shown together (dotted curve). For M
 ! 0, the relation for
Cp=Ce agrees with that of the Kerr black holes. With the increase
of M
, the relation slightly deviates from the dashed curve, but
the difference is not very large. The data of M
 & 2:3m are used
for generating this figure.

FIG. 6 (color online). JH=M2
BH as a function of M
 for (i) and

(iv)–(vii). The label of each curve denotes the model.
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that of Kerr black holes. In particular, the agreement is very
good for M
 <MBH or for r1 * 10m. This implies that the
shape of the black holes is only weakly modified by the
gravity of the torus. This result suggests that Cp=Ce could
be used for approximately estimating the nondimensional
spin parameter of black holes even in the presence of the
torus.

Figure 8 shows MBH�H as a function of JH=M
2
BH.

Because the spin parameter decreases with the increase
of M
, it is natural that the absolute value of the angular
velocity of the black hole also decreases. However, the
decrease factor is beyond that expected from the relation of
Kerr black holes. This is likely due to the presence of the
angular momentum of the torus. Recall that the angular
velocity of a rotating black hole is associated with the
frame dragging due to its rotation. If a rotating black
hole is surrounded by an object of slower or counterrota-
tion, the frame dragging effect is weakened, and the angu-
lar velocity of the black hole should be decelerated. For the
cases (vi) and (vii), the torus counterrotates around the
black hole, and hence, the angular velocity of the black
hole decreases with the increase of M
. For (i)–(iv), the
typical angular velocity of the torus is much smaller than
that of the black hole. Therefore, a significant decrease of
�H with the increase of M
 is reasonable. For (v), the
angular velocity of the black hole is as slow as that of the
torus. Reflecting this fact, the decrease factor of �H

(d�H=dM
) is much smaller than those of other cases. Figure 9 showsMBH
 as a function of JH=M2
BH. It agrees

with the value of the corresponding Kerr black hole in the
limit M
 ! 0. However, it monotonically decreases with
the increase ofM
, and hence, for a given spin parameter, it
does not agree with the value of the Kerr black hole at all.
This result is qualitatively consistent with the naive expec-
tation because 
 approximately denotes the strength of
gravity on the event horizon and the magnitude of the
surface gravity is likely to be weakened by a tidal force
of the torus.

The decrease of 
 with the increase of M
 correlates
with the decrease ofMH [see Eq. (77) and Fig. 5(b)]. As we
already mentioned, the decrease of MH is likely to be
attributed to the increase of the absolute magnitude of
binding energy between the black hole and torus.
Because both the absolute magnitude of the binding energy
and tidal force of the torus increase with M
, this correla-
tion is quite reasonable.

Figure 10 shows the nondimensional spin parameter of
the system J=M2 as a function of M
. For a small value of
M
, the angular momentum of the system is dominated by
the black hole, but for a sufficiently large value, the torus
determines it. As the mass of the torus increases, the spin
parameter eventually reaches the maximum and then de-
creases. The reason of this behavior is that the torus
becomes self-gravitating and the angular momentum is
primarily determined by the mass-energy of the torus not
by that of the black hole. In such a state, the ratio of

FIG. 9 (color online). MBH
 as a function of JH=M2
BH for (i)

and (iii)–(vii). The dotted curve denotes the relation for Kerr
black holes. For M
 � 0, MBH
 agrees with that of Kerr black
holes. With the increase of M
, it monotonically decreases. The
data of M
 & 2:3m are used for generating this figure.

FIG. 8 (color online). MBH�H as a function of JH=M
2
BH for (i)

and (iii)–(vii). The dotted curve denotes the relation for Kerr
black holes. For M
 � 0, jMBH�Hj agrees with that of the Kerr
black holes, and for M
 > 0, it monotonically decreases with the
increase of M
. The data of M
 & 2:3m are used for generating
this figure.
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rotational kinetic energy T to gravitational potential energy
W of the torus depends weakly on its mass. The angular
momentum of the torus is approximately proportional to
T=� where � is the typical magnitude of the angular
velocity of the torus which is approximately written for
M
 � MBH �m as

 ��
�
M

r3
c

�
3=2
: (102)

On the other hand, for M
 � MBH �m,

 

J

M2
�
J

M2



�
T

M2

�

; (103)

whence

 

J

M2
�
T
W

�
rc
M


�
1=2
: (104)

In the above estimate, we ignore coefficients of order unity.
Equation (104) implies that for an approximately constant
value of T=W, J=M2 decreases with the increase of the
compactness M
=rc for M
 � MBH, qualitatively explain-
ing the behavior of Fig. 10.

For the high-mass models of the case (i), the spin
parameter is smaller than unity. This indicates that even
if a massive torus which is unstable against gravitational
collapse is swallowed into the black hole, the final outcome
will be a Kerr black hole of the spin parameter smaller than
unity.

IV. SUMMARY

In this paper, we present a formulation for numerically
computing an equilibrium system composed of a rotating
black hole and a self-gravitating torus. Describing the

black hole in the puncture framework, we derive basic
equations for the equilibrium. It is shown that the resulting
basic equations have an inversion symmetry with respect to
the two-surface of the event horizon. Because of this
property, the equations can be solved only for outside of
the event horizon imposing the boundary condition at the
event horizon. Then, the solutions for the inside are pro-
vided from the inversion-symmetric relations to constitute
a puncture date. In our formulation, the spin angular mo-
mentum of the black hole is a priori specified. This is a
good aspect for computing an equilibrium of a rapidly
rotating black hole.

Numerical computations for equilibria were performed
for a wide range of parameters. We showed that numerical
solutions can be obtained for a rapidly rotating black hole
with a � 0:99m and for a wide range of mass ratio of the
torus mass to the black hole mass. In addition, we illus-
trated several circumstantial facts which suggest thatMH, a
Komar-charge calculated from the surface integral on the
event horizon, might not be a good indicator for the black
hole mass in the presence of the torus. As alternatives,MBH

and MC defined by Eqs. (84) and (87) were suggested for
possible better indicators. Assuming that MBH is the black
hole mass, the properties of the black hole were investi-
gated, and we found that they are quite different from those
reported in the previous works [21]: In our definition of
black hole mass, the relations among the area, mass, and
spin angular momentum of the black hole are only slightly
different from those of Kerr black holes even when the
black hole is surrounded by a massive torus. However, it
should be kept in mind that a conclusive definition of the
black hole mass is still unknown. Searching for the mass
formula of the black hole surrounded by matter is the issue
for the future. This is the issue not only for the black hole-
torus system but also for other systems such as black hole-
neutron star binaries.

The numerical solutions can be used as an initial condi-
tion for the numerical relativity simulation in the moving
puncture framework [4,14]. We plan to perform such a
simulation for studying the nonaxisymmetric instability,
magnetorotational instability, and runaway instability of
the self-gravitating torus surrounding a rotating black hole.
Such a system is a possible outcome formed after the
stellar core collapse of massive star and after the merger
of the black hole-neutron star binary. Numerical simulation
will be helpful for getting insight on these phenomena. A
simulation for a dense and hot torus with a sophisticated
microphysics is also worthy to be done for modeling a
dynamics of the central engine of gamma-ray bursts.

The present study may be the first step toward compu-
tation of a quasiequilibrium state for a binary of a rotating
black hole and neutron star. We demonstrated that the exact
equilibrium can be computed in the puncture framework
for the axisymmetric system of the torus. In the black hole-
neutron star binary, a similar method may be adaptable if

-0.5
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 0  0.5  1  1.5  2

J 
/ M

2

M* / m

(i)
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(iii)
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FIG. 10 (color online). The nondimensional spin parameter of
the system J=M2 as a function of M
=m for (i)–(vii). Note that
the compactness of the torus, M
=rc, is approximately propor-
tional to M
=m and hence for the large value of M
=m, J=M2

decreases with increasing the compactness.
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we do not assume the conformal flatness of the three-
metric which has been often assumed for deriving quasie-
quilibrium of compact binaries. In the axisymmetric case,
the Laplace operator which appears in the elliptic-type
equations for  and � reduces to the flat operator in the
quasi-isotropic gauge. This enables one to use the puncture
framework in a straightforward manner. In the black hole-
neutron star case which is a nonaxisymmetric system, it is
not trivial if such a convenient gauge is present or not.
Exploring the gauge suitable for using the puncture method
is an interesting issue.
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APPENDIX A: DERIVATION OF THE FIRST
INTEGRAL OF THE EULER EQUATION

Appendix A is devoted to the derivation of the first
integral of the Euler equation. It is possible to derive the
relation even in the presence of toroidal magnetic fields for
the ideal MHD fluid, and hence, we start with the energy-
momentum tensor as

 T�� � ��h� b
2�u�u� � �P�

1
2b

2�g�� � b�b�; (A1)

where b� is the spacetime-vector of magnetic fields and b2

is its norm b�b�. In the ideal MHD approximation, the
following relation holds:

 b�u� � 0: (A2)

Assuming that ’- and t-components are only nonzero
components of u� and b�, we have the relation

 bt � �
u’

ut
b’ � ��b’: (A3)

Also, the continuity, energy, and induction equations be-
come trivial equations, and hence, we only need to focus on
the space-components of the Euler equation

 r�T
�
k � 0; (A4)

where r� is the covariant derivative with respect to g��.
In the stationary axisymmetric case of ur � u� � br �

b� � 0 with the quasi-isotropic gauge for g��, the Euler
equation is written as
 

�
1

2

�
��h� b2�u�u�� b�b�

�@g��
@xk

�
@

@xk

�
P�

1

2
b2

�
� 0:

(A5)

For xk � ’, the equation is trivially satisfied, and hence,
we only need to consider xk � r and �. The first and

second terms of Eq. (A5) are calculated from the relations

 

1

2
u�u�g��;k �

ut;k
ut
� utu’�;k; (A6)

 

1

2
b�b�g��;k � b2

�ut;k
ut
�
D;k

2D
� utu’�;k

�
; (A7)

where

 D � jgttg’’ � g2
t’j � �2 4r2sin2�; (A8)

and for deriving Eq. (A7), we used the relation (A3) and
b2
’ � D�ut�2b2. Using Eqs. (A6) and (A7), we reach

 h
�
utu’�;k �

ut;k
ut

�
�
P;k
�
�

1

2�D
�b2D�;k � 0; (A9)

and hence

 

Z
jd��

h
ut
�
Z d�b2D�

2�utD
� C (A10)

or

 

Z
utu’d�� ln

�
h
ut

�
�
Z d�b2D�

2�hutD
� C0; (A11)

where j � hu’, C, and C0 are constants, and we used the
relation derived from the first law of thermodynamics for
the isentropic fluid:

 

P;k
�
� h;k: (A12)

Thus, in the absence of the magnetic fields, Eq. (A10)
agrees with Eq. (8). On the other hand, Eq. (A11) with
b2 � 0 has been often used for computing differentially
rotating neutron stars (e.g., [37,38]).

Equation (A10) or (A11) is used for computing an
equilibrium of the torus of toroidal magnetic fields for
the case that magnetic fields are confined only in the torus.
The magnetic field profile may be arbitrarily given. A
simple choice for Eq. (A10) is

 b2D � Cb��utD�n; (A13)

where Cb and n�>1� are constants. Then, the third term of
Eq. (A10) is integrated to be

 

Z
jd��

h
ut
�

nCb
2�n� 1�

��utD�n�1 � C: (A14)

APPENDIX B: CHECKING CONVERGENCE

In the second-order finite-differencing scheme used in
this work, the numerical solution for a variableQ at a given

ROTATING BLACK HOLE SURROUNDED BY SELF- . . . PHYSICAL REVIEW D 76, 064035 (2007)

064035-15



grid point should behave for varying the grid resolution as

 Q � Q�0� �Q�2��x2 �O��x3�; (B1)

where Q�0� and Q�2� are constants and �x is a local grid
spacing. We denote numerical results for three grid reso-
lutions with �x � �, 2�, and 4� byQ1,Q2, andQ4. Here,
� is an appropriately chosen grid spacing by which a
sufficiently convergent numerical result is obtained.
Then, the following relation should hold:

 Rcon �
Q4 �Q1

Q2 �Q1
� 5: (B2)

We refer to Rcon as the degree of convergence. If the
convergence is slower (faster) than that of the second order,
the value of Rcon is smaller (larger) than 5.

To check that Eq. (B2) holds, we performed simulations
for a special setting. Here, we present a result for a �
0:9m, r1 � 1:528 74m, r2 � 20:3843m, and M
 �
0:413 84m with �Nr; N�� � �800; 100�, (400, 100), and
(200, 100). For the finest grid resolution, we adopted the
typical grid setting with f � 1:01 and �r � rs=50. For the
other two cases, the grid points were chosen as r2i (i �
1–400) and r4i (i � 1–200), respectively, where ri (i �
1–800) denotes the grid points chosen in the finest grid
resolution. For all the grid settings, the grid points are in
common located at r � r4i, and thus, we compare numeri-
cal results there.

In Fig. 11, we show Rcon at r4i for 	, B, q, and �T in the
equatorial plane as a function of r. It is found that for	, B,
and �T, Rcon � 5, showing that the second-order conver-
gence is approximately achieved. Near the horizon, Rcon is
not equal to 5 for �T. The reason is that we impose the
higher-order boundary condition at the horizon for it. For
q, Rcon � 1:5–3, which is much smaller than 5. This is
probably because of the fact that the numerical solution is
contaminated by an error resulting from the approximate
boundary condition. We note that Eq. (47) has an unphys-

ical homogeneous solution, q / lnr. We have to exclude
the contribution of such a term from the numerical solu-
tion, but with the approximate boundary condition used in
this work, the exclusion is insufficiently achieved.
Nevertheless, the numerical solution gradually converges.
This indicates that the contamination by the unphysical
solution is not severe. We also note that the global quan-
tities such as mass converge approximately at second
order, indicating that the error of q does not play a signifi-
cant role.

We performed test simulations for different values ofM

and the results are essentially the same. Convergence of
numerical solutions for different grid angular resolutions
(but with an identical radial grid) was also performed in the
same manner as mentioned above. We adopted N� � 100,
50, and 25 and found that the second-order convergence is
approximately achieved for	, B, and �T. Convergence for
q is not at second order again, probably because of the
same reason as that mentioned above.

APPENDIX C: NEWTONIAN LIMIT OF EQ. (91)

In Appendix B, we consider the Newtonian limit of
Eq. (91). Using the standard post-Newtonian prescription
(e.g., [39]), MT in the Newtonian limit is written in the
form
 

MT � 4�
Z 1
rs
r2dr

Z �=2

0
sin�d�

	 �


�
1� "�

3P
�

��N �

3v2

2

�
; (C1)

where �N is the Newtonian potential and v2 is the square
of the velocity. In the Newtonian case, �N is split into the
contribution from the black hole and torus as

 �N � �BH ��t; (C2)

where �BH � �m=r in the Newtonian limit. The gravita-
tional potential energy due to the self-gravity of the torus is

 Wt �
1

2

Z
dV�
�t�<0�; (C3)

while the gravitational potential energy of the torus due to
the gravity of the black hole is

 WBH�t �
1

2

Z
dV�
�BH�<0�: (C4)

In the Newtonian limit, rotational kinetic energy T, internal
energy U, and volume integral of P, � are

 T �
1

2

Z
dV�
v2; (C5)

 U �
Z
dV�
"; (C6)
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FIG. 11 (color online). Degree of convergence, Rcon, for 	, B,
q, and �T in the equatorial plane.
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 � �
Z
dVP: (C7)

Then, MT is rewritten
 

MT � M
 �U� 2Wt � 2WBH�t � 3T � 3�

� �M
 �U�Wt �WBH�t � T�

� �3��Wt � 2WBH�t � 2T� �WBH�t: (C8)

Here, M
 �U�Wt �WBH�t � T denotes the total en-
ergy of the torus (including the rest-mass energy and half
of the binding energy between the black hole and torus),
and 3��Wt � 2WBH�t � 2T � 0 because of the virial
relation for the equilibrium system [36] (note the factor 2

for the term of WBH�t). Thus,

 M � MH � Et �WBH�t; (C9)

where Et denotes the total energy of the torus.
Equation (C9) implies that the total energy of the black
hole should be MH �WBH�t >MH and the bare mass of
the black hole should be larger than MH by a factor of
jWBH�tj. In other words, MH is smaller than the black hole
mass by a factor of the binding energy which is of order
mM
=rt where rt denotes the characteristic radius of the
torus. Indeed, the numerical results agree qualitatively with
this interpretation.
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