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We present a new two-dimensional numerical code called Nada designed to solve the full Einstein

equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for

studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for

regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the

code using a formulation of the standard 3þ 1 Arnowitt-Deser-Misner canonical formalism system, the

so-called Baumgarte-Shapiro Shibata-Nakamura approach. A key feature of the code is that derivative

terms in the spacetime evolution equations are computed using a fourth-order centered finite difference

approximation in conjunction with the Cartoon method to impose the axisymmetry condition under

Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out

black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in

flux-conservative form and solved with high-resolution, shock-capturing schemes. We perform and

discuss a number of tests to assess the accuracy and expected convergence of the code, namely, (single)

black hole evolutions, shock tubes, and evolutions of both spherical and rotating relativistic stars in

equilibrium, the gravitational collapse of a spherical relativistic star leading to the formation of a black

hole. In addition, paving the way for specific applications of the code, we also present results from fully

general relativistic numerical simulations of a system formed by a black hole surrounded by a self-

gravitating torus in equilibrium.
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I. INTRODUCTION

Self-gravitating tori (or thick accretion disks) orbiting
black holes (BHs) are common end-products in a number
of scenarios of relativistic astrophysics. Theoretical evolu-
tionary paths predict that they may form after the merger of
a binary system formed by a BH and a neutron star (NS) or
the system formed by two NS (see e.g. [1] and references
therein). In addition, they may also be the result of the
gravitational collapse of the rotating core of massive stars
[2,3]. State-of-the-art numerical simulations have started
to provide quantitative estimates of the viability of such
systems to form [1,4–14]. Furthermore, such a thick disk
plus BH system is thought to be the central engine for
gamma-ray bursts [15–18]. Therefore, understanding the
formation and dynamics of such systems is a highly rele-
vant enterprise, along with discerning its stability proper-
ties. Namely, whether they may be subject to axisymmetric
and nonaxisymmetric instabilities which could also lead to
the emission of a significant amount of gravitational
radiation.

In particular, the so-called runaway instability, first
found by Abramowicz, Calvani and Nobili [19], is an
axisymmetric instability that could destroy the torus on
dynamical timescales. The numerical study of the runaway
instability in general relativity has so far been investigated
under different assumptions and approximations (see e.g.
[20,21] and references therein). Despite that some progress
has been made, the existing works are not still conclusive

on the likelihood of the instability, mainly due to the
absence of important physics in the modeling. The com-
plexity of handling the presence of a spacetime singularity
in addition to the (magneto-)hydrodynamics and the self-
gravity of the (possibly magnetized) accretion torus, turn
very challenging the task of carrying out full general
relativistic simulations of BH surrounded by a self-
gravitating torus. The code we present in this paper is built
with this midterm goal in mind.
Numerical studies of the dynamics of matter around BHs

are abundant in the literature (see e.g. the references re-
ported in [22]). For the kind of specific work we discuss in
this paper we note, in particular, that [23,24] already
focused on the numerical evolution of matter in dynamical
axisymmetric BH spacetimes. Recent developments in
numerical relativity associated with the puncture method
for evolving BHs [25,26] have proved essential to perform
accurate and long-term stable evolutions of spacetimes
containing BHs, and the first successful simulations of
BH/BH binaries have only been possible very recently
(see [27] and references therein). Shibata [13,14] used
the puncture method to investigate the merger of BH/NS
binary system in full general relativity, and Faber et al. [28]
considered relativistic spherical accretion onto a BH. In
addition, Baiotti and Rezzolla [29] were also able to handle
the accretion of matter onto a newly formed BH resulting
from the collapse of a rotating NS without needing to
excise the singularity.
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In order to take advantage of this approach, Shibata [30]
presented a formulation for computing equilibrium con-
figurations of a BH and a self-gravitating torus in the
puncture framework. Previous computations of this system
by Nishida and Eriguchi [31], and also by Ansorg and
Petroff [32] were not done in the puncture framework. In
this paper we use the initial data in the formalism presented
in [30] to carry out the first dynamical simulations of a self-
gravitating torus in equilibrium around a BH as a first step
towards a systematic investigation of the runaway insta-
bility in full general relativity. Such initial data are evolved
using a new two-dimensional, general relativistic hydro-
dynamics code called Nada which is presented and thor-
oughly tested in this paper. As we explain in detail below
our code solves the 3þ 1 Einstein equations using the
formulation originally proposed by Nakamura [33] and
subsequently modified by Shibata-Nakamura [34] and
Baumgarte-Shapiro [35], which is usually known as the
Baumgarte-Shapiro Shibata-Nakamura (BSSN) formula-
tion. On the other hand, the general relativistic hydrody-
namics equations are written in flux-conservative form and
solved with a high-resolution shock-capturing scheme
(HRSC) [22,36,37]. In addition, the Nada code imple-
ments the Cartoon method [38] which allows to impose
the axisymmetry condition while still admitting the use of
Cartesian coordinates, the puncture/moving puncture ap-
proach to deal with the BH singularity and derivative terms
in the spacetime evolution equations are computed using a
fourth-order centered finite difference approximation.

The code is written in FORTRAN 90, requires approxi-
mately 8 bytes of memory per grid point, and it takes about
200 microseconds per grid point per time step using a five
stages Runge-Kutta (see section III) for the time integra-
tion on a 2.0 GHz AMD Opteron Dual Core 270.

The organization of the paper is as follows: the formu-
lation of the Einstein equations, including the implemen-
tation of the puncture approach and gauge conditions,
along with the formulation of the general relativistic equa-
tions is briefly presented in Section II. Section III gives a
short description of the boundary conditions and numerical
methods employed for the time evolutions. Section IV and
V are devoted to present results from tests the code has
passed, for vacuum and nonvacuum spacetimes, respec-
tively. Section VI discusses numerical simulations of self-
gravitating equilibrium tori, in preparation for subsequent
work. A summary of our conclusions is given in
Section VII. We use units in which c ¼ G ¼ 1, and in
sections VC to VF we also useM� ¼ 1. Greek indices run
from 0 to 3, Latin indices from 1 to 3, and we adopt the
standard convention for the summation over repeated
indices.

II. BASIC EQUATIONS

We give next a brief overview of the formulation for the
system of Einstein and hydrodynamic equations as have
been implemented in the code.

A. Formulation of Einstein equations

1. BSSN formulation

We follow the 3þ 1 formulation in which the spacetime
is foliated into a set of nonintersecting spacelike hyper-
surfaces. In this approach, the line element is written in the
following form

ds2 ¼ �ð�2 � �i�
iÞdt2 þ 2�idx

idtþ �ijdx
idxj; (2.1)

where �, �i and �ij are the lapse function, the shift three-

vector, and the three-metric, respectively. The latter is
defined by

��� ¼ g�� þ n�n�; (2.2)

where n� is a timelike unit-normal vector orthogonal to a
spacelike hypersurface.
A reformulation of the Arnowitt-Deser-Misner canoni-

cal formalism (ADM) system, the BSSN formulation [33–
35], has been implemented to solve the Einstein equations.
Initially, a conformal factor is introduced, and the confor-
mally related metric is written as

~� ij ¼ e�4��ij; (2.3)

such that the determinant of the conformal metric, ~�ij, is

unity and � ¼ lnð�Þ=12, where � ¼ detð�ijÞ. We also

define the conformally related traceless part of the extrinsic
curvature Kij,

~A ij ¼ e�4�Aij ¼ e�4�

�
Kij � 1

3
�ijK

�
; (2.4)

where K is the trace of the extrinsic curvature. After
introducing these new variables, the evolution equations
can be expressed as

ð@t �L�Þ� ¼ � 1

6
�K; (2.5)

ð@t �L�ÞK ¼ ��ijDjDi�þ � ~Aij ~A
ij þ 1

3
�K2

þ 4��ðEþ SÞ; (2.6)

ð@t �L�Þ~�ij ¼ �2� ~Aij; (2.7)

ð@t �L�Þ ~Aij ¼ e�4�ð�DiDj�þ �ðRij � 8�SijÞÞTF

þ �ðK ~Aij � 2 ~Ail ~A
l
jÞ; (2.8)

@t~�
i ¼ �2 ~Aij@j�þ 2�

�
~�ijk ~A

jk � 2

3
~�ij@jK � 8�~�ijSj

þ 6 ~Aij@j�

�
þ �j@j~�

i � ~�j@j�
i þ 2

3
~�i@j�

j

þ 1

3
~�li@jl�

j þ ~�lj@lj�
i; (2.9)

where ~�ijk are the connection coefficients associated with
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~�ij, L� refers to the Lie derivative along the shift vector

(see e.g. [39] for the tensor weights necessary to evaluate
the Lie derivatives), and Di and Rij are the covariant

derivative operator and the three-dimensional Ricci tensor
associated with the three-metric �ij, respectively. The

object ~�i, known as the conformal connection functions,
is defined as

~� i � ~�jk~�ijk ¼ �@j ~�ij: (2.10)

The Ricci tensor Rij that appears in the source term of

the evolution Eq. (2.8) is split into two parts as follows

Rij ¼ R�ij þ ~Rij; (2.11)

where R�ij is given by

R�ij ¼ �2 ~Di
~Dj�� 2~�ij ~D

k ~Dk�þ 4 ~Di� ~Dj�

� 4~�ij ~D
k� ~Dk�; (2.12)

where ~Di is the covariant derivative with respect to the
conformal metric ~�ij. The conformal Ricci tensor, ~Rij, is

expressed as

~R ij ¼ � 1

2
~�mn@mn ~�ij þ ~�kði@jÞ~�k þ ~�k~�ðijÞk

þ ~�mnð2~�kmði~�jÞkn þ ~�kin~�kmjÞ: (2.13)

During the evolution we also enforce the constraints

Trð ~AijÞ ¼ 0 and detð~�ijÞ ¼ 1 at every time step by using

the following substitutions

~A ij ! ~Aij �
Trð ~AijÞ

3
~�ij; (2.14)

~� ij ! ~�ij=~�
1=3: (2.15)

The matter source terms, E, Si, and Sij appearing in the

Einstein equations are projections of the stress-energy
tensor T�� on the hypersurface with respect to the unit
normal n�

E¼ n�n�T
��; Si ¼��i�n�T��; Sij ¼ �i��j�T

��;

(2.16)

with S ¼ Sij�
ij.

In addition to the evolution equations there are three
constraint equations, the Hamiltonian, the momentum and
the Gamma constraints, which are only used as diagnostics
of the accuracy of the numerical evolutions

H � ~�ij ~Di
~Dje

� � e�

8
~Rþ e5�

8
~Aij ~A

ij � e5�

12
K2

þ 2�e5�E ¼ 0; (2.17)

M i � ~Djðe6� ~AijÞ � 2

3
e6� ~DiK � 8�e6� ~�ijSj ¼ 0;

(2.18)

G i � ~�i þ @j ~�
ij ¼ 0: (2.19)

2. Puncture approach

Recent breakthroughs in numerical relativity have fi-
nally made possible accurate and long-term stable 3þ 1
evolutions of singular spacetimes, including the challeng-
ing cases of the collision of compact binaries formed by
either two BHs or a BH and a NS (see [27] and references
therein). One of the key ingredients for such success has
been the so-called ‘‘puncture approach’’ [40], in which BH
initial data are modeled by the Brill-Lindquist topology
[41], where a ‘‘throat’’ at the BH horizon connects two
asymptotically flat regions. One of the asymptotically flat
ends is compactified to a single point known as the punc-
ture, leading to a coordinate singularity.
The puncture approach has the advantage that its nu-

merical implementation within the BSSN formalism is
rather simple. The original proposal only considered the
fixed puncture approach [39,42,43], where the conformal
factor is split into a regular part and a singular part.
Although this method does not lead to long-term stable
evolutions of spacetimes containing BHs, it allows for a
number of code tests. However, two different groups
[25,26] developed recently the moving puncture approach
in which no singular term of the conformal factor is
factored out, and the punctures are allowed to move
through the grid. The difference between these two meth-
ods is how the conformal factor is evolved. In the so-called
�-method [26], the original BSSN variable � is evolved
through the usual BSSN evolution Eq. (2.5). On the other
hand, the so-called �-method [25] introduces a new con-
formal factor defined as � � e�4�, and the following
evolution equation, that replaces Eq. (2.5),

ð@t �L�Þ� ¼ 2

3
�ð�K � @j�

jÞ: (2.20)

This moving puncture approach, together with the so-
called puncture gauge (see Sec. II A 3), has led to major
success in simulations of binary BHs [44–50]. Motivated
by this, we have implemented both methods in our 2D
code, the �-method and the �-method, for the moving
puncture approach to investigate the dynamics of matter
around BHs.

3. Gauge choices

In addition to the BSSN spacetime variables (~�ij, ~Aij, K,

� or�, ~�i), there are two more variables left undetermined,
the lapse, � and the shift vector, �i. The code can handle
arbitrary gauge conditions, however long-term BH evolu-
tions in the moving puncture framework have been suc-
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cessful with some combination of the so-called ‘‘1þ log’’
condition [51] for the lapse, and the ‘‘Gamma-freezing’’
condition for the shift vector [39].

The form of this slicing condition most commonly used
for moving puncture evolutions contains the advective
term �i@i� and is expressed as

@t�� �i@i� ¼ �2�K: (2.21)

Several authors (see, e.g. [28,52,53]) have used the so-
called ‘‘nonadvective 1þ log’’, by dropping the advective
term in Eq. (2.21), for single BH evolutions. In this case,
the slicing condition takes the form

@t� ¼ �2�K: (2.22)

It was shown by [52], that the evolution of a single punc-
ture using the condition given by Eq. (2.22) settles down
into a time-independent and maximally sliced solution.

For the simulations of a BH surrounded by a self-
gravitating torus presented in this paper, we choose the
slicing given by Eq. (2.22) as the BH does not move
through the grid, and therefore the advective term �i@i�
does not play an important role.

For the shift vector, we choose the Gamma-freezing
condition, written as

@t�
i ¼ 3

4
Bi; (2.23)

@tB
i ¼ @t~�

i � 	Bi; (2.24)

where 	 is a constant that acts as a damping term, intro-
duced both to prevent long-term drift of the metric func-
tions and to prevent oscillations of the shift vector [39].
This parameter also has an effect on the coordinates of the
final spacelike hypersurface. In Ref. [53] it was shown that
increasing the value of 	 increases the coordinate size of
the BH, which allows for better numerical resolution
across the BH. On the other hand, larger values of the
damping parameter introduce a higher drift in the location
of the horizon in time, as well as in the deformation of the
metric during the evolution, caused by the larger values

reached by the connection functions ~�i [28,54]. Bearing
this in mind, we use 	 ¼ 0:3=M, where M is the ADM
mass of the system, for the evolutions of spacetimes con-
taining a BH presented in this paper.

B. Formulation of the hydrodynamics equations

The general relativistic hydrodynamics equations, ex-
pressed through the conservation equations for the stress-
energy tensor T�� and the continuity equation are

r�T
�� ¼ 0; r�ð
u�Þ ¼ 0; (2.25)

where 
 is the rest-mass density, u� is the fluid four-
velocity and r is the covariant derivative with respect to
the spacetime metric. Following [37] the general relativis-
tic hydrodynamic equations are written in a conservative

form in cylindrical coordinates. Since the Einstein equa-
tions are solved only in the y ¼ 0 plane with Cartesian
coordinates, the hydrodynamic equations are rewritten in
the Cartesian coordinates for y ¼ 0. The following defini-
tions for the hydrodynamical variables are used


� � 
We6�; (2.26)

vi � ui

ut
¼ ��i þ ��ij

ûj
hW

; (2.27)

û i � hui; (2.28)

ê � e6�


�
T��n

�n� ¼ hW � P


W
; (2.29)

W � �ut; (2.30)

whereW and h are the Lorentz factor and the specific fluid
enthalpy, respectively, and P is the pressure.
By defining the vector of unknowns, U, and fluxes Fx

and Fz along the x and z directions as

U ¼ ð
�; Jx; Jy; Jz; E�Þ; (2.31)

F x ¼ ½
�vx; Jxvx þ P�
ffiffiffiffi
�

p
; Jyv

x; Jzv
x; E�vx

þ P�
ffiffiffiffi
�

p ðvx þ �xÞ�; (2.32)

Fz ¼ ½
�vz; Jxvz; Jyvz; Jzvz þ P�
ffiffiffiffi
�

p
; E�vz

þ P�
ffiffiffiffi
�

p ðvz þ �zÞ�; (2.33)

with Ji � 
�ûi and E� � 
�ê, the set of hydrodynamic
Eqs. (2.25) can be written in conservative form as

@tUþ @xF
x þ @zF

z ¼ S; (2.34)

where S is the vector of sources. We refer to [37] for further
details on these equations, in particular, regarding the form
of the source terms.
To close the system of equations, we choose two pos-

sible equations of state, the so-called �-law equation of
state (ideal fluid) given by

P ¼ ð�� 1Þ
�; (2.35)

where � is the specific internal energy, and a polytropic
equation of state

P ¼ �
�: (2.36)

Here � is the polytropic constant, � ¼ 1þ 1=N and N is
the polytropic index. In those simulations where the system
evolves adiabatically, such that no shocks are present, we
use the polytropic equation of state during the evolution.
After each time iteration the conserved variables (i.e. 
�,

Jx, Jy, Jz, E�) are updated and the primitive hydrodynam-

ical variables (i.e. 
, vx, vy, vz, �) have to be recovered at
the corresponding step. This is done by solving the follow-
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ing equation for the Lorentz factor, W, derived from the
normalization of the 4-velocity of the fluid

W2 ¼ 1þ �ijuiuj ¼ 1þ �ijûiûj

�
ê

W
þ P


W2

��2
: (2.37)

Once solved forW, the other variables, 
, vi, P, � and h are
computed from Eqs. (2.26), (2.27), (2.28), (2.29), and
(2.30) and the equation of state.

III. NUMERICS

There are two schemes implemented for the update of
the numerical solution with time: an iterative Crank-
Nicholson (ICN) scheme taking two corrector steps [55],
and an optimal strong stability-preserving (SSP) Runge-
Kutta of fourth-order algorithm with 5 stages [56] (RK4).
The RK4 scheme is used for simulations of spacetimes
containing a singularity, where a high-order of accuracy is
an important issue.

We use second-order slope limiter reconstruction
schemes (both minmod and MC are implemented in the
code) to obtain the left and right states of the primitive
variables (i.e. 
, vx, vy, vz, �) at each cell interface, and
these reconstructed variables are then used to compute the
left and right states of the evolved quantities (
�, Jx, Jy, Jz,
E�). Next, we use HLLE or Roe approximate solvers to
compute the numerical fluxes in the x and z directions.
Details on such high-resolution shock-capturing schemes
are available elsewhere (see e.g. [22] and references
therein).

Derivative terms in the spacetime evolution equations
are represented by second or fourth-order centered finite
difference approximation [57] in a uniform Cartesian grid
except for the advection terms (terms formally like �i@iu),
for which an upwind scheme is used.

A. Discretization of axisymmetric systems: ‘‘cartoon’’
method

As pointed out by [38] any given system of equations in
3D possessing a rotation symmetry with respect to the
z-axis can be finite differenced and solved in the x� z
ðy ¼ 0Þ plane alone because of the symmetry condition.
When the system of equations is expressed in Cartesian
coordinates, partial derivative terms with respect to the
y-coordinate will appear and these need to be computed
using the computational domain. For instance, in a second-
order centered difference approximation, the values of the
derivative in the y-direction of a quantity fðx; 0; zÞ, are
computed using the values of f at the nearest two grid
points i.e. fðx;��y; zÞ, fðx;�y; zÞ. Then, because of ax-
isymmetry, the y-derivatives can be determined in the x�
z plane from information contained in this same plane. The
Cartoon method obtains the boundary conditions at y ¼
��y that are necessary to evaluate the derivatives in the

y-direction by means of a rotation about the symmetry axis
of the different tensor quantities. On the other hand, in a
fourth-order centered difference approximation, the values
of the derivative in the y-direction of a quantity fðx; 0; zÞ,
are computed using the values of f at the grid points
fðx;�2�y; zÞ and fðx;��y; zÞ.
The values of the variables at the positions

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ�y2

p
; 0; zÞ and ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 4�y2
p

; 0; zÞ are interpolated
from the neighboring grid points using Lagrange polyno-
mial interpolation (see e.g. [58]) with interpolating poly-
nomials of degree 2 and 4, depending on the order of the
finite difference approximation.

B. Boundary conditions

The computational domain is defined as 0 � x � L and
0 � z � L, where L refers to the location of the outer
boundaries. For simulations with the puncture method we
used a staggered Cartesian grid to avoid that the location of
the puncture at the origin coincides with a grid point. A
number of different boundary conditions are implemented
in the code. These are imposed for the spacetime variables
or the hydrodynamical primitive variables at the inner and
outer boundaries as follows: for both the spacetime and
hydrodynamical variables, �-rotation symmetry is im-
posed around the z-axis, and equatorial plane symmetry
with respect to the z ¼ 0 plane. At the outer boundaries we
impose radiative boundary conditions [39]. Note that we do
not apply this boundary condition to the conformal con-

nection functions, ~�i, for which we used static boundary
conditions.

C. Atmosphere treatment

An important ingredient in numerical simulations based
on finite difference schemes to solve the hydrodynamic
equations is the treatment of vacuum regions. The standard
approach is to add an atmosphere of very low density
filling these regions [59]. We follow this approach and
treat the atmosphere as a perfect fluid with a rest-mass
density several orders of magnitude smaller than that of the
bulk matter. The hydrodynamic equations are solved in the
atmosphere region in the same way that is done for the
region of the bulk matter. If the conservative variables 
�
or E� fall below some minimum value then the values of
the conserved quantities are set to the atmosphere value.
Similarly in the routine that recovers the primitive varia-
bles from the conserved variables, if the rest-mass density

 or specific internal energy � fall in a given grid point
below the value set for the atmosphere, such point is reset
to have the atmosphere value of the primitive variables. In
particular for simulations of relativistic stars, and systems
composed of a BH plus a self-gravitating torus system, the
atmosphere density is usually taken to be about 6–8 orders
of magnitude smaller than the initial maximum rest-mass
density.
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D. Diagnostics

To check the accuracy of the numerical simulations we
monitor the violation of the Hamiltonian constraint, and
the conservation of the total rest-mass M�, the ADM mass
M, and the angular momentum J. We compute these
various quantities in the y ¼ 0 plane as

M� ¼ 4�
Z L

0
xdx

Z L

0

�dz; (3.1)

M ¼ �2
Z L

0
xdx

Z L

0
dz

�
�2�Ee5� þ e�

8
~R

� e5�

8

�
~Aij ~A

ij � 2

3
K2

��
; (3.2)

J ¼ 4�
Z L

0
x2dx

Z L

0

�~uydz: (3.3)

In axisymmetry the apparent horizon (AH hereafter)
equation becomes a nonlinear ordinary differential equa-
tion (ODE) for the AH shape function, h ¼ hðÞ [60,61].
We have implemented an AH finder that solves this ODE
by a shooting method using that @hð ¼ 0Þ ¼ 0 and
@hð ¼ �=2Þ ¼ 0 as boundary conditions. We define
the mass of the AH as

MAH ¼
ffiffiffiffiffiffiffiffiffi
A
16�

s
; (3.4)

where A is the area of the AH.

IV. VACUUM TESTS: SINGLE BH EVOLUTIONS

The Schwarzschild metric in isotropic coordinates is
used as initial data to test the ability of the code to evolve
BH spacetimes within the fixed and moving puncture
approaches. These initial data are such that the 3-metric
is written in Cartesian coordinates as

d�2 ¼  4ðdx2 þ dy2 þ dz2Þ; (4.1)

where the conformal factor is  ¼ ð1þM=2rÞ, M being
the mass of the BH. Here r is the isotropic radius, r2 ¼
x2 þ y2 þ z2. Thus, the spatial metric takes the form �ij ¼
 4 ~�ij, where the conformal metric is the flat metric.

Initially the extrinsic curvature is Kij ¼ 0.

A. Schwarzschild BH with geodesic slicing

Following the fixed puncture approach, we first evolve
these initial data with geodesic slicing, that is setting � ¼
1 and �i ¼ 0. Although, in these coordinates, the numeri-
cal evolution is known to last very short time and is
expected to crash at t ¼ �M when the spacelike hypersur-
face reaches the physical singularity, there is an analytic
solution for the evolution of the spacetime which can be
used to compare to the numerical solution.

The top-left panel in Fig. 1 shows the evolution of the
radial metric component ~�rr, that is obtained from the
Cartesian metric functions, along the diagonal for different
resolutions together with the analytic solution at several
time steps, performed with second-order finite differences
in space. The convergence of the code can already be seen
in this panel, but this is better appreciated in the bottom-
left panel, in which the Hamiltonian constraint is plotted at
t ¼ 2M for the three different resolutions. Violations of the
Hamiltonian constraint are a measure of the numerical
error, and this figure shows that this error scales at the
expected rate for second-order convergence. Results ob-
tained with a fourth-order finite differencing are shown in
the upper and lower-right panels, where the same quanti-
ties are plotted using this higher order differencing.
Clearly, using fourth-order finite differencing increases
the accuracy of the numerical evolutions, although the
convergence rate for the highest resolution is not exactly
fourth-order in the whole computational domain. We note
that in addition to the numerical error due to the finite
difference approximations for the spatial derivatives, there
is another source of numerical error due to the interpolation
needed with the Cartoon method.

B. Schwarzschild BH with 1þ log slicing

Next, we use a zero shift and a modified 1þ log slicing
condition that permits the increase of the life of the simu-
lation up to about 30–40M. The slicing condition used for
this simulation is [62],

@t� ¼ �2� 4K: (4.2)

Figure 2 displays the time evolution of one of the
components of the conformal three metric and the lapse
function, and it proves how the new gauge condition
enables for longer simulations. For this simulation we
consider a grid resolution of�x ¼ 0:05M withNx � Nz ¼
200� 200 grid points. As expected, the metric function
~�xx grows due to the grid stretching related to the collapse
of the lapse. In order to increase further the length of the
simulations of a single BH spacetime, we have imple-
mented the moving puncture method, and its test is shown
next.

C. Schwarzschild BH and the moving puncture
approach

It has been pointed out [52,53,63], that using the ‘‘mov-
ing puncture method’’ the numerical slices of a
Schwarzchild BH spacetime reach a stationary state after
about 40M of evolution. [52] computed numerically this
time-independent puncture data for the Schwarzschild
spacetime and showed that, as the evolution proceeds, the
initial slice settles down to a maximal slice with K ¼ 0.
This time-independent data has recently been obtained
analytically by Baumgarte and Naculich [64].
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With the aim of testing the ability of our code to perform
long-term, stable and accurate, evolutions of a single BH,
we first check the evolution of the BH puncture analytical

data given by [64], with the gauge conditions given by
Eqs. (2.22), (2.23), and (2.24), and with two different
methods for the evolution of the conformal factor, the
�-method, which uses Eq. (2.5), and the �-method which,
instead uses the evolution Eq. (2.20). For the damping
parameter in the evolution equation for the shift, we set
	 ¼ 0:3=M.
In the upper panel of Fig. 3, we plot the absolute devia-

tions for the conformal factor between our numerical so-
lution and the exact solution at t ¼ 9M obtained with the
�-method, for three runs with different resolutions (�x ¼
0:12M; 0:06M; 0:03M, with Nx � Nz ¼ 150� 150; 300�
300; 600� 600). Deviations for the conformal factor are
shown in the inner region of the grid, which at t ¼ 9M is
not affected by the outer boundary conditions. The inset,
shows these deviations from the exact solution, but re-
scaled assuming fourth-order convergence. We note ap-
proximate fourth-order convergence for the two lower
resolutions runs (�x ¼ 0:12M; 0:06M), but, although still
converging, the convergence rate decreases from fourth-
order for the highest resolution run (�x ¼ 0:03M) particu-
larly in the region outside the AH. For this resolution the
error between the numerical and the analytical solution in
the region outside the AH is of the order of 10�5–10�6, and
we find that increasing further the resolution does not
reduce significantly this error.
In the bottom panel of Fig. 3 we plot again the deviations

for the conformal factor, however these are now computed
FIG. 2. Time evolution of the conformal metric component ~�xx
and the lapse � along the x-axis using 1þ log slicing.
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FIG. 1. Top-left panel: evolution of the conformal metric component ~�rr along the diagonal of the grid. Different lines refer to the
numerical solution with resolutions of 100, 200, and 400 grid points in each direction. The analytical solution is also shown. Bottom-
left panel: Hamiltonian constraints along the diagonal at time t ¼ 2M for three different resolutions showing the expected second-
order convergence. The right panels show the same quantities and the expected convergence rate when using fourth-order finite
differencing.
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using the �-method as well as the �-method, and obtained
with the same resolution, �x ¼ 0:06M, at t ¼ 9M.
Clearly, the deviations from the exact solution obtained
with the �-method are smaller than with the �-method. In
fact, these results are to be expected, as� diverges like log
r near the puncture, while � behaves like r2 near the
puncture.

We next perform a comparison between the time-
independent analytical data [64] and the late time numeri-
cal solution of a Schwarzschild spacetime time, in isotropic
coordinates, choosing initially � ¼  �2. For this compari-
son we use the same gauge conditions as above, grid
spacing �x ¼ �z ¼ 0:1M and a grid with Nx � Nz ¼
300� 300 points to cover the computational domain. In
Fig. 4, we plot with a solid line the time-independent
analytical solution for the conformal factor, while solid
circles indicate the numerical solution for the conformal
factor of the Schwarzschild spacetime initial data at
t ¼ 200M, computed using the �-method and empty
circles correspond to the same quantity but using the
�-method. Both simulations are compared at a sufficiently
late time to allow us to evaluate the effect of the outer
boundary conditions on the late time evolution. Clearly,
the numerical solution agrees well with the analytical
solution, both for the � and � methods. However, again
the �-method gives better results in the region near the
puncture. In addition, we observe that the outer boundary

conditions do not affect the long-term stability and accu-
racy of these simulations.

V. HYDRODYNAMIC TESTS

A. Relativistic shock-tube test

As a first test of the solution of the relativistic hydro-
dynamic equations we perform a standard one dimensional
shock-tube problem (a Riemann problem) in flat space-
time. This is a common test to assess hydrodynamical
codes (see e.g. [65]). In this test, two uniform and different
fluid states are initially separated by an interface which is
then instantaneously removed. The initial data for the left
state is PL ¼ 13:33, 
L ¼ 10:00, vL ¼ 0:00 and for the
right state PR ¼ 0:66� 10�6, 
R ¼ 1:00, vR ¼ 0:00, with
the initial interface located at z ¼ 0:5. The fluid is assumed
to be an ideal fluid with � ¼ 5=3.
The results of the numerical evolution are shown in the

left panels of Fig. 5, where we plot the profiles at time t ¼
0:3 of the pressure, density and z-component of the fluid
velocity for a shock-tube test along the z-direction. The
solid line represents the exact solution of the shock-tube
problem computed using the public domain code
RIEMANN developed by J.M. Martı́ and E. Müller [66].
The numerical solution is represented by crosses. We use
400 grid points in the z-direction and a grid spacing of
�z ¼ 1=400. The particular combination of schemes used
for this hydrodynamical test comprise the Roe solver, MC
cell-reconstruction, and ICN for the time update.

FIG. 4. We show, with a solid line, the conformal factor given
by Baumgarte and Naculich [64], and with solid circles the
numerical solution for the conformal factor at t ¼ 200M of
Schwarzschild spacetime in isotropic coordinates initial data
with the �-method and with empty circles the same quantity
but computed using the �-method.

FIG. 3. In the top panel we consider as initial data the analyti-
cal solution proposed by Baumgarte and Naculich [64] and show
the deviations for the conformal factor from the exact solution
for different resolutions using the �-method. In the inset, we
show deviations rescaled to show the convergence. In the bottom
panel, we show the deviations of the conformal factor using the
same resolution, �x ¼ 0:06M, with the �-method as well as the
�-method.
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B. Relativistic planar shock reflection test

In our second test in Minkowski spacetime we carry out
a relativistic planar shock reflection problem along the
z-direction with the following initial conditions P ¼
10�6, 
 ¼ 1:0 in the entire domain, while v ¼ 0:9 for z <
0:5, and v ¼ �0:9 for z > 0:5. We use an ideal fluid
equation of state with � ¼ 4=3. We show results of the
evolution in the right panels of Fig. 5, where we plot the
profiles of the solution at time t ¼ 1:6 for the pressure,
density and z-component of the fluid velocity. Again, the
solid lines refer to the analytic solution while the numerical
solution is represented by crosses. The schemes used for
this simulation are the HLLE solver, minmod cell-
reconstruction, and ICN for the time update.

C. Relativistic spherical shock reflection test

The initial configuration for this test problem consists of
a medium with uniform density (
 ¼ 1) and pressure (P ¼
2:29� 10�5ð�� 1Þ) where � ¼ 4=3, with constant
spherical inflow velocity vin ¼ �0:9 and Lorentz factor
Win. Initially, at t ¼ 0, the gas collides at the center of
symmetry which forms a strong shock wave that propa-
gates upstream. The analytic solution for this test has the
following form [67]


ðr; tÞ ¼
� ð1þ jvinjt

r Þ2; r > vst;

ð1þ jvinj
vs
Þ2�; r < vst;

(5.1)

with the compression ratio given by

� ¼ �þ 1

�� 1
þ �

�� 1
ðWin � 1Þ; (5.2)

and the shock velocity by

vs ¼ �� 1

Win þ 1
Winjvinj: (5.3)

This test problem has been proposed by [68] to test the
ability of a three-dimensional special relativistic hydro-
dynamics code in Cartesian coordinates to keep the spheri-
cal symmetry of the solution. For our axisymmetric
hydrodynamics code in Cartesian coordinates, this is a
two-dimensional test problem, which allow us to evaluate
the solution of the hydrodynamic equations both in the x
and z directions. We use Nx � Nz ¼ 400� 400 grid points
with �x ¼ �z ¼ 1=400 to cover the computational do-
main. The schemes used for this simulation are the
HLLE solver, minmod cell-reconstruction, and ICN for
the time update.
We show results of the evolution in Fig. 6, where we plot

the profiles of the solution at time t ¼ 3 for the density,
pressure and fluid velocity along the diagonal. The solid
line represents the analytic solution while the numerical
solution is represented by crosses.
To quantify the error we computed the relative global

error between the numerical and the analytical solution
defined by �rel ¼ �abs=½

P
i;kjwðxi; zk; tnÞj�x�z�, where the

absolute global error is �abs ¼
P
i;kjwni;k �

wðxi; zk; tnÞj�x�z, wni;k is the numerical solution and

wðxi; zk; tnÞ is the analytical solution. We find that the

FIG. 5. Left panel: comparison of the numerical profiles of density, pressure and velocity with the analytical solutions for the
solution of a one dimensional shock tube problem at time t ¼ 0:3. Right panel: wall shock problem with v ¼ 0:9 at time t ¼ 1:6. The
exact solution is represented by the solid line and numerical solution by crosses.

NADA: A NEW CODE FOR STUDYING SELF- . . . PHYSICAL REVIEW D 78, 064037 (2008)

064037-9



relative global errors for the density, pressure and velocity
are 2.1%, 1.1% and 0.6%, respectively. As for the previous
shock-tube test and planar shock reflection test, the agree-
ment achieved between the analytic and numerical solution
is remarkable.

D. Spherical relativistic stars in a fixed spacetime

For the next test we use the solution of the Tolman-
Oppenheimer-Volkoff (TOV) equations to assess the capa-
bility of the code to perform long-term stable numerical
simulation of a NS in equilibrium. In order to check the
hydrodynamical evolution independently from the space-
time evolution we follow the common approach of keeping
the spacetime fixed during the numerical evolution. This is
known as the Cowling approximation [69], in analogy with
the corresponding approximation in perturbative studies of
stellar oscillations in which the metric components (or the
gravitational potential in the Newtonian framework) are
kept constant.

It has been shown [59] that the truncation errors of the
finite difference representation of the PDEs are enough to
excite small periodic radial oscillations which manifest
themselves as periodic variations of the hydrodynamical
(and spacetime) quantities. The power spectrum of the
evolution of the central density provides the frequencies
of the fundamental mode of oscillation and of its overtones,
which can be compared with the corresponding frequen-
cies computed by perturbative techniques. Although the
excited oscillations are purely numerical in origin (i.e. their
amplitude converges to zero as the resolution increases)

they still represent the oscillation modes of the relativistic
star and their frequencies should agree with the eigenfre-
quencies computed by linear perturbation analysis. For the
purposes of further testing the code and compare with
independent results we focus on an initial TOV model
that has been extensively investigated numerically by
[59,70]. This model is a relativistic star with N ¼ 1, poly-
tropic constant � ¼ 100 and central rest-mass density

c ¼ 1:28� 10�3 so that its mass is M ¼ 1:4, its baryon
rest-mass M� ¼ 1:5 and its radius R ¼ 9:59. We evolve
these initial data with our nonlinear code and compute the
power spectrum of the evolution of the central rest-mass
density. We note that in the simulations of spherical stars in
equilibrium presented below, we use the polytropic equa-
tion of state during the evolution.
In the upper-left panel of Fig. 7 we plot the time evolu-

tion of the central rest-mass density for a simulation with
�x ¼ 0:15. We observed that the truncation errors at this
resolution are enough to excite small periodic radial oscil-
lations, visible in this plot as periodic variations of the
central density. We see that the damping of the periodic
oscillations of the central rest-mass density is very small
during the whole evolution, which highlights the low nu-
merical viscosity of the schemes implemented. By com-
puting the Fourier transform of the time evolution of the
central rest-mass density we obtain the power spectrum,
which is shown with a solid line in the lower-left panel of
the figure, while the dashed vertical lines indicate the
fundamental frequency and the first five overtones com-
puted by [70] with a nonlinear hydrodynamics code using
spherical polar coordinates. The agreement found for the
fundamental frequency and overtones is very good, with
the relative error between the fundamental frequencies
being less than 1%.

E. Spherical relativistic stars in a dynamical spacetime

For our first test of the coupling of the Einstein equations
and the general relativistic hydrodynamic equations we
again use the TOV solution. In analogy to what happens
in the Cowling approximation, truncation errors excite
small oscillations in the star. Now, however, the truncation
errors come not only from the hydrodynamic part of the
code but also from the spacetime part solving the full set of
Einstein equations.
We computed the eigenfrequencies of the coupled evo-

lution of the same TOV star with � ¼ 100, N ¼ 1 and
central rest-mass density 
c ¼ 1:28� 10�3 which has
been discussed above under the assumption of a fixed
background spacetime. Again, the radial oscillations ex-
cited by truncation errors manifest in the time evolution of
the central rest-mass density. The coupling to the space-
time increases the amplitude of the oscillations, and also
shifts the frequencies of the modes towards lower frequen-
cies. This is shown in the lower-right panel of Fig. 7 which
displays the power spectrum of the evolution of the central

FIG. 6. Comparison of the numerical profiles of density, pres-
sure and velocity with the analytical solutions for the solution of
a relativistic spherical shock reflection test at time t ¼ 3.
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rest-mass density (solid line), and the eigenfrequencies
computed by [59] (dashed lines). We note that the locations
of the frequency peaks for the fundamental mode and the
two overtones is in very good agreement, with the relative
error in the fundamental frequencies being less than 1%.

F. Gravitational collapse of marginally stable spherical
relativistic stars

We next test the capability of the code to follow BH
formation with the gravitational collapse to a BH of a
marginally stable spherical relativistic star. For this test,
we consider a � ¼ 100, N ¼ 1 polytropic star with central
rest-mass density 
c ¼ 3:15� 10�3, its mass isM ¼ 1:64
and its baryon rest-massM� ¼ 1:79. In order to induce the
collapse of the star we initially increase the rest-mass
density by 0.5%.

We present numerical results for the simulation of the
gravitational collapse of a marginally stable spherical rela-
tivistic star performed with �x ¼ �z ¼ 0:1M; 0:075M;
0:05M to show the convergence of the code. With these
resolutions the star is initially covered by approximately
60, 80 and 120 points. The hydrodynamics equations are
solved using the Roe solver and MC reconstruction, while
the Einstein equations are solved with fourth-order finite
differencing and the gauge conditions given in Eqs. (2.22),
(2.23), and (2.24), with 	 ¼ 0:5. Time integration is done
with RK4. We plot in Fig. 8 the time evolution of the

FIG. 8. Time evolution of the normalized central density, the
central lapse function, and mass of the AH in units of the ADM
mass of the system for the collapse of a marginally stable
spherical star to a BH. Dotted lines represent results obtained
with the lowest resolution, dashed lines with the medium reso-
lution while solid lines with the highest resolution.

FIG. 7. Top panels show the time evolution of the normalized central density, in the Cowling approximation (left panel), and in a
dynamical spacetime evolution (right panel). Power spectrum of the evolution of the central rest-mass density for an M ¼ 1:4, � ¼
100, N ¼ 1 polytrope in the Cowling approximation (bottom-left panel). F represents the frequency of the fundamental mode and H1-
H6 are the first six overtones computed by [70]. Correspondingly, the bottom-right panel shows the same quantities in a dynamical
spacetime evolution of the same TOV star. The frequencies computed by [59] are displayed with dashed vertical lines.

NADA: A NEW CODE FOR STUDYING SELF- . . . PHYSICAL REVIEW D 78, 064037 (2008)

064037-11



normalized central density (top panel), of the lapse func-
tion at the center (middle panel), and of the mass of the AH
(Eq. (3.4)) in units of the ADMmass of the system (bottom
panel). Dotted lines represent results obtained with the
lowest resolution, dashed lines with the medium resolution
while solid lines with the highest resolution. Overall, as the
collapse proceeds the star increases its compactness, and is
reflected in the increase of the central density as shown in
the top panel. The middle panel shows the characteristic
collapse of the lapse function at the center of the star
indicating the formation of a BH. The most unambiguous
signature of the formation of a BH during the simulation is
the formation of an AH. Once an AH is found by the AH
finder, we monitor the evolution of the AH area, and also of
its mass which is plotted, in the bottom panel of Fig. 8. This
panel shows that the formation of the BH delays with
decreasing resolution, since the increase of the central
density slows down because numerical dissipation is larger
for the lower resolution runs. An AH is first found at
approximately at t ¼ 180M (t ¼ 0:88 ms) for the simula-
tion with �x ¼ �z ¼ 0:05M. This figure also shows that
the mass of the AH relaxes to the ADMmass of the system.
The difference in the ADM mass and the mass of the AH
when we stop the evolution at t ¼ 300M, about 120M after
the AH is first found, is less than 1%.

This test shows that the code is able to follow BH
formation and its subsequent evolution for many time-
scales. We note that, unlike the results discussed in [29],
we do not need to add any numerical dissipation to the
evolution equations for the spacetime variables and gauge
quantities to perform this simulation. Instead, we rely only
on the gauge choice used here to follow the formation and
evolution of the BH formed as a result of the gravitational
collapse.

G. Rapidly rotating relativistic stars

The evolution of stable rapidly rotating relativistic stars
is a more demanding test than all previous ones, as this
involves testing parts of the code that are now used since
there is a nonzero y-component of the shift vector. The
initial data used for this test are the numerical solution of a
stationary and axisymmetric equilibrium model of a rap-
idly and uniformly rotating relativistic star with angular
velocity �, which has been computed using the Whisky
code [29,71]. The initial data for this equilibrium rotating
star are initially computed in spherical polar coordinates
and then transformed to Cartesian coordinates using the
standard coordinate transformation.

Here, we consider a uniformly rotating polytropic star
with � ¼ 2, 
c ¼ 1:28� 10�3, and rotating at 92% of the
allowed mass-shedding limit for a star with the same
central rest-mass density. The ratio of the polar to equato-
rial coordinate radii for this model is 0.7, its mass is M ¼
1:57 and its baryon rest-mass M� ¼ 1:69. For this simula-
tion we use the ‘‘1þ log’’ condition for the lapse, and the

‘‘Gamma-freezing’’ condition for the shift vector, with
	 ¼ 3:0. We use the so-called �-law equation of state
during the evolution.
For this test, the outer boundary of the grid is placed

about 3 times the equatorial radius. We check that during
the evolution, the profiles of the different variables are kept
very close to their initial value for several rotational peri-
ods, which is shown in Fig. 9. Here we display the profile of
the y-component of the velocity, vy, along the x-axis at the
initial time, t ¼ 0 (solid line) and at t ¼ 2:46 ms (dashed
line), with the latter corresponding to two rotational peri-
ods. As has been shown by [59,72], the small difference
originating at the surface of the star after two rotational
periods is expected since we used a second-order recon-
struction method with the MC limiter. Nevertheless, it
shows that deviations of the numerical solution from the
initial profile are very small.

VI. SIMULATIONS OF SELF-GRAVITATING
TORUS IN EQUILIBRIUM AROUND A BH

A. Initial data for BH and self-gravitating torus system

The initial data for the numerical simulations of the
system formed by a BH and a self-gravitating torus in
axisymmetric equilibrium have been recently computed
by [30]. The basic equations for the metric functions are
derived assuming the 3þ 1 formalism, and the line ele-
ment is written in the quasi-isotropic form as

FIG. 9. Profile of the y-component of the velocity of a rapidly
rotating relativistic star along the x-axis, at the initial time (solid
line) and at time t ¼ 2:46 ms, which corresponds to 2 rotational
periods.
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ds2 ¼ ��2dt2 þ  4½e2qðdr2 þ r2d2Þ
þ r2sin2ð�dtþ d’Þ2�; (6.1)

where e2q denotes the conformal metric for the rr and 
parts. The equations for the metric functions are solved in
the BH puncture framework, and it is assumed that the
puncture is located at the origin.

The equilibrium configurations for the matter are ob-
tained by assuming a perfect fluid stress-energy tensor, and
adopting a polytropic equation of state. The only nonzero
components of the fluid four-velocity are ut and u’, and
initial configurations can be constructed with either con-
stant or nonconstant specific angular momentum distribu-
tions, defined as j � hu’. We refer to [30] for a full

explanation of the construction of the initial model. For
the simulations reported in this paper, we have considered
a torus around a Schwarzschild BH (of mass MBH ¼ 1).
The adiabatic index is � ¼ 4=3 to mimic a degenerate
relativistic electron gas, and the polytropic constant � is
fixed to � ¼ 0:0301262 such that the torus-to-BH mass
ratio, Mt=MBH, is roughly 0.1.

The initial model is computed on a spherical grid.
Therefore, in order to use it as initial data for our evolution
code, we transform into Cartesian coordinates and inter-
polate the values of the metric functions and hydrodynamic
variables onto a cell-centered Cartesian uniform grid, re-
taining data for the y ¼ 0 plane.

The chosen torus has a constant distribution of specific
angular momentum such that its inner and outer edges on
the equatorial plane are located at rin ¼ 7:1M and rout ¼
14:0M, whereM is ADMmass of system. Thus, such torus
is initially covered with approximately 140 points along
the x-axis. The center of the torus is defined as the location
at which the rest-mass density reaches its maximum and it
is located at rmax ¼ 9:8M. The dynamical timescale, which
we choose as the orbital period at the center of the torus, is
torb ¼ 223M, that corresponds to about 1.1 ms for the case
that M ¼ M�.

For these simulations we use an equally spaced uniform
grid with a grid spacing�x ¼ �z ¼ 0:05M and a grid with
Nx � Nz ¼ 600� 600 points to cover a computational
domain, 0 � x � L and 0 � z � L, with L ¼ 30M. We
use 4th-order finite differencing for the spacetime evolu-
tion, and Roe solver with MC reconstruction for the hydro-
dynamic evolution. The time integration is done with RK4.

B. Dynamics in a fixed spacetime

We have first investigated the equilibrium of the torus by
performing numerical evolutions in a fixed spacetime,
which nevertheless has the contribution coming from the
self-gravity of the torus itself. This permits for one more
test of the ability of the code to keep the stationarity of a
fluid configuration initially in equilibrium. The accuracy
check of the evolution is performed by comparing the
stationarity and conservation of different local and global
fluid quantities over a timescale which is several times the
dynamical one.
We show in Fig. 10 the isocontours of the logarithm of

the rest-mass density of the torus as computed at the initial
time t ¼ 0 (left panel) and at t ¼ 1100M (right panel), the
later corresponding to 5 dynamical timescales, when the
code was stopped after approximately 3� 104 iterations,
with no sign of the presence of numerical instabilities.
These snapshots of the rest-mass density distribution
clearly show the stationarity of the initial model for a
sufficiently long period of time, and that the morphology
of the torus remains unchanged for the duration of the
simulation. In addition, they reflect that the treatment of
the atmosphere in the vacuum region does not perturb the
equilibrium, and does not affect the dynamics during the
evolution.
Other quantities that provide a more precise measure of

the stationarity of the torus are displayed in Fig. 11, in
which we plot the time evolution of three fluid quantities
normalized to their initial values. On the top panel, we plot
the time evolution of the total rest-mass of the torus,

FIG. 10. Isocontours of the logarithm of the rest-mass density of the torus. The left panel shows the configuration at the initial time
and the right panel the corresponding distribution after 5 dynamical timescales (approximately 1000M). The equilibrium solution is
preserved to high accuracy.
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normalized to its initial value. At the end of the simulation,
the difference between the final total rest-mass with respect
to the initial value is less than 10�3. This decrease of 0.1%
of the total rest-mass is due to numerical error during the
evolution, as the rest-mass is not conserved exactly.
However, this error does not affect significantly the stabil-
ity of the torus for the duration of our simulation. Similar
results are obtained for the time evolution of the other two
quantities, the central rest-mass density and the total an-
gular momentum, which are displayed in the lower two
panels of Fig. 11, respectively. The central rest-mass den-
sity, after a short initial transient phase, settles down to a
stationary value which only differs after t ¼ 1000M by 1%
from the initial one. This provides a strong evidence of the
ability of the code to keep the torus in equilibrium for
evolutions longer than the characteristic dynamical time-
scales of these objects.

Notwithstanding the use of Cowling approximation, we
can nevertheless extract some information about the oscil-
lating behavior of these type of self-gravitating tori. We
note that in a series of recent papers, [73–77], it was shown
that upon the introduction of perturbations, non self-
gravitating relativistic tori in equilibrium manifest a
long-term oscillatory behavior lasting for tens of orbital
periods. An important feature of these axisymmetric
p-mode oscillations of accretion tori is that the lowest-
order eigenfrequencies appear in the harmonic sequence
2:3. Overall, it was found that the 2:3 harmonic sequence
was present with a variance of 	10% for tori with a
constant distribution of specific angular momentum and

with a variance of 	20% for tori with a power-law distri-
bution of specific angular momentum. The departure from
the 2:3 harmonic sequence depends on a number of differ-
ent elements that contribute to small deviations, such as the
vertical size of the tori, the BH spin, the distribution of
specific angular momentum, the EOS considered, and the
presence of a small but nonzero mass-loss, which can all
influence this departure.
In order to trigger the phase of small oscillations of the

self-gravitating torus in our simulations, we perturb the
equilibrium solution by adding a small perturbation in the
x-component of the velocity (we recall that in equilibrium
the x and z-components of the velocity are zero). The
oscillations reflect in the time evolution of the different
fluid quantities, for instance, the central rest-mass density,
which we Fourier-transform to obtain the resulting power
spectra. This shows distinctive peaks at the frequencies that
can be identified with the quasinormal modes of oscillation
of the disk. In Fig. 12 we present, in the upper panel, the
time evolution of the normalized central rest-mass density
of the perturbed model. Because of the initial perturbation,
the torus shows a persistent oscillating phase around its
equilibrium position. We follow the evolution for about 13
dynamical timescales, and compute the power spectrum
obtained from the normalized central rest-mass density,
which is shown in the lower panel. A rapid look at this
figure reveals that the torus power spectrum shows features
which are very similar to those mentioned above for non
self-gravitating tori (see e.g. Fig. 4 of [76]). Namely, it can

FIG. 11. Time evolution of the total rest-mass, central rest-
mass density and total angular momentum, each of them nor-
malized to its initial value, for the evolution of a self-gravitating
torus on a fixed spacetime.

FIG. 12. The upper panel shows the time evolution of the
normalized central rest-mass density of a perturbed torus model,
while the lower panel displays the power spectrum obtained after
Fourier transforming the time evolution of the central rest-mass
density. The fundamental mode and first overtone frequencies
are denoted by f and o1. The mass of the BH is taken to be 1M�.
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be clearly identified in the spectrum a fundamental mode f,
and a first overtone o1. Interestingly, the ratio of the
fundamental mode and the first overtone also show ap-
proximately the 2:3 harmonic relation with o1=f	 1:4. In
addition, the power spectrum reveals a series of higher
frequency peaks, which roughly coincide with linear com-
binations of the f mode and first overtones. However,
simulations lasting for longer timescales are needed to
unambiguously identify these peaks.

C. Evolutions on a dynamical spacetime

Next, we evolve the same torus and BH initial data in a
fully dynamic way, solving the Einstein equations coupled
to the general relativistic hydrodynamics equations. For
such simulations we use the gauge conditions given in
Eqs. (2.22), (2.23), and (2.24) together with the
�-method, which allow for long-term and stable evolutions
of the puncture.

In our simulations of the system formed by a BH plus a
self-gravitating torus, the spacetime evolution is highly
dynamical until t ’ 30M due to the initial adjustment of
the gauge, which produces a small pulse in the metric
functions that propagates outwards. Outgoing radiative
boundary conditions for the spacetime variables at the
outer boundaries, permit this initial pulse to leave the
grid. Despite this initial transient phase, the torus remains
in equilibrium during the evolution, and its morphology is
kept very close to the initial profile even several hundredM
beyond the first orbit when we stopped our simulation. In
Fig. 13, we plot the isocontours of the logarithm of the rest-
mass density of the torus at time t ¼ 600M, which is close
to 3 dynamical timescales. This figure clearly demonstrates
that the configuration remains in equilibrium. Other quan-
tities also exhibit this behavior. In particular, in Fig. 14, we
plot the time evolution of the total rest-mass of the torus
(top panel), the central rest-mass density (middle panel),
and the total angular momentum (lower panel), each nor-

malized to its initial value, for the duration of the simula-
tion. At the end of the simulation, the difference between
the final total rest mass with respect to the initial value is
less than 0.1%. Although it is due to accumulated numeri-
cal error during the evolution, this violation of the rest
mass does not affect significantly the stability of the torus
for the duration of our simulation. Similar results are
obtained for the time evolution of the other two quantities,
the central rest-mass density and the total angular momen-
tum. We note that, truncation errors at the resolution em-
ployed seem to be enough to trigger small oscillations of
the torus around its equilibrium as shown in the evolution
of the central rest-mass density.
It is worthwhile to mention, that in order to maintain the

torus in equilibrium for several hundredM, we find crucial

not to replace the ~�i by�@j ~�ij on the right-hand side of the
evolution Eq. (2.9) whenever is not differentiated.

Replacing ~�i by �@j ~�ij excites larger amplitude oscilla-

tions of the torus, which can be more than 10% larger than

in the case where ~�i is not replaced by its definition. We
note also that, as observed for single puncture simulations
in vacuum, numerical errors in the spacetime evolution,
especially near the puncture, are smaller with the
�-method than with the �-method. We find that an addi-
tional ingredient that helps to maintain the torus equilib-
rium for the duration of the simulations is the use of the
�-method for the evolution of the conformal factor (we
refer to Fig. 3 and 4 for a comparison of the �-method and
�-method). We find numerical indications that, at least in
conjunction with the Cartoon method, these two proce-

FIG. 13. Isocontours of the logarithm of the rest-mass density
of the torus during the evolution on a dynamical spacetime at
t ¼ 600M. (Compare with the left panel of Fig. 10.)

FIG. 14. Time evolution of the total rest-mass density, central
rest-mass density and total angular momentum, each of them
normalized to its initial value, for the evolution on a dynamical
spacetime.
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dures help to decrease the error in the violation of the
Hamiltonian constraint.

VII. CONCLUSION

In this paper we have presented a new two-dimensional
numerical code designed to solve the full Einstein equa-
tions coupled to the general relativistic hydrodynamics
equations. The code is mainly intended for studies of
self-gravitating accretion disks around BHs, although it is
also suitable for regular spacetimes.

Concerning technical aspects, the Einstein equations are
formulated and solved in the code using a reformulation of
the standard 3þ 1 (ADM) system, the so-called BSSN
approach, in conjunction with the Cartoon method to im-
pose the axisymmetry condition under Cartesian coordi-
nates, and the puncture/moving puncture approach to carry
out BH evolutions. We note that a key and novel feature of
the code is that combines a fourth-order finite difference
approximation for derivative terms in the spacetime evo-
lution with the Cartoon method. Correspondingly, the gen-
eral relativistic hydrodynamics equations are written in
flux-conservative form and solved with high-resolution,
shock-capturing schemes.

We have performed and discussed a number of tests to
assess the accuracy and expected convergence of the code,
namely, (single) BH evolutions, shock tubes, and evolu-
tions of both spherical and rotating relativistic stars. We
have also presented a simulation of the gravitational col-
lapse to a BH of a marginally stable spherical star. We have
shown that the code is able to handle the formation of a
BH, and to follow the BH evolution until we the simulation
is stopped after several hundredM. We remark that we did
not add any numerical dissipation to the evolution equa-
tions for the spacetime variables and gauge quantities to
perform this simulation; and exclusively relied on the
gauge choice to follow the BH formation and its long-
term evolution. Overall, the code has passed those tests
with remarkable accuracy.

In addition, paving the way for specific applications of
the code, we have also presented results from fully general
relativistic numerical simulations of a system formed by a
BH surrounded by a self-gravitating torus in equilibrium.
First, simulations using a fixed spacetime evolution, have
shown that the torus remains in equilibrium around its
initial configuration for more than 5 dynamical timescales,
when the simulation was stopped. Furthermore, after add-
ing a small perturbation on the torus in equilibrium, we
have followed the evolution of the torus through a phase of

small oscillations for more than 13 dynamical timescales.
The computation of the frequencies of the fundamental
mode of oscillation and the first overtone revealed that
these two frequencies appear close to the 2:3 harmonic
relation observed for the case of non self-gravitating rela-
tivistic tori.
Our simulation of the same model in a dynamical space-

time, showed that the code is able to keep the torus in
equilibrium for the several hundred M that lasted the
simulation. We have found numerically, that using the

�-method and not to replace the ~�i by �@j ~�ij on the

right-hand side of the evolution for the �i are two impor-
tant issues that reduce the numerical error in the spacetime
evolution, and therefore, help to maintain the torus in
equilibrium.
Overall, the simulations performed indicate that the

code is able to perform such simulations accurately and
for the sufficient duration needed to produce scientific
results for one of the specific applications for which it
has been designed, the investigation of the runaway insta-
bility of thick accretion disks around BHs. We point out
that the last simulation presented in the paper is the first 2D
axisymmetric simulation of the system formed by self-
gravitating torus around a BH in a dynamical spacetime
that has been ever carried out. In a follow up paper, we aim
to present results from an expanded range of initial models,
and to investigate in detail the dynamics of such systems,
focusing on the development on the runaway instability,
and the evolution of the BH due to the transfer of mass and
angular momentum from the torus.
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Ansorg, B. Deris, P. Diener, E. N. Dorband, M. Koppitz,
A. Nagar, and Schnetter, Phys. Rev. D 76, 124002 (2007).

[50] F. Herrmann, I. Hinder, D.M. Shoemaker, P. Laguna, and
R.A. Matzner, Phys. Rev. D 76, 084032 (2007).
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