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We report our new code, named SACRA (SimulAtor for Compact objects in Relativistic Astrophysics)

for numerical relativity simulations in which an adaptive mesh refinement algorithm is implemented. In

this code, the Einstein equations are solved in the Baumgarte-Shapiro-Shibata-Nakamura formalism with

a fourth-order finite differencing, and the hydrodynamic equations are solved by a third-order high-

resolution central scheme. The fourth-order Runge-Kutta scheme is adopted for integration in time. To test

the code, simulations for coalescence of black hole-black hole, neutron star-neutron star (NS-NS), and

black hole-neutron star (BH-NS) binaries are performed, and also, properties of BHs formed after the

merger and gravitational waveforms are compared among those three cases. For the simulations of black

hole-black hole binaries, we adopt the same initial conditions as those by Buonanno et al. [1] and

compare numerical results. We find reasonable agreement except for a slight disagreement possibly

associated with the difference in choice of gauge conditions and numerical schemes. For an NS-NS binary,

we performed simulations employing both SACRA and Shibata’s previous code, and find reasonable

agreement between two numerical results for the final outcome and qualitative property of gravitational

waveforms. We also find that the convergence is relatively slow for numerical results of NS-NS binaries,

and again realize that long-term numerical simulations with several resolutions and grid settings are

required for validating the results. For a BH-NS binary, we compare numerical results with our previous

ones, and find that gravitational waveforms and properties of the BH formed after the merger agree well

with those of our previous ones, although the disk mass formed after the merger is less than 0.1% of the

total rest mass, which disagrees with the previous result. We also report numerical results of a long-term

simulation (with �4 orbits) for a BH-NS binary for the first time. All these numerical results show

behavior of convergence, and extrapolated numerical results for time spent in the inspiral phase agree with

post-Newtonian predictions in a reasonable accuracy. These facts validate the results by SACRA.
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I. INTRODUCTION

Coalescence of binary compact objects such as binaries
of two neutron stars (NS-NS), black hole and neutron star
(BH-NS), and two black holes (BH-BH) is the most prom-
ising source for kilometer-size laser-interferometric gravi-
tational wave detectors such as LIGO, VIRGO, and LCGT.
To detect gravitational waves and to analyze the gravita-
tional wave signals for extracting physical information of
the sources, it is necessary to prepare theoretical templates
of gravitational waves from the coalescing compact bi-
naries. Motivated by this fact, significant effort has been
paid in the past two decades. For theoretically computing
gravitational waveforms in a relatively early inspiral phase,
post-Newtonian approximations are the robust approach
[2]. On the other hand, for studying the last inspiral and
merger phases of the coalescing binaries in which general
relativistic effects are significantly strong and any approxi-
mation breaks down, numerical relativity is the unique
approach.

In the past decade, in particular, in the past three years, a
wide variety of general relativistic simulations have been

performed for the coalescence of NS-NS binaries [3–11]
and BH-BH binaries [12–28] (see also early-stage results
for merger of BH-NS binaries [29–31]). Since 1999, a
variety of simulations have been performed for the inspiral
and merger of NS-NS binaries after the first success of
Shibata and Uryū [3]. Shibata, Uryū, and Taniguchi have
then performed simulations focusing mainly on the merger
process and the final fate [4]. Their simulations were done
for a variety of equations of state (EOS) as well as for a
wide range of mass of two NSs. They have clarified that the
final outcome of the merger (formation of a BH or a
hypermassive neutron star; hereafter HMNS) depends
strongly on the total mass of the system and on the chosen
EOSs. In the latest paper [5], they clarified that with stiff
EOSs such as the Akmal-Pandharipande-Ravenhall one
[32], a BH is not promptly formed even for a system of
the total mass �2:8M�, but an HMNS is a likely outcome.
They also indicated that the formed HMNSs have an
elliptical shape because of their rapid rotation, and hence,
quasiperiodic gravitational waves of frequency �3–4 kHz
will be emitted for a long time (for �100 cycles) in the
absence of dissipative mechanisms except for gravitational
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wave emission. The integrated effective amplitude of such
gravitational waves may be large enough to be detected by
advanced laserinterferometric gravitational wave detectors
[4,33]. In the last couple of years, long-term simulations
for the inspiral of NS-NS binaries have been also done. In
particular, in the latest simulations, 3–5 inspiral orbits are
stably followed [8–11], and also, the computations are
continued until the system settles down approximately to
a stationary state even in the case that a BH is the final
outcome. Preliminary simulations for merger of magne-
tized NSs have been also performed recently [7,9]
(although it is not clear whether or not many of crucial
magnetohydrodynamic instabilities are resolved in these
simulations). However, in most of these works, very simple
�-law EOSs are adopted for modeling the NSs, and hence,
realistic simulations with a variety of realistic EOSs have
not been done yet.

The last three years have also witnessed great progress in
simulations of BH-BH binaries, starting with the first
stable simulation of orbiting and merging BHs by
Pretorius [12] and development of the moving puncture
approach [13,14] in 2005. Since then, a large number of
simulations have been done on the late inspiral and merger
of BH-BH binaries [12–28]. These works have clarified
that the merger waveforms are universally characterized by
a quasinormal mode ringdown. They have also shown that
a large kick velocity is excited at the merger in the cases
that the masses of two BHs are not equal and/or the spin
and orbital angular momentum vectors misalign. The latest
works with a high accuracy [23–28] compare the numerical
gravitational waveforms with post-Newtonian ones and
assess the accuracy of the post-Newtonian waveforms
[2]. In particular, the numerical simulation of Ref. [28]
presents highly accurate gravitational waves, which assess
the accuracy of the post-Newtonian gravitational waves
with a level much beyond the previous analysis. They
clarify that the so-called Taylor T4 post-Newtonian gravi-
tational waveforms are very accurate at least up to the last
two orbits before the merger for the equal-mass, nonspin-
ning BH-BH binaries. This work shows a monumental
achievement of numerical relativity because it demon-
strates that numerical relativity could provide inspiral
waveforms for BH-BH binaries more accurate than the
post-Newtonian waveforms.

However, simulations for coalescing compact binaries
have been performed only for a restricted parameter space.
Because the ultimate goal is to prepare a template family
that covers gravitational waveforms for almost all the
possible parameters for binary compact objects, the present
status is regarded as a preliminary one from the view point
of gravitational wave astronomy. For example, for BH-BH
binaries, the simulations have been primarily performed
for the case that the spin vector of BHs aligns with the
orbital angular momentum vector and the magnitude of the
BH spin is not extremely large. The simulations for BH-

BH binaries of unequal-mass and misaligned spin have
been also performed only for the restricted cases. For
NS-NS binaries, the simulations have been also primarily
performed for the case that masses of two NSs are equal,
and the cases of unequal-mass have been investigated in a
small mass range. Moreover, the simulations have been
performed adapting a few EOSs, mostly a simple �-law
EOS. Because the EOS of NSs is still unknown, it is
necessary to perform simulations choosing a wide variety
of EOSs.
To perform a number of simulations for various parame-

ters of compact objects, an efficient scheme for the nu-
merical simulation is necessary. For the two-body problem
considered here, adaptive mesh-refinement (AMR) algo-
rithm is well suited for this purpose [34]. The reason is
described as follows: In the two-body problem, there are
three characteristic length scales; the radius of compact
objects R, the orbital separation r, and the gravitational

wave length � � �ðr3=MÞ1=2, whereM is the total mass of
the system. We have to accurately resolve these three
scales. These scales obey the relation R< r < �, and
typically, R � �. Thus, an issue to be resolved in this
problem is to assign an appropriate resolution for each
scale of significantly different magnitude. To resolve
each compact object accurately, the grid spacing �x in
its vicinity has to be much smaller than R (R=�x should be
larger than �20). On the other hand, gravitational waves
have to be extracted from the geometric variables in the
wave zone. This implies that the size of the computational
region should be larger than �. By simply using a uniform
grid, the required grid number in one direction is Ng ¼
2�=�x, where the factor 2 comes from the fact that there
are plus and minus directions in each axis. Because of the
facts r * 2R and R>M, the required value of Ng is larger

than several hundreds. To follow the binary inspiral from
r� 5R, Ng has to be larger than 103. Even by supercom-

puters currently available for the general users, it approxi-
mately takes at least a month to perform a simulation of
such a huge grid number. This implies that it is not feasible
to perform a number of simulations for a wide variety of
the parameters.
In the AMR algorithms, one can change the grid spacing

and the grid structure arbitrarily for different scales,
preserving the required grid-resolution for each scale.
To accurately resolve each star in a binary, we need
to take Ng � 2R=�x� 100 to cover the region in the

vicinity of the compact stars. However, for other regions,
we do not have to take such a small grid spacing. In
particular, we can save the grid number in the distance
zone. To follow the propagation of gravitational waves
in the wave zone, the required grid spacing is
�0:05–0:1�, which is larger than �x by an order of
magnitude. Thus, by choosing such a large grid spacing
(and correspondingly, a large time step) in the wave
zone, we can significantly save the grid number for
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covering the large computational region as well as compu-
tational costs. Because of this reason, the AMR algorithms
are employed by many numerical relativity groups now
(e.g., [8,9,12,17]), which have provided a variety of nu-
merical results recently.

Motivated by the facts mentioned above, we have
developed a new code in which an AMR algorithm is
implemented, named SACRA (SimulAtor for Compact
objects in Relativistic Astrophysics) [35]. This code
can evolve not only BH-BH binaries but also NS-NS
and BH-NS binaries with a variety of EOSs. In SACRA,
the Einstein equations are solved in a similar AMR tech-
nique to that adopted in Ref. [17]. Namely, we adopt a
fourth-order finite differencing scheme for spatial deriva-
tives and a fourth-order Runge-Kutta scheme for
integration forward in time. For the AMR algorithm, six
buffer zones are prepared at the refinement boundaries and
for the interpolation at the refinement boundaries, fifth-
order Lagrangian interpolation scheme in space and
second-order Lagrangian interpolation scheme in time
are adopted. For simplicity, the size and the grid spacing
of computational domain for each refinement level are
fixed, although the computational domain can move with
the compact objects. We find that this scheme is so stable
that we do not have to introduce the Kreiss-Oliger-type
dissipation, which is often necessary in some AMR codes.
For solving the hydrodynamic equations, we adopt a high-
resolution central scheme proposed by Kurganov and
Tadmor [36] with a third-order interpolation for recon-
structing the fluid flux at cell interfaces. For implementing
the AMR algorithm, six buffer zones are also prepared as in
the gravitational field. Fifth-order and second-order
Lagrangian interpolations are basically adopted in space
and in time, respectively, although a limiter function is
applied in the time interpolation for a region where fluid
variables vary steeply. We also find that with this scheme,
a stable long-term evolution is feasible for NS-NS and BH-
NS binaries.

The paper is organized as follows: In Sec. II, we
briefly describe the basic equations, the gauge conditions,
the methods for extracting gravitational waves, and the
quantities used in the analysis for the numerical results.
We describe an AMR scheme, which we employ in
SACRA in Sec. III. In Sec. IV, numerical results for
the simulation of BH-BH, NS-NS, and BH-NS binaries
are presented separately. The simulations were performed
for a variety of grid resolutions and grid structures.
Convergence of numerical results shows validity of our
code. Section V is devoted to a summary. Throughout
this paper, we adopt the geometrical units in which G ¼
c ¼ 1, whereG and c are the gravitational constant and the
speed of light. Latin and Greek indices
denote spatial components ðx; y; zÞ and spacetime compo-

nents ðt; x; y; zÞ, respectively: r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. �ijð¼

�ijÞ denotes the Kronecker delta.

II. FORMULATION

A. Brief review of basic equations

The fundamental variables for geometry in 3þ 1 de-
composition are �: the lapse function, �k: the shift vector,
�ij: the metric in a three-dimensional spatial hypersurface,

and Kij: the extrinsic curvature. We solve the Einstein

evolution equations using a slightly modified version of
the BSSN (Baumgarte-Shapiro-Shibata-Nakamura) for-
malism [37]. In the original version of the BSSN formal-
ism, one chooses the variables to be evolved as

~� ij ¼ e�4��ij; (1)

~A ij ¼ e�4�ðKij � 1
3�ijKÞ; (2)

� ¼ 1
12 ln½trð�ijÞ�; (3)

K ¼ Kk
k; (4)

Fi ¼ �jk@j ~�ik or ~�i ¼ �~�ij
;j: (5)

Note that the condition detð~�ijÞ ¼ 1 has to be satisfied (we

assume to use Cartesian coordinates). In the present ap-

proach, we also evolve ~�ij, ~Aij, K, and Fi or
~�i, whereas

instead of �, we evolve W � e�2� following Ref. [27].
The primary reason is that we adopt the grid-center-grid in
numerical simulation; when center of a BH is located
approximately at a grid point, � becomes too large to
compute accurately. With the choice ofW, such pathology
can be avoided, as first pointed out by Campanelli et al.
[13]. In this formalism, the Ricci tensor with respect to �ij

is written as

Rij ¼ ~Rij þ RW
ij ; (6)

where ~Rij is the Ricci tensor with respect to ~�ij and

RW
ij ¼ 1

W
~Di

~DjW þ ~�ij

�
1

W
~Dk

~DkW � 2

W2
~DkW ~DkW

�
:

(7)

Here, ~Di is the covariant derivative with respect to ~�ij.

Merits of using W instead of � ¼ e�4� proposed in
Ref. [13] are that (i) the equation for RW

ij is slightly sim-

plified and (ii) even forW ! 0, no singular term appears in
the basic equation in which RW

ij always appears in the form

of W2RW
ij .

In SACRA, we implement both equations for Fi and
~�i.

As we show in Sec. IV, numerical results do not depend
strongly on the choice of the variables.
For the condition of the lapse function � and the shift

vector �i, we adopt dynamical gauge conditions. For the
case that we adopt the Shibata-Nakamura-type BSSN for-
malism (hereafter Fi-BSSN formalism), the gauge equa-
tions adopted are [29]
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ð@t � �i@iÞ� ¼ �2�K; (8)

@t�
i ¼ 0:75~�ijðFj þ �t@tFjÞ: (9)

Here, �t denotes a time step in numerical simulation and
the second term on the right-hand side of Eq. (9) is intro-
duced for stabilization of numerical computation. For the
Baumgarte-Shapiro-type BSSN formalism (hereafter the
~�i-BSSN formalism), we also employ Eq. (8) for evolution
of �, whereas for �k, we adopt the so-called �-freezing
gauge [38]

ð@t � �j@jÞ�i ¼ 0:75Bi; (10)

ð@t � �j@jÞBi ¼ ð@t � �j@jÞ~�i � 	sB
i; (11)

where Bi is an auxiliary variable, and 	s is an arbitrary
constant. In the present work, we basically choose 	s �
1=m for BH-BH and BH-NS binaries, and � 3=m for NS-
NS binaries. Here,m denotes the irreducible mass for a BH
and mass in the case of isolation for an NS. As shown in
Ref. [17], the coordinate radius of the apparent horizon is
larger for larger value of 	s. This implies that the region
near the BH is not well resolved for too small values of 	s,
whereas for too large values of 	s, the BH is not covered
only by the finest level in the AMR algorithm. For 	s ¼
1=m and 2=m, the coordinate radius of the apparent hori-
zon of a nonspinning BH is�0:8m and 1:1m, respectively.

The adopted spatial gauge condition is different for

numerical simulations with the Fi-BSSN and ~�i-BSSN
formalisms. Difference in numerical results computed by
both formalisms results primarily from this difference.

During evolution, we enforce the following constraints

on ~�ij and ~Aij at every time step

detð~�ijÞ ¼ 1; (12)

Tr ð ~AijÞ ¼ 0: (13)

The reason for this is that these constraints are violated
slightly due to numerical error. Specifically, we reset, after
every time evolution, as

~� ij ! ½detð~�ijÞ��1=3 ~�ij; (14)

~A ij ! ½detð~�ijÞ��1=3 ~Aij � 1
3
~�ij Trð ~AijÞ; (15)

W ! ½detð~�ijÞ��1=6W; (16)

K ! K þ Trð ~AijÞ: (17)

We note that in this adjustment, �ij and Kij are unchanged.

We do not add any constraint-violation damping terms in
SACRA. We monitor violation of Hamiltonian and mo-
mentum constraints computing L2 norm for them, and find
that their growth time scales are much longer than the
dynamical time scale even in the absence of the damping

terms. (Note that an exception is at the formation of BH
after the merger of NS-NS binaries, at which the degree of
constraint violation increases rapidly by an order of
magnitude.)
The fundamental variables for the hydrodynamics are 
:

the rest-mass density ": the specific internal energy P: the
pressure u�: the four velocity and the three velocity de-
fined by

vi ¼ dxi

dt
¼ ui

ut
: (18)

For our numerical implementation of the hydrodynamic
equations, we define a weighted density, a weighted four
velocity, and a specific energy defined, respectively, by


� � 
�utW�3; (19)

û i � hui; (20)

ê � h�ut � P


�ut
; (21)

where h ¼ 1þ "þ P=
 denotes the specific enthalpy.
The general relativistic hydrodynamic equations are writ-
ten into a conservative form for variables 
�, 
�ûi, and

�ê. Then, we solve these equations using a high-
resolution central scheme [36,39]. In our approach, the
transport terms such as @ið	 	 	Þ are computed by the
scheme of Kurganov-Tadmor [36] with a third-order
(piecewise parabolic) spatial interpolation for reconstruct-
ing numerical fluxes.
In the present work, the initial condition for NSs is

computed with the polytropic EOS

P ¼ �
�; (22)

where � and � are the polytropic constant and the adiabatic
index. Because � is arbitrarily chosen, we set � ¼ 1 in the
following. � is set to be 2 for comparing numerical results
with previous ones [4,30]. During the numerical simula-
tion, we adopt the �-law EOS

P ¼ ð�� 1Þ
": (23)

Again, we set � ¼ 2. Note that we have already imple-
mented a number of EOSs in our code (e.g., [4,11]). In the
future, we will perform numerical simulations in such
EOSs.
At each time step, w ¼ �ut is determined by solving an

algebraic equation derived from the normalization relation
u�u� ¼ �1 and EOS. Specifically, the equation is written

as

w2 ¼ 1þ �ijûiûj

h2
; (24)

where in the chosen EOS, h is written as

h ¼ ½êw�� ð�� 1Þ�½w2�� ð�� 1Þ��1: (25)
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After w and h are determined, the primitive variables such
as 
, ", and ui are updated as 
 ¼ 
�W3=w, " ¼ ðh�
1Þ=�, and ui ¼ ûi=h.

Because any conservation scheme of hydrodynamics is
unable to evolve a vacuum, we have to introduce an
artificial atmosphere outside NSs. Density of the atmo-
sphere should be as small as possible, to avoid spurious
effect due to it. In the present case, we initially assign a
small rest-mass density in vacuum as


 ¼
�

at r 
 r0;

ate

1�r=r0 r > r0;
(26)

where we choose 
at ¼ 
max � 10�8 for NS-NS binaries
and 10�9 for BH-NS binaries. Here, 
max is the maximum
rest-mass density of the NS. r0 is a coordinate radius of
�10–20M, whereM is the ADM (Arnowitt-Deser-Misner)
mass of the system. With such a choice of parameters, the
total amount of the rest mass of the atmosphere is about
10�5 of the rest mass of the NS. Thus, spurious effects due
to the presence of the atmosphere, such as accretion of the
atmosphere onto NS and BH, the resulting dragging effect
against orbital motion, gravitational effect by the atmo-
sphere, and formation of a disk around the final outcomes,
play a negligible role in the present context.

In the presence of a BH, location of apparent horizon is
determined by an apparent horizon finder. In our method,
we derive a two-dimensional elliptic-type equation for the
radius of the apparent horizon and iteratively solve this
equation until a sufficient convergence is achieved. This
method is essentially the same as that in Ref. [40], but in
SACRA, we implement a simpler scheme for computing
the source term for the elliptic-type equation. We briefly
describe this method in Appendix A.

B. Formulation for extracting gravitational waves

Gravitational waves are extracted computing the out-
going component of the Newman-Penrose quantity (the so-
called �4), which is defined by

�4 ¼ �ð4ÞR����n
� �m�n� �m�; (27)

where ð4ÞR���� is Riemann tensor with respect to space-

time metric g�, and n� and �m� are parts of null tetrad

ðn�; ‘�;m�; �m�Þ. Specifically, n� and ‘� are outgoing and
ingoing null vectors, whereas m� is a complex null vector
orthogonal to n� and ‘�. The null tetrad satisfies the
conditions

� n�‘� ¼ 1 ¼ m� �m�; (28)

and g� is written as

g� ¼ �n�‘ � n‘� þm� �m þm �m�: (29)

Denoting n� by n� ¼ ðN� � r�Þ= ffiffiffi
2

p
, where N� is unit

timelike hypersurface normal (��1, ��i��1) and r� is a
unit radial vector orthogonal toN� andm�,�4 is rewritten

to

�4 ¼ � 1

2
½ð4ÞR����N

� �m�N� �m� � 2ð4ÞR����N
� �m�r� �m�

þ ð4ÞR����r
� �m�r� �m��: (30)

Using the following relations,

ð4ÞR�i�jN
�N� ¼ Rij � KikKj

k þ KKij � Eij; (31)

ð4ÞR�ijkN
� ¼ DjKik �DkKij � Bijk; (32)

ð4ÞRijkl ¼ Rijkl þ KikKjl � KilKjk � Rijkl; (33)

where Di, Rij, and Rijkl are covariant derivative, Ricci

tensor, and Riemann tensor with respect to three-metric
�ij. Thus,�4 is written only by geometric variables in 3þ
1 formalism. Note that for deriving Eq. (31), we assume
that �4 is extracted in a vacuum region. In addition, we
have the following identity in three-dimensional space
because of symmetric and antisymmetric relations for
Rijkl:

R ijkl ¼ �ikRjl � �ilRjk � �jkRil þ �jlRik

� 1

2
Rð�ik�jl � �il�jkÞ; (34)

where Rik ¼ Rijk
j and R ¼ Rk

k. Then, we find

E ij �m
i �mj ¼ Rijklr

i �mjrk �ml; (35)

and obtain a simple formula

�4 ¼ �ðEij �m
i �mj �Bijk �m

irj �mkÞ: (36)

For r ! 1, �4 is written as

�4 ¼ �1
2ð €hþ � i €h�Þ; (37)

where hþ and h� are þ and � modes of gravitational
waves, respectively. Thus, by performing time integration
of 2�4 twice (and by appropriately choosing integration
constants), one can derive gravitational waveforms. More
specifically, we decompose �4 into tensor spherical har-
monic modes of ðl; mÞ by surface integral at a sufficiently
large radius as usually done (e.g., see Ref. [17] in detail),
and pay particular attention to harmonics of low quantum
numbers. In this paper, we compute the modes with 2 

l 
 4.
From �4, energy, linear momentum, and angular mo-

mentum dissipation rates by gravitational waves are com-
puted by

dE

dt
¼ lim

r!1

�
r2

16�

I
S
dA

��������
Z

�4dt

��������2
�
; (38)

dPi

dt
¼ lim

r!1

�
r2

16�

I
S
dA

xi

r

��������
Z

�4dt

��������2
�
; (39)
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dJz
dt

¼ lim
r!1

�
r2

16�
Re

�I
S
dA

�Z
@’�4dt

�

�
�ZZ

��4dtdt
0
���

; (40)

where
H
dA ¼ H

dðcos�Þd’ denotes an integral on two

surface of a constant coordinate radius and ��4 is the
complex conjugate of �4. In the actual simulation, gravi-
tational waves are extracted at finite radii, and then, by an
extrapolation, asymptotic gravitational waveforms should
be derived. In such a procedure, we estimate the dissipation
rates by exchanging r to a proper radius approximately
defined by D ¼ rð1þm0=2rÞ2, where r is the coordinate
radius, D approximately denotes the proper radius, and m0

is sum of mass of two compact objects [see Eq. (46)].

C. Diagnostics

1. Mass, linear momenta, and angular momenta

We monitor the ADM mass M, the linear momenta Pi,
and the angular momenta Ji during the evolution. To do so,
we define integrals on two surface of a coordinate radius r

MADMðrÞ ¼ 1

16�

I
r

ffiffiffiffi
�

p
�ij�klð�ik;j � �ij;kÞdSl; (41)

PiðrÞ ¼ 1

8�

I
r

ffiffiffiffi
�

p ðKi
j � K�i

jÞdSj; (42)

JiðrÞ ¼ 1

8�
�ilk

I
r

ffiffiffiffi
�

p
xlðKjk � K�jkÞdSj: (43)

Then, we extrapolate these quantities for r ! 1 to obtain
the ADM mass M, the linear momenta Pi, and the angular
momenta Ji. Throughout this paper, the initial values of
MADM and Jz are denoted by M0 and J0, respectively.

When simulating a spacetime with NSs, we also monitor
the total baryon rest mass (M�)

M� ¼
Z


ut
ffiffiffiffiffiffiffi�g

p
d3x: (44)

In the simulation with a unigrid domain, it is easy to
guarantee that M� is conserved by adopting standard
schemes of numerical hydrodynamics (except for a pos-
sible slight error associated with an artificial treatment of
atmosphere). In the schemes in which an AMR algorithm is
implemented, it is not straightforward to guarantee thatM�
is conserved when regridding is carried out. In our present
scheme, M� is not strictly conserved, and it is necessary to
confirm that the violation of the conservation is within an
acceptable level.

2. Spin and mass of the formed BH

For BH-BH and BH-NS binaries, apparent horizons are
determined during the evolution, and thus, we monitor
their area. From the area, the irreducible mass of each

BH is defined by

mi ¼
ffiffiffiffiffiffiffiffiffiffiffi
AAH;i

16�

s
; (45)

where AAH;i is the area of each BH. For BH-BH binaries,

we define a total mass at t ¼ 0 as

m0 ¼ m1 þm2; (46)

and present all the numerical results in units of m0. (In this
paper,m0 ¼ 2m1 because we only consider the equal-mass
BH-BH binaries.)
After the merger of compact binary objects, a rotating

BH is often formed in the end. To determine properties of
the formed BH, we analyze several quantities of the ap-
parent horizon of such BH. Specifically, we compute the
area AAH, polar circumferential length Cp, and equatorial

circumferential length Ce, of the apparent horizon. If the
formed BH is a Kerr BH and the system relaxes to a
stationary state, the area obeys the relation of

AAH ¼ 8�M2
BHfð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ; (47)

whereMBHf and a are mass and spin parameter of the Kerr
BH, respectively. Also, Ce should be 4�MBHf and Cp=Ce

is a known function composed only of a as

Cp

Ce

¼
ffiffiffiffiffiffiffiffi
2r̂þ

p
�

Eða2=2r̂þÞ; (48)

where r̂þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
and EðzÞ is an elliptic integral

defined by

EðzÞ ¼
Z �=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zsin2�

p
d�: (49)

In the analysis of numerical results, we determine the spin
parameter a, from Eq. (48) providing Cp=Ce by direct

measurement from numerical results. Then, MBHf can be
determined either from Eq. (47) or from Ce=4�. We cal-
culate the BH mass using both methods and check that two
results agree well. In addition, we can infer the final ADM
mass of the system from the initial value of the ADMmass
and the total radiated energy by gravitational waves, and
the final angular momentum of the system from the initial
angular momentum and the total radiated one. These val-
ues have to also agree with the mass and angular momen-
tum of a system finally formed, due to the presence of
conservation laws.

3. Gravitational waves

We compare inspiral orbital trajectories with the results
by the so-called Taylor T4 post-Newtonian formula for two
point masses in quasicircular orbits (see, e.g., Refs. [23,28]
for a detailed description of various post-Newtonian for-
mulas). Recent high-accuracy simulations for equal-mass
(nonspinning or corotating) BH-BH binaries have proven
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that the Taylor T4 formula provides their orbital evolution and gravitational waveforms with a high accuracy at least up to
about one orbit before the merger. In this formula, the angular velocity � is determined by solving [23]

dX

dt
¼ 64	X5

5M0

�
1� 743þ 924	

336
X þ

�
4�� 47

3
�

�
X3=2 þ

�
34 103

18 144
þ 13 661	

2016
þ 59	2

18

�
X2 �

�
4159þ 15 876	

672
�

þ
�
31 811

1008
� 5039

84
	

�
�

�
X5=2 þ

�
16 447 322 263

139 708 800
� 1712�E

105
þ 16�2

3
þ

��56 198 689

217 728
þ 451

48
�2

�
	þ 541

896
	2

� 5605

2592
	3 � 856

105
logð16XÞ

�
X3 þ

��4415

4032
þ 358 675

6048
	þ 91 495

1512
	2

�
�X7=2

�
; (50)

where X ¼ ½m0�ðtÞ�2=3 is a function of time, 	 is a ratio of
the reduced mass to the total mass m0, �E ¼ 0:577 	 	 	 is
the Euler constant, and � � S=4m2

0, which is defined from
the sum of spin angular momentum of BHs S. The spin is
present for each BH of BH-BH binaries considered in this
paper. In Eq. (50), we omit to write terms associated with
the difference in spins, because we only consider the case
that the spins of two BHs are equal.

From XðtÞ, gravitational waveforms are determined
from

hþðtÞ ¼ 4	m0X

D
AðXÞ cos½�ðtÞ þ ��; (51)

h�ðtÞ ¼ 4	m0X

D
AðXÞ sin½�ðtÞ þ ��; (52)

where AðXÞ is a nondimensional function of X for which
AðXÞ ! 1 for X ! 0, � is an arbitrary phase, and

�ðtÞ ¼ 2
Z

�ðtÞdt: (53)

For AðXÞ, we adopt the 2.5 post-Newtonian formula (e.g.,
Ref. [28]).

III. ADAPTIVE MESH REFINEMENT

A. Adaptive mesh refinement for the Einstein equations

Our AMR algorithm for solving the Einstein evolution
equations are very similar to that described in Ref. [17]:
We employ the Berger-Oliger-type AMR algorithm [34]
with the centered fourth-order finite-differencing in space
for evaluating spatial derivatives and with the lop-sided
fourth-order finite differencing for advection terms like
�i@iW. For integration forward in time, the fourth-order
Runge-Kutta scheme is adopted. There are also slight
differences between our scheme and the scheme of
Ref. [17]. The main difference comes from the choice of
grid structure; we adopt the grid-center-grid, whereas the
code of Ref. [17] adopts the cell-center-scheme. The rea-
son for our choice is simply that we felt that with the grid-
center-grid, it is easier to implement the interpolation and
extrapolation required to be carried out at refinement
boundaries in any AMR algorithm. Because of the differ-
ence in the grid structure, our interpolation and extrapola-

tion schemes around the refinement boundaries are
different from those of Ref. [17]. In order to clarify the
difference, we describe our method in detail in the
following.
As in the code of Ref. [17], the entire numerical domain

is composed of a hierarchy of nested Cartesian grids. The
hierarchy consists of L levels of refinement domains of
indices l ¼ 0; 1; 	 	 	 ; L� 1. Here, l ¼ 0 is the coarsest
level, whereas l ¼ L� 1 is the finest one. Each refinement
level consists of one or two domains. For coarser levels of
l 
 L1, where L1ð<L� 1Þ is a constant, the number of the
refinement domain is one, and their grid locations are fixed
throughout numerical simulation. We call this type of
domain the coarser domain in the following. On the other
hand, for finer levels with l > L1, the number of the refine-
ment domain is two, each of which covers a region near the
center of two compact objects. We call this type of domain
the finer domain. For the levels composed of only one
domain, we initially choose the grid for which the center
agrees (approximately) with mass center of the system. For
the levels composed of two domains, the grid center is
chosen to agree approximately with the center of the
compact objects at t ¼ 0.
Each domain is in general composed of ð2N þ 1Þ �

ð2N þ 1Þ � ð2N þ 1Þ grid points for the x-y-z axis direc-
tions, where N is an even integer, and it is the same value
for all the domains. Note that in counting the grid number,
the number of buffer zone (see below) is not included.
When symmetries are imposed, the grid number is appro-
priately saved. For example, when the equatorial-plane
symmetry is imposed, the grid number is ð2N þ 1Þ �
ð2N þ 1Þ � ðN þ 1Þ for the x-y-z axis directions. The
grid spacing in each level is fixed to be uniform and
denoted by hl for the l-th level. For simplicity, a refinement
of factor 2 is adopted, i.e., hl ¼ h0=2

l, where h0 is the
largest grid spacing. Thus, the length of a side of each cube
is 2Nhl for the l-th level.
Specifically, the center of any finer domain is arranged to

agree approximately with mass center of a compact object.
To guarantee this arrangement during time evolution, re-
gridding is necessary as the compact objects move.
Following Ref. [17], we use the shift to track the position
of BH centers by integrating
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@tx
i
BH ¼ ��iðxjBHÞ; (54)

where xiBH denotes the center of a BH. The shift vector at
xiBH is determined by the linear interpolation of �i in the
finest refinement levels. The time integration of Eq. (54) is
performed with the fourth-order Runge-Kutta scheme. For
the case of NSs, coordinate position of the center, xiNS is

determined by searching for the local maximum density at
every time step. Here, the maximum density implies the
maximum of 
� (not 
) in SACRA.

During time evolution, the finer domains are moved for
the i-th axis direction, whenever the following condition is
satisfied:

jxiBH � xil0j � 2hl for BHs; (55)

jxiNS � xil0j � 2hl for NSs; (56)

where xil0 denotes the center of a finer domain in the l-th
level. Then, we translate the finer domain by 2hl toward the
xi axis direction. Here, the factor 2 comes from the require-
ment that a refinement boundary surface of a domain of
level l (hereafter, referred to as ‘‘child domain’’) always
overlaps with a surface of a domain of level l� 1 (here-
after ‘‘parent domain’’), which is defined by xi ¼ const in
the parent domain.

We arrange that each child domain of level l ( � 1) is
guaranteed to be completely covered by its parent domain
of level l� 1. Here, we determine that each child has only
one parent. If there are two domains in the same level, say
(l� 1)-th level, we refer to one of two as the parent and to
the other as the uncle. For more specific description, let us
denote the location of grid points for the child and the
parent, respectively, by ðic; jc; kcÞ and ðip; jp; kpÞ for

ðx; y; zÞ, where ic, jc, kc, ip, jp, and kp are all in the range

between �N and N. We arrange that refinement boundary
surfaces of the child domain, i.e., ic ¼ �N, ic ¼ N, jc ¼
�N, jc ¼ N, kc ¼ �N, and kc ¼ N always overlap with
surfaces of xi ¼ const in the parent domain (here, xi de-
notes x or y or z). Namely, the surfaces of ic ¼ �N and
ic ¼ N overlap with the parent’s surfaces of i ¼ ip1 ¼
const and i ¼ ip2 ¼ const, respectively. (This is also the

case for jc ¼ N and kc ¼ N.) Typically, the following
conditions are satisfied: ip1 � �N=2 and ip2 � N=2. By

this arrangement, our refinement procedure becomes very
simple: Assigning finer quantities of the child level to its
one-coarser level is straightforward because the grid points
of the parent domain for ip1 
 i 
 ip2 overlap with those

of the child domain.
A parent domain overlap not only with its child domain

(level l) but also may overlap with another domain of level
l (we call this nephew). We have to copy values of the
nephew to the parent in the same procedure as described
above (from the viewpoint of the child, values of the child
are copied to its uncle). To carry out this procedure, we
have to check status of overlapping for all the levels

composed of two domains at each time step. We note
that copying the finer quantities to the coarser ones is
carried out at each time step that the quantities of the
coarser levels are defined. [Note that the time step of the
child domain is always half of that of the parent domain;
cf. Equation (58).]
To evolve quantities near the refinement boundaries of a

child domain, we have to prepare buffer zones and to
assign an approximate value on them. Following
Ref. [17], we prepare six buffer zone points along each
axis (e.g., for the x axis direction, extra regions of �N �
6 
 i 
 �N � 1 and N þ 1 
 i 
 N þ 6 are prepared as
the buffer zones). The quantities at the buffer zones are
provided from the corresponding parent domain by the
following procedure: (i) If a buffer-zone’s grid point of
the child domain overlaps with its parent’s grid point, we
simply copy the value, and (ii) if a buffer-zone’s grid point
of the child domain is located between its parent’s grid
points, the fifth-order centered Lagrangian interpolation is
applied using nearby six parent’s grid points. Actual three-
dimensional procedure is carried out by successive one-
dimensional procedures.
The interpolation procedure from the parent to the child

for the child’s buffer zone, which is described above, is
carried out in the straightforward manner whenever the
time-step level coincides between two levels. However, it
does not, in general, coincide because the time step of the
parent level�tl�1 is twice larger than that of the child level
�tl in typical AMR algorithms [34]. Specifically, the time-
step level does not agree (i) at a child’s time step of odd
number, and (ii) at each Runge-Kutta sub time step. For the
interpolation at such time step, we employ the following
method: (I) For the inner three buffer-zone’s points (e.g.,
�N � 3 
 i 
 �N � 1 and N þ 1 
 i 
 N þ 3 for the x
axis direction), we evolve all the quantities using the
fourth-order finite-differencing scheme. Because there
are sufficient number of buffer-zone’s points to solve the
evolution equations in the inner three buffer-zone’s points,
no interpolation is necessary; (II) For the fourth buffer-
zone’s point (e.g., i ¼ ðN þ 4Þ for the x axis direction),
all the quantities are evolved using the second-order finite-
differencing scheme with no interpolation: (III) For the
outer two buffer-zone’s points (e.g.,�N � 6 
 i 
 �N �
5 and N þ 5 
 i 
 N þ 6 for the x axis direction), the
second-order Lagrangian interpolation of the parent’s
quantities in time is carried out to determine the values
of the parent level at the corresponding child’s time-step
level as a first step, and then, the fifth-order Lagrangian
interpolation in space is carried out.
Because there are two domains in the finer levels, they

often overlap with each other. In such a case, the values of
all the quantities should agree with each other. However,
the evolution equations for those two domains are solved
independently, and consequently, the values do not always
agree. To guarantee that they agree, we simply take aver-
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age of two values as Q1 ! ðQ1 þQ2Þ=2 and Q2 ! ðQ1 þ
Q2Þ=2, where Q1 and Q2 denote the values of two domains
of the same refinement level. When a buffer-zone’s point of
one of the two domains overlaps with a point in the main
region of the other domain, the values at the point of the
main region are copied to those at the buffer-zone’s point.
When two buffer zones overlap at some points, the simple
averaging, described above, is again used.

At the outer boundaries of the coarsest refinement level,
an outgoing boundary condition is imposed for all the
geometric variables. The outgoing boundary condition is
the same as that suggested by Shibata and Nakamura [37].

It is possible to add artificial dissipation terms.
Following Ref. [17], we tried to add the sixth-order
Kreiss-Oliger-type dissipation term as

Ql ! Ql � �h6l Q
ð6Þ
l ; (57)

where Ql is a quantity in the l-th level, Qð6Þ
l is the sum of

the sixth derivative along the x, y, and z axis directions, and
� is a constant of order 0.1. We performed simulations for
BH-BH binaries with � ¼ 0 and 0.1, and found that the
simulations proceed with no instability even for � ¼ 0 and
that the numerical results depended very weakly on the
dissipation. The numerical dissipation, however, spuri-
ously accelerated the merger process for the nonzero value
of �, and as a result, the merger time was shortened
slightly. Thus, in this paper, we do not add any dissipation
term in the simulation. Even in hydrodynamic simulations,
we do not have to add it.

Numerical simulations for BH-BH binaries reported in
this paper are performed with nine or ten refinement levels,
which include five or six coarser levels composed of one
domain and four finer levels composed of two domains.
Simulations for NS-NS binaries are performed with seven
or eight refinement levels, i.e., three or four coarser levels
composed of one domain and four or five finer levels
composed of two domains. For BH-NS binaries, simula-
tions are done with eight refinement levels, i.e., four
coarser levels composed of one domain and four finer
levels composed of two domains.

Time step for each refinement level dtl is determined by
the following rule:

dtl ¼
�
hlc=2 for 0 
 l 
 lc
hl=2 for lc < l 
 L� 1;

(58)

where lc ¼ 4 for simulations of BH-BH binary and lc ¼ 2
for NS-NS and BH-NS binaries. Namely, the Courant
number is 1=2 for the finer refinement levels with l � lc,
whereas for the coarser levels, it is smaller than 1=2. The
reason why the small Courant number is chosen for the
small values of l is that with a high Courant number such as
1=2, the numerical instability occurs near the outer
boundaries for the coarsest refinement level.

B. Adaptive mesh refinement for the hydrodynamic
equations

When a hydrodynamic simulation is performed employ-
ing an AMR algorithm, first of all, we have to determine
for which variables the interpolation from coarser to finer
levels and the copy from finer to coarser levels are carried
out. In the present work, we choose 
�, ûi, and h for the
interpolation and copying procedures. The copying proce-
dure is totally the same as that for geometric variables (see
Sec. III A). The interpolation procedure is basically the
same as that for geometric variables; if grid points of the
child and parent domains overlap, we simply copy the
values of the parent to the child, whereas if they do not
overlap, we adopt the fifth-order Lagrangian interpolation.
However, for the fluid variables such as 
� and h, this
interpolation scheme could fail, in particular, in the vicinity
of surface of NSs for which 
� is small and steeply varies.
The reason for this possible failure is that the interpolation
may give a negative value of 
� (and also h� 1), which is
unphysical. Thus, in the case that 
� <
min or h < 1 are
results of the fifth-order interpolation, we adopt the first-
order scheme for the interpolation (i.e., linear interpola-
tion). Here, 
min is chosen to be 
max=10

8 for NS-NS
binaries and 
max=10

9 for BH-NS binaries in the present
case, where 
max is the initial maximum value of 
�. We
have found that the linear interpolation is too dissipative to
adopt for the entire interpolation. Therefore, this is used
only in case.
We also modify the scheme of interpolation in time,

which is necessary for the interpolation procedure in the
buffer zone (see Sec. III A). For geometric variables, we
always use the second-order interpolation scheme as de-
scribed in Sec. III A. Specifically, we determine an inter-
polated value at a child’s time step from values at three
time levels of its parent, say, n� 1, n, and nþ 1. Here, the
interpolation is necessary for determining the values at a
time t that satisfies tn < t < tnþ1. For the fluid variables,
we basically adopt the same interpolation scheme as that
for the geometrical variables. However, for maintaining
numerical stability, we modify it when the following rela-
tion holds:

ðQnþ1 �QnÞðQn �Qn�1Þ< 0: (59)

Here, Q is 
� or ûi or h, and Qn denotes Q at tn. In this
case, we adopt the first-order interpolation scheme, only
using Qnþ1 and Qn. Namely, a limiter procedure is intro-
duced. We have found that this prescription is robust for
stabilizing numerical computation.
After the interpolation or the copy is carried out, we

have to determine values of primitive variables such as 
,
ut, and ". In the present choice of the variables to be
interpolated or copied (
�, ûi, and h), this procedure is
quite simple. From h and ûi, w is determined from
Eq. (24). Then, 
 is computed by 
�W3=w. Because the
relation h ¼ 1þ �" holds, " is also immediately obtained.
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Even if we adopt more complicated EOSs, 
 and w are
immediately calculated. In general EOSs, h is a compli-
cated function of 
 and ". Thus, the procedure for getting "
may be much more complicated. However, 
 is obtained
very easily, and hence, " should be obtained by simply
solving a one-dimensional equation for h ¼ hð"Þ.

C. Extracting gravitational waves in AMR

During inspiraling and merging of binary compact ob-
jects, gravitational wavelength gradually decreases (the
frequency increases). Propagation of gravitational waves
is accurately computed only in the case that the grid
spacing is at least by 1 order of magnitude smaller than
the wavelength. Thus, the required grid resolution changes
during the evolution. In the late inspiral phase in which
m0� ¼ 0:03–0:1, the wavelength is

� ¼ �

�
� 105

�
m0�

0:03

��1
m0: (60)

This implies that the grid spacing should be smaller than
�10m0 for m0� ¼ 0:03 and �3m0 for m0� ¼ 0:1. By
contrast, in the merger phase in whichm0� can be as large
as �0:3, the grid spacing has to be smaller than � m0.

Another requirement for accurate computation of gravi-
tational waves is that wave extraction has to be done in a
wave zone. Thus, inspiral gravitational waveforms should
be extracted in a region far from the source. On the other
hand, merger waveforms may be extracted at a distance of
�20m0 because the gravitational wavelength at the merger
phase is 10–15m0 (see Sec. IV).

Taking into account these requirements, we extract
gravitational waves in the following manner. For the in-
spiral gravitational waveforms, the radius of the extraction
is chosen to be 50–70m0 in the present paper. The grid
spacing at such radius is �2–3m0 in the present grid
setting. For the merger gravitational waveforms, the radius
of the extraction is �20–30m0. More specifically, the
inspiral waveforms are extracted for tret 
 tsep, whereas

the merger ones are done for tret � tsep. Here, tret denotes

retarded time defined by

tret � t� r� 2m0 logðr=m0Þ; (61)

where r is the coordinate radius of the extraction and we
assume r � m0 for defining this retarded time. tsep denotes

a retarded time at which the orbital angular velocity of the
binary motion becomes m0�� 0:1. In Sec. IV, we will
show that this strategy is acceptable.

IV. NUMERICAL RESULTS

In the following three Secs. IVA, IVB, and IVC, we
separately report numerical results for BH-BH, NS-NS,
and BH-NS binaries, respectively. All the numerical results
obtained by SACRA were performed on personal com-
puters with a 2.4 or 2.6 or 3.0 GHz Opteron processor

and 4 or 8 GBytes of memory. Many of numerical simu-

lations were performed both in the Fi-BSSN and ~�i-BSSN
formalisms. Although both formalisms give similar results,
slight quantitative difference is also found. (The difference
results primarily from the difference in the gauge condi-
tions adopted in both formalisms.) In each following sec-

tion, we basically present the results in the ~�i-BSSN
formalism. In the presence of remarkable quantitative dif-
ference between two results, we will notice the difference.

A. BH-BH binaries

The first step is to validate the Einstein equations solver
of SACRA. For this purpose, we performed simulations of
BH-BH binaries of equal mass. Because many simulations
have been already performed for the equal-mass binary in
the past three years (see Sec. I for review), it is possible to
compare our numerical results with the previous ones and
to check the validity of our code.

1. Initial condition

Following Ref. [23], as initial conditions, we adopt
quasi-equilibrium states of BH-BH binaries in corotating
circular orbits, which are computed by Cook and Pfeiffer
[41] (see also [42,43]) in the conformal-thin sandwich
framework. The data can be obtained from a website
[44]. Cook, Pfeiffer, and their collaborators have computed
a wide variety of quasi-equilibrium states by a spectral
method with high accuracy. Among many quasi-equilibria
they computed, we pick up the corotating models with
labels d ¼ 13, 16, and 19 (see Table I for key quantities
of these initial conditions) following a previous work [23].
These initial conditions are computed in an excision
method [41], and hence, no data is present inside apparent
horizons. We simply adopt a third-order Lagrangian inter-
polation to provide a spurious data inside the apparent
horizons. As shown in Refs. [45,46], this quite simple
method is acceptable because the spurious information
inside the apparent horizons does not propagate outward.
Indeed, no trouble was found also in our simulations. As
shown in Ref. [23], BH-BH binaries orbit for about 1.5,
2.5, and 4.5 times before formation of common apparent
horizon for d ¼ 13, 16, and 19, respectively.

TABLE I. Parameters for BH-BH binaries in quasicircular
states. We list the ADM mass (M0), angular velocity (�0),
angular momentum (J0), and a spin parameter of binary (�).
All these quantities are scaled with respect to m0, which is the
sum of irreducible mass of two BHs at t ¼ 0.

d M0=m0 m0�0 J0=m
2
0 �

13 0.9858 0.05617 0.875 0.054

16 0.9875 0.04164 0.911 0.040

19 0.9890 0.03245 0.951 0.032
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2. Setting

The simulations were performed changing the grid reso-
lution and grid structure for a wide range, to examine
convergence of the numerical results as well as to check
dependence of the results on locations of outer and refine-
ment boundaries (see Table II for the key parameters of the
grid structure). The numerical experiments were exten-
sively performed, in particular, for d ¼ 19. For all the
cases, the grid spacing in the vicinity of BHs is between
� m1=12 and� m1=18 (m1 is the irreducible mass of each
BH), and the outer boundaries along each axis are located
at 2–4 times of gravitational wavelength at t ¼ 0 (which is
denoted by �0).

Instead of employing the solution of quasi-equilibrium
states for � and �k at t ¼ 0, we initially give

� ¼ W and �k ¼ 0: (62)

We also performed simulations with the quasi-equilibrium
gauge as initial condition for a few models (see
Appendix B). Switching the initial condition for � from
Eq. (62) to the quasi-equilibrium one does not change the
numerical results significantly. By contrast, using the
quasi-equilibrium solution for �k, the orbital trajectory
of BHs (in coordinate description) are significantly modi-

fied for the case that the ~�i-BSSN formalism is employed
(see also Ref. [46]). Specifically, the orbit becomes ellip-
tical in the coordinate description. By contrast, for the case
that the Fi-BSSN formalism is employed, numerical re-
sults depend only weakly on the initial condition. In both
cases, physical results (e.g., gravitational waveforms and
state of the BH finally formed) depend very weakly on the

initial condition. The results are briefly presented in
Appendix B.
The elliptical orbit in the �-freezing gauge is likely to

result simply from a gauge effect. However, the gauge
could affect the physical results (see discussion below),
and hence, it is better to fix the condition for studying
convergence of the numerical results for different grid
resolutions. In the present paper, we employ the gauge
condition of Eq. (62) at t ¼ 0 following Ref. [46], and
discuss the convergence and dependence of numerical
results on the grid structure fixing the initial condition for
� and �i.
Most of the simulations were performed with N ¼ 30 or

24. Required memories for runs with N ¼ 30 and 24 are at
most about 2.8 and 1.6 GBytes, respectively, when the
~�i-BSSN formalism is employed. When the Fi-BSSN
formalism is employed, we do not have to introduce the
auxiliary variable Bi, and hence, the memory is slightly
saved. In both cases, the simulations are feasible on inex-
pensive personal computers with 4 GBytes of memory. A
few simulations were performed for N ¼ 36, but it is still
feasible by personal computers with 8 GBytes of memory.
The computation time required for run 19a, for which
binary orbits for about 4.5 times before the onset of merger,
is about two weeks on a 2.4 GHz Opteron machine, even
with no parallelization. For d 
 16, the required computa-
tional time is at most 10 days even for N ¼ 30.

3. Evolution of BHs and final outcome

Figure 1(a) plots orbital trajectories of one of two BHs
for runs 19a, 16a, and 13a. The trajectories from t ¼ 0 to

TABLE II. Parameters of grid structure for simulations of BH-BH binaries. In the column named ‘‘Levels,’’ the number of total
refinement levels is written. (In the bracket, the numbers of coarser and finer levels are written.) �x is minimum grid spacing, �xQNM
the grid spacing at which the quasinormal mode of gravitational waves are extracted, �xins the grid spacing at which inspiral
gravitational waves are extracted, m1 the irreducible mass of each BH, L the location of outer boundaries along each axis, and �0 the
gravitational wavelength at t ¼ 0. Run names with ‘‘F’’ denote that the simulations were performed with the Fi-BSSN formalism, and
otherwise, the simulations were performed with the ~�i-BSSN formalism.

Run ‘‘d’’ Levels N �x=m1 L=m0ðL=�0Þ �xQNM=m0 �xins=m0

13a, aF 13 9 (5þ 4) 24 0.0566 174 (3.1) 0.46, 0.91 1.82

13b 13 9 (5þ 4) 20 0.0680 174 (3.1) 0.55, 1.09 2.18

13c 13 9 (5þ 4) 16 0.0850 174 (3.1) 0.68, 1.36 2.72

13d 13 9 (5þ 4) 24 0.0708 217 (3.9) 0.57, 1.13 2.24

16a, aF 16 9 (5þ 4) 30 0.0578 222 (2.9) 0.46, 0.92 1.84

16b, bF 16 9 (5þ 4) 24 0.0578 178 (2.3) 0.46, 0.92 1.84

16c, cF 16 9 (5þ 4) 24 0.0723 222 (2.9) 0.58, 1.16 2.32

16d, dF 16 9 (5þ 4) 20 0.0868 222 (2.9) 0.70, 1.39 2.78

19a, aF 19 9 (5þ 4) 30 0.0587 225 (2.4) 0.47, 0.94 1.88

19b, bF 19 9 (5þ 4) 24 0.0587 180 (1.9) 0.47, 0.94 1.88

19c, cF 19 9 (5þ 4) 24 0.0733 225 (2.4) 0.59, 1.18 2.35

19d, dF 19 9 (5þ 4) 20 0.0880 225 (2.4) 0.71, 1.41 2.82

19e, eF 19 10(6þ 4) 24 0.0587 360 (3.8) 0.47, 0.94 1.88

19f 19 9 (5þ 4) 36 0.0587 270 (2.9) 0.47, 0.94 1.88

19g 19 9 (5þ 4) 24 0.0880 270 (2.9) 0.71, 1.41 2.82
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the time at which common apparent horizon is first formed
are drawn. This shows that for d ¼ 19, 16, and 13, the BH-
BH binaries orbit approximately for 4.3, 2.75, and 1.75
times, respectively. The result for d ¼ 19 approximately
agrees with that of Ref. [23], whereas for d ¼ 16 and 13,
our results are by about a quarter orbit longer (see discus-
sion below). As pointed out in Ref. [23], the trajectory for
d ¼ 19 looks slightly eccentric, whereas for d ¼ 16 and
13, the eccentricity is not very outstanding.

Figure 1(b) and 1(c) are the same as Fig. 1(a) but for runs
16a, 16c, 16d and for runs 19a, 19b, 19c, and 19d, respec-
tively. These two figures compare the trajectories in differ-
ent grid resolutions but with the same arrangement for
locations of refinement boundaries. They show that for
the finer grid resolutions, the number of orbits increases,
i.e., the time at which common apparent horizon is first
formed (hereafter referred to as the merger time TAH) is
longer. The reason for this feature is that numerical dis-
sipation is larger for the simulations with poorer grid
resolutions, and as a result, the decrease rate of orbital
separation is spuriously enhanced. However, Fig. 1(b) in-
dicates that the difference in the merger time is not very
large for d ¼ 16, and suggests that the numerical results
are close to convergence. For d ¼ 13 and 16, we infer that
in the best-resolved runs, the merger time is determined

within an error of �2m0 and 10m0, respectively. By con-
trast, for d ¼ 19, the merger time may be underestimated
by �50m0 even for run 19a. This point will be revisited in
Sec. IVA4.
The trajectory of BHs for run 16b is very similar to that

for 16a (we do not plot it because it approximately agrees
with that for run 16a). By contrast, the trajectory for run
19b does not agree well with that for run 19a (see also
Table III for the merger time which shows that the differ-
ence in the merger time is �20m0). This indicates that for
the simulations started from small initial orbital separa-
tions (d 
 16), our choice for the location of outer and
refinement boundaries and for the grid structure is appro-
priate. On the other hand, for a simulation started from a
large initial separation as d ¼ 19, a careful choice of the
grid structure is necessary. In addition, the trajectory and
merger time depend on the gauge condition; see compari-

son between the results with Fi-BSSN and ~�i-BSSN for-
malisms, for which the chosen spatial gauges are different
(see Sec. IVA4).
Figure 2 plots Mirr=m0, Ce=4�m0, and Cp=Ce as func-

tions of time for common apparent horizon for d ¼ 16 and
19. The asymptotic values of these quantities characterize
properties of the final state of the formed BHs, as described
in Sec. II C. Figure 2 shows that all the quantities approach
approximately to constants and the formed BHs relax to a
stationary state irrespective of initial orbital separation. An
oscillation associated with numerical error is seen, but the
amplitude of such oscillation is within �0:1%. Thus, the
final stationary state of the BHs is determined with a small
error of & 0:1% (except for runs performed with a poor
grid resolution such as runs 16dF, 19d, and 19dF, for which
values for these quantities do not approach to constants).
In Table III, we summarize key numerical results about

the formed BHs. We note that the last column of Table III
denotes the refinement level for which the properties of the
common apparent horizon are determined; ‘‘L� 1’’ and
‘‘L� 2 denote the finest and second-finest levels, respec-
tively. For the case that volume of the finest refinement
domain is so small that the radius of the common apparent
horizon is larger than the domain size, we have to deter-
mine it in the second-finest one for analyzing the properties
of the BH. Because its resolution is poorer than that of the
finest one, we have to keep in mind that systematic error for
the results marked with ‘‘L� 2’’ is larger than that with
’’L� 1.’’ In particular, a substantial error appears to be
always present for the estimated mass; by comparing the
results determined in the finest and second-finest levels, we
find that the mass is underestimated by �0:2% when the
results in the second-finest level is used.
Although such systematic error is present, Table III

shows that the results for the properties of the BH
finally formed depend only weakly on the grid resolu-
tion, grid structure, chosen formalism, and gauge condi-
tion: The final mass determined both from Mirr and Ce is
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FIG. 1 (color online). (a) Coordinate trajectories of a BH from
t ¼ 0 to the time at which the common apparent horizon is first
formed for runs 19a (solid curve), 16a (long-dashed curve), and
13a (dashed curve). (b) The same as (a) but for runs 16a (solid
curve), 16c (long-dashed curve), and 16d (dashed curve). (c) The
same as (a) but for runs 19a (solid curve), 19b (dotted-dashed
curve), 19c (long-dashed curve), and 19d (dashed curve). (d) The
same as (a) but for runs 19a (solid curve), 19aF (long-dashed
curve), and 19f (dashed curve). The orbits for runs 19a and 19f
overlap approximately.
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ð0:948 0:001Þm0 for d ¼ 13 and 16, and ð0:949
0:001Þm0 for d ¼ 19. The final spin determined from
Cp=Ce is 0:71 0:01 for d ¼ 13 and 16 and 0:70 0:01

for d ¼ 19. These results agree with those of Ref. [23]
within estimated numerical error.

In our results, the final masses of the BHs computed both
from Ce and Eq. (47) agree within � 0:1% error. Because
two values are determined by two independent methods,
this agreement also indicates that the BH mass is deter-
mined within �0:1% error.

Another point worth noting is that the final mass and
spin depend very weakly on the initial orbital separation.
This is natural because the merger should start at an
approximately unique point in the vicinity of an innermost
stable orbit at which the energy and angular momentum of
the binary system is approximately identical independent
of the initial orbital separation. Note that slight difference
in spin of individual BHs could cause a slight difference of
the location of the innermost stable orbit. However, the
magnitude of the spin is small and the effect is minor.
Hence, after the merger sets in, the evolution path toward
the final state and the final outcome should depend only
weakly on the initial separation.

4. Merger time

In contrast to the results for the mass and spin of the BHs
finally formed, the merger time depends on the grid reso-
lution for d ¼ 16 and, in particular, for d ¼ 19. Because it

increases systematically with improving the grid resolu-
tion, the smaller merger time is a result due to the fact that
numerical dissipation is larger for the poorer grid resolu-
tions. To see the dependence of the merger time on the grid
resolution, we plot TAH as a function of h2L�1 in Fig. 3. It is

found that for a given location of outer and refinement
boundaries (compare the results for 16a, 16c, 16d and for
19a, 19c, 19d, respectively), TAH systematically increases
in a manner better than second-order convergence.
The merger time for runs 16a and 16b (and also for runs

13a and 13b), for which the finest grid resolution is the
same whereas the locations of outer and refinement
boundaries at each level are different, agrees approxi-
mately with each other. This implies that the grid structures
for these runs are well suited for an accurate simulation;
the outer boundaries are located far enough to exclude
spurious effects associated with the finite size of computa-
tional domain, and also, the refinement boundaries and the
domain size of each level are appropriately chosen. We can
conclude that the results depend primarily on the finest grid
resolution as long as N � 24 and L * 2�0 for d ¼ 13 and
16.
In contrast to the results for d ¼ 13 and 16, the merger

times for runs 19a and 19b does not agree well with each
other. This implies that the orbital evolution of BHs de-
pends either on the location of outer boundaries or on the
location of refinement boundaries. For d ¼ 19, the BHs
orbit for �4:5 times. For such a long run, a small error is
likely to be accumulated, leading to a non-negligible error.
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FIG. 2 (color online). (a) Mirr=m0 as a function of time for a BH formed after merger for run 16a–16d. (b) The same as (a) but for
Ce=4�m0. (c) The same as (a) but for Cp=Ce. (d) The same as (a) but for runs 19a–19d. (e) The same as (b) but for runs 19a–19d.

(f) The same as (c) but for runs 19a–19d. We note that numerical error of the results for runs 16b and 19b is larger than those for runs
16a and 19a because the apparent horizon for these runs is determined from the data of the second-finest AMR level.
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FIG. 3 (color online). Merger time TAH=m0 as a function of the square of the finest grid resolution h2L�1 (a) for d ¼ 16 and (b) for
d ¼ 19. The plus and cross denote the results in the ~�i- and Fi-BSSN formalisms, respectively. Note that the plots for runs 16a and 16b
and for runs 19a and 19f approximately overlap. The filled circles on the vertical axis denote a merger time predicted by the Taylor T4
formalism: The larger value denotes the value derived including the spin effect of BHs, whereas the smaller one is the value derived in
the assumption of zero spin.

TABLE III. Numerical results for simulations of BH-BH binaries. We list the time at which a common apparent horizon is formed
(TAH), final value of the irreducible mass for the common apparent horizon (Mirr), final value of the ratio of the polar circumferential
length to the equatorial one (Cp=Ce), final BH mass estimated from the equatorial circumferential length (Ce=4�), BH mass estimated

from Mirr and Cp=Ce (MBHf), final spin parameter of the BH estimated from Cp=Ce, and energy and angular momentum carried away

by gravitational waves (�E and �J). ‘‘—’’ denotes that the values of the area and Cp=Ce do not relax to constants because of the poor

grid resolution. The last column denotes the refinement level in which the common apparent horizon is determined. ‘‘1’’ and ‘‘2’’ are
the finest and second-finest levels, respectively. For runs 16dF, 19cF, 19d, and 19dF, the area and the circumferential length of the
apparent horizon vary with time and the values are not determined with a good accuracy.

Run TAH=m0 Mirr=m0 Cp=Ce Ce=ð4�m0Þ MBHf=m0 a �E=m0 �J=J0 Level

13a 125.3 0.873 0.887 0.946 0.946 0.712 0.034 0.24 L� 2
13aF 125.7 0.873 0.884 0.948 0.948 0.720 0.034 0.24 L� 1
13b 123.8 0.872 0.888 0.946 0.945 0.710 0.034 0.24 L� 2
13c 122.3 �0:873 — 0.944 — — 0.033 0.23 L� 2
13d 123.8 0.871 0.884 0.947 0.946 0.720 0.033 0.23 L� 1
16a 256.8 0.876 0.889 0.948 0.948 0.707 0.035 0.27 L� 1
16aF 253.6 0.876 0.888 0.948 0.949 0.709 0.035 0.26 L� 1
16b 257.1 0.876 0.889 0.947 0.948 0.707 0.035 0.27 L� 2
16b’ 255.4 0.876 0.889 0.948 0.949 0.707 0.035 0.27 L� 1
16bF 268.6 0.876 0.888 0.948 0.948 0.709 0.035 0.26 L� 1
16c 250.2 0.876 0.888 0.948 0.949 0.710 0.034 0.26 L� 1
16cF 245.3 0.877 0.889 0.949 0.949 0.707 0.033 0.25 L� 1
16d 237.0 0.876 0.889 0.948 0.948 0.707 0.035 0.27 L� 1
16dF 220.7 � 0:881 � 0:895 � 0:949 � 0:949 � 0:69 0.029 0.23 L� 1
19a 516.7 0.879 0.891 0.949 0.950 0.702 0.036 0.29 L� 1
19aF 499.3 0.878 0.891 0.949 0.950 0.703 0.035 0.28 L� 1
19b 535.9 0.878 0.892 0.947 0.948 0.699 0.036 0.29 L� 2
19bF 582.8 0.877 0.890 0.949 0.949 0.706 0.035 0.29 L� 1
19c 491.6 0.878 0.890 0.949 0.949 0.705 0.036 0.28 L� 1
19cF 488.9 � 0:882 0.893 � 0:950 0.951 0.696 0.034 0.27 L� 1
19d 456.8 � 0:878 0.891 � 0:948 0.949 0.701 0.034 0.27 L� 1
19dF 449.1 � 0:884 � 0:898 � 0:950 � 0:950 � 0:68 0.030 0.24 L� 1
19e 535.9 0.878 0.892 0.947 0.948 0.699 0.036 0.29 L� 2
19eF 582.8 0.877 0.890 0.949 0.949 0.705 0.035 0.29 L� 1
19f 517.8 0.879 0.891 0.949 0.950 0.703 0.036 0.29 L� 1
19g 452.3 0.878 0.890 0.949 0.950 0.704 0.034 0.27 L� 1
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This disagreement gives us a caution that careful choice
of the grid structure is necessary for the long-term
evolution.

To clarify sources of the error in the merger time, we
performed additional simulations for d ¼ 19; runs 19e,
19f, and 19g (cf. Table II). For run 19e, the location of
refinement boundaries is the same as that for run 19b,
although outer boundaries are located twice far away
from the center. We found that numerical results for run
19e agree very well with those for run 19b. This implies
that the numerical results do not depend on the location of
outer boundaries but on the location of refinement
boundaries.

Additional runs 19f and 19g were performed to clarify
the dependence of numerical results on the location of
refinement boundaries, i.e., on the domain size of each
refinement level. For these runs, the domain size of each
refinement level is 1.2 times as large as that for runs 19a,
19c, and 19d, whereas the grid resolution for runs 19a and
19f and runs 19d and 19g are identical, respectively. We
find that the results for runs 19f and 19g agree well with
those for runs 19a and 19d, respectively, (see, e.g. Fig. 1(d)
for the trajectories of runs 19a and 19f). By these results,
we confirm that the location of refinement boundaries (and
the size of domain) for run 19a is appropriately chosen:
The error in the merger time comes primarily from the grid
resolution. In any case, the present numerical results show
that for simulations with a large initial orbital separation, a
large domain size of the refinement levels is required.

The merger time for runs 19b and 19bF and for runs 16b
and 16bF does not agree, although that for 19a and 19aF
(see, e.g., Fig. 1(d)) and for 16a and 16aF, respectively,
agrees in a much better manner. Note that the domain size
of each refinement level for runs 16b and 16bF (19b and
19bF) is smaller than that for run 16a and 16aF (19a and
19aF); see Table II. This indicates that if the outer bounda-
ries are too close or the domain size of each refinement
level is too small, numerical results depend on the spatial
gauge condition and/or the formulation. To check the
dependence on the spatial gauge, we also performed a

simulation in the ~�i-BSSN formalism with 	s � 0:5=m1

for d ¼ 16 (run 16b’). With this change, the merger time
changes by �2m0 (see Table III), which is a fairly large
difference. This indicates that the difference in the spatial
gauge seems to be the primary reason for discrepancy in
the merger time.

Because the spatial gauge condition does not affect the
slicing, one may think that the merger time should not
depend on it. However, this is not correct in numerical
computation because the spatial gauge condition deter-
mines physical grid spacing between two grid points
even if the coordinate separation is the same. Namely, it
affects the grid resolution physically, and hence, deter-
mines magnitude of numerical dissipation. Therefore, the
merger time should depend on the chosen spatial gauge
condition in general.

Because of the same reason, the physical location (not
coordinate location) of outer and refinement boundaries
depends on the spatial gauge condition. In particular, the
physical size of the finest refinement level is likely to be
sensitive to it. Thus, the magnitude of numerical error (and
resulting merger time), in particular, around BHs where the
curvature is large, depends on the spatial gauge condition.
Another characteristic feature in the simulation with the

Fi-BSSN formalism is that the merger time depends more
strongly on the grid resolution than the simulation in the
~�i-BSSN formalism. For the poor-resolution simulations
such as runs 16dF and 19dF, the merger time is much
shorter than that for the corresponding finer-resolution
simulations, and the quantities for the formed BHs after
the merger are not determined accurately. Probably, this is
also due to the fact that in the chosen spatial gauge condi-
tion, the BHs are not resolved well.
All these results suggest that with the Fi-BSSN formal-

ism, systematic errors associated with a finite location of
outer boundaries and/or finite grid resolutions are larger.
However, in the case that the appropriate location of the
outer boundaries and the appropriate grid resolution are

chosen, both the Fi-BSSN and ~�i-BSSN formalisms pro-
vide approximately the same result.
Extrapolating the value of TAH to the limit hL�1 ! 0 for

runs 16a and 16c and for runs 16aF and 16cF assuming that
the error in TAH is proportional to h2L�1, the true value of

TAH=m0 is estimated to be � 260. Thus, for the best-
resolved runs 16a and 16aF, the merger time is computed
with � 2% error. Extrapolating to hL�1 ! 0 for runs 19a
and 19c, the true value of TAH=m0 is estimated to be �
560. Thus, even for the best-resolved runs 19a and 19f, the
merger time is underestimated by � 40m0. For such a
long-term simulation, a better resolution is obviously
required.
On the vertical axis of Fig. 3, we plot time at the onset of

merger that is predicted by the Taylor T4 formalism. Here,
we assume that the merger sets in when m0� reaches 0.2.
(The initial condition is chosen to be the orbit with � ¼
�0 for each model.) Thus, this value may be slightly
smaller than TAH because it takes time from the onset of
merger to formation of common apparent horizon. We also
note that the Taylor T4 formalism is not a good approxi-
mation for the orbital evolution near the innermost stable
circular orbit [28].
For d ¼ 16 and d ¼ 19, the predicted merger time by

the Taylor T4 formalism is 247m0 and 544m0, respectively.
Therefore, the merger time determined by the extrapola-
tion of the numerical results for hL�1 ! 0 agrees with the
predicted value within error of 20m0. The predicted merger
time is smaller than the numerical results. This seems to be
reasonable because the definition of the merger time for the
numerical results and for the Taylor T4 formalism is differ-
ent, as mentioned above. Nevertheless, the error is not so
large that we conclude that the Taylor T4 formalism pro-
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vides a good approximate value for the merger time,which
can be a guideline for analyzing the numerical results.

The derived merger time (� 125m0 for d ¼ 13,
�260m0 for d ¼ 16, and �560m0 for d ¼ 19) is slightly
longer than the results reported in Ref. [23] in which
TAH=m0 ¼ 109 4 for d ¼ 13, 228 16 for d ¼ 16,
and 529 22 for d ¼ 19. Part of the reason is that the
slicing is different between two groups. The possible other
reasons may be that (i) our code is fully fourth-order-
accurate whereas the code of Ref. [23] is not, and (ii) our
code does not include Kreiss-Oliger-type dissipation term
whereas in the simulation of Ref. [23], it is included and
the dissipative effect may spuriously enhance the decrease
rate of the orbital separation.

5. Gravitational waves

Figures 4(a) and 4(b) plot plus and cross modes of
gravitational waves for runs 16a and 19a. As described in
Sec. III C, the waveforms in the early inspiral phase are
extracted at large radii � 70m0, and those in the late
inspiral and merger phases are at small radii ( � 30m0)
of a small grid spacing. Then, we match two waveforms at
a retarded time tret ¼ tsep. Specifically, we match the wave-

forms at tsep � 225m0 for run 19a and � 103m0 for run

16a. The phase of gravitational waves depends slightly on
the extracted radii, and a small phase difference between
two waveforms extracted at different radii is present for
both runs; for runs 19a and 16a, the phase difference is �
2:5m0 and 2:9m0, respectively. We correct these phase
differences to constitute smooth waveforms shown in
Fig. 4. This figure shows that our strategy can produce
waveforms of a good quality.

As we noted in Sec. IVA4, the merger time for runs 16a
and 19a would be shorter than the true values, determined
by extrapolation, by�5m0 and�40m0, respectively. Thus,
in the waveforms shown in Fig. 4, such phase error is
included. As mentioned above, to derive a waveform
with sufficiently small phase error for run 19a, a simulation
with a finer resolution is necessary.

To clarify the properties of the error associated with
finite grid resolution, we generate Figs. 4(c) and 4(d). In
these figures, we compare the plus mode of gravitational
waves for runs 19a and 19c. To match the wave phases of
two numerical results, we plot

hþ cosð0:3�Þ þ h� sinð0:3�Þ (63)

as a function of tret þ 14m0 for the result of run 19c in
Fig. 4(c). It is found that the waveforms in the inspiral orbit
for two runs agree well except for those in the last inspiral
orbit. This indicates that for accurately computing gravi-
tational waveforms in the early inspiral phase (in this case,
from about 0.5th orbit to about 3rd orbit), the present
choice of the grid resolution is acceptable.

Figure 4(d) compares the waveforms in the final inspiral
and merger phases. In this figure, the waveform defined by
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FIG. 4 (color online). Gravitational waveforms (a) for run 16a
and (b) for run 19a. The solid and dashed curves are plus and
cross modes, respectively. D denotes the distance from the
source to an observer. (c) Plus mode of gravitational waves for
runs 19a (solid curve) and 19c (dashed curve). For run 19c, the
results are appropriately shifted to match the inspiral waveform
(see text). (d) The same as (c) but here we compare ringdown
waveforms.
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Eq. (63) as a function of tret þ 23m0 is plotted for run 19c
to match the ringdown waveforms. The figure shows that
the phase error is rapidly accumulated near the last inspiral
phase. Also, we can see that the amplitude of the ringdown
phase is underestimated for run 19c (by contrast, Fig. 4(c)
shows that the amplitude in the inspiral phase depends
weakly on the grid resolution). Thus, we conclude that in
a run with a poor grid resolution, (i) the time duration for
the inspiral phase near the last inspiral orbit is underesti-
mated and (ii) the amplitude of the ringdown waveform is
underestimated.

Figure 5(a) plots angular velocity computed from gravi-
tational waveforms for runs 16a and 19a. Here, the angular
velocity is derived from �4 by

�ðtÞ ¼ 1

2

j�4ðl ¼ m ¼ 2Þj
jR dt�4ðl ¼ m ¼ 2Þj ; (64)

where �4ðl ¼ m ¼ 2Þ is the l ¼ m ¼ 2 mode of �4. We
also derive it from the orbital motion of BHs for run 19a
(the short-dashed curve of Fig. 5), and this result agrees
well with that derived from Eq. (64). Thus, in this case, the
coordinate trajectory approximately represents the physi-
cal trajectory (but this is not always the case; see
Appendix B).
The curves for runs 16a and 19a agree approximately

with each other, indicating that gravitational waveforms in
the late inspiral phase depend very weakly on the initial
condition as far as the initial value of m0�0 & 0:041.
Figure 5(a) also shows that the angular velocity does not
increase monotonically in the early stage for run 19a. This
implies that an eccentricity is present in the early stage.
This is also pointed out in Ref. [23] in which the estimated
eccentricity is �0:02. The curve of Fig. 5 is similar to that
reported in Ref. [23]: Initially, m0� � 0:033, and then, it
reaches a local maximum of m0� � 0:040. These results
reconfirm that the eccentricity of the initial condition
would be �0:02.
We compare the numerical results for m0�ðtÞ for runs

19a and 19aF with those derived from the Taylor T4
formalism in Fig. 5(b). Because we adopt corotating binary
BHs as the initial conditions, the spin of each BH is not
zero [43] and, thus, we take into account the spin effects in
this analysis. In Fig. 5(b), the results by the Taylor T4
formalism are plotted for the case m0�ðt ¼ 0Þ ¼
0:03 245ð¼ m0�0Þ and 0.03 345. The figure shows that
the numerical results agree approximately with the
Taylor T4 curve of m0�ðt ¼ 0Þ ¼ 0:03 345 besides a
modulation associated with an elliptical orbital motion,
but not very well with the curve of m0�ðt¼0Þ¼
0:03245, which is approximately equal to the initial angu-
lar velocity for d ¼ 19. There are at least two reasons for
this discrepancy. The primary reason is that numerical
dissipation associated with finite-differencing spuriously
enhances the decrease rate of the orbital separation.
Indeed, the merger time derived from the Taylor T4 for-
malism with m0�ðt ¼ 0Þ ¼ 0:03 245 is by � 50m0 longer
than that with m0�ðt ¼ 0Þ ¼ 0:03 345. The error of 50m0

agrees approximately with the possible error size for run
19a (cf. Sec. IVA4). The other is that the initial condition
is not exactly in a circular orbit but in an elliptical orbit for
which the initial averaged angular velocity is not equal to
m0�0 � 0:03 245 but slightly larger than it.
In the final phase of merger, ringdown gravitational

waves associated with quasinormal modes are emitted.
Perturbation studies predict their angular velocity and
damping time scale for the nonaxisymmetric fundamental
mode with l ¼ m ¼ 2 as [47]

MBHf�QNM � 1:0½1� 0:63ð1� aÞ0:3�; (65)

td � 4ð1� aÞ�0:45

�QNM

: (66)
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FIG. 5 (color online). (a) m0� computed from gravitational
waveforms for runs 19a (solid curve) and 16a (dashed curve).
For run 16a, we plot m0� as a function of tret þ 258m0. The
long-dashed curve denotes the results derived from the orbital
motion of one of BHs. (b) Comparison of m0� computed from
gravitational waveforms with those derived from the Taylor T4
formalism for runs 19a (solid curve) and 19aF (dotted-dashed
curve). The long- and short-dashed curves are results derived by
the Taylor T4 formalism, drawn for the nonspinning equal-mass
binary with m0�ðt ¼ 0Þ � 0:03245 and 0.03345 at tret ¼ 0,
respectively.
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For a ¼ 0:70, MBHf�QNM � 0:56. Because MBHf �
0:95m0, the predicted value is m0�QNM � 0:59. Figure 5

shows that the numerical result of this value is� 0:57 (note
that the angular velocity of gravitational waves is 2�).
Thus, the frequency of the quasinormal mode is computed
with �3% error.

Figure 6 plots the time evolution of gravitational wave

amplitude defined by ðh2þ þ h2�Þ1=2 as a function of the
retarded time for run 19a. For comparison, the amplitude
for run 16a and those derived by the Taylor T4 formalism
are shown together (see the figure caption for details). This
figure shows that the amplitude for run 19a agrees with that
in the Taylor T4 formalism with� 10–20% error for tret &
300m0. The amplitude modulates with time in the early
phase because of the presence of the orbital eccentricity. In
the late phase, the amplitude of the numerical results is
much larger than that in the Taylor T4 formalism. This is
also seen in other numerical results (e.g., [23,28]), and our
results are consistent with the previous results. The pos-
sible reason for this large amplitude is that the tidal defor-
mation of BHs, which is not taken into account the Taylor
T4 formalism, increases the attraction force between two
BHs. This leads to the acceleration of inward motion and
consequently to the speed-up of the orbital motion, result-
ing in the amplification of the gravitational wave
amplitude.

6. Radiated energy and angular momentum, and their
conservation

Total energy and angular momentum radiated by gravi-
tational waves are listed in Table III (see �E and �J). It is
found that the radiated energy depends very weakly on the
initial condition. This implies that most of the energy is

radiated in the final merger phase; during inspiral from
m0� � 0:032 (initial condition for model d19) to� 0:056
(that for model d13), the energy is radiated only by
�0:002–0:003m0. This fact is easily inferred from small
difference in the ADM mass among three models of d ¼
13, 16, and 19 (see Table I). Indeed, Table I shows that the
difference in the ADM mass is �0:003m0 between the
results for d ¼ 13 and d ¼ 19, which agrees approxi-
mately with the estimated radiated energy during the in-
spiral phase. The angular momentum is also radiated most
efficiently in the final merger phase. However, it is also
radiated by several percents in the late inspiral orbits in
contrast to the energy. This is simply because the angular
momentum of the binary system depends on the orbital
separation more strongly than the energy.
The total radiated energy derived here is significantly

different from the results of Ref. [23] in particular for d ¼
16 and 19. In their results, it depends strongly on the initial
condition. However, we believe that our results are more
reliable because of the following reasons: (i) As mentioned
above, the total radiated energy should not depend strongly
on the initial condition. Our results are consistent with this
expectation; (ii) The sum of the BH mass finally formed
and the total radiated energy should be equal to the initial
ADM mass. Namely, the following relation should hold:

MBHf þ �E ¼ M0: (67)

In our results, the left-hand side is � 0:983m0 for d ¼ 16
and � 0:985m0 for d ¼ 19, whereas the right-hand side is
0.9875 and 0.9890, respectively. Thus, the magnitude of the
error is � 0:5%. The left-hand side of Eq. (67) is system-
atically smaller than M0, and hence, �E is likely to be
underestimated due to numerical dissipation by�0:004m0.
On the other hand, in the results of Ref. [23], the left-hand
side of Eq. (67) is ð0:997 0:009Þm0 for d ¼ 16 and
ð1:004 0:009Þm0 for d ¼ 19. Thus, these are larger
than the left-hand side (M0 ¼ 0:9875 and 0.9890 for d ¼
16 and 19) by 1–1.5%, and magnitude of the error increases
with the increase of d. The reason seems to be that the total
radiated energy is systematically overestimated for larger
values of d. (As pointed out above, �E should not depend
strongly on the initial condition, but in their results, �E
steeply increases with increasing the value of d.)
The conservation relation for angular momentum is

written by

M2
BHfaþ �J ¼ J0: (68)

For d ¼ 13, 16, and 19, the error in the conservation
relation defined by 1� ðM2

BHfaþ �JÞ=J0 is �2%, 3%,

and 4%, respectively, for the best-resolved runs. Thus,
magnitude of the error is larger than that for the energy
conservation. The left-hand side of Eq. (68) is always
smaller than the initial value J0. This implies that either
a or �J is underestimated. As mentioned above, �E is
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FIG. 6 (color online). Evolution of gravitational wave ampli-
tude defined by ðh2þ þ h2�Þ1=2 as a function of retarded time for
run 19a (solid curve). For comparison, amplitude for run 16a
(dashed curve) is plotted as a function of tret þ 258m0. The long-
dashed and dotted-dashed curves denote wave amplitudes de-
rived from the Taylor T4 formalism. These are drawn for the
nonspinning equal-mass binary with m0�ðt ¼ 0Þ � 0:03 245
and 0.03 345 at tret ¼ 0, respectively.
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underestimated. Thus, the error in �J is likely to be the
primary source of the underestimation.

B. NS-NS Binaries

For validating our new hydrodynamic code with the
AMR algorithm, we first performed simulations for NS-
NS binaries.

1. Initial condition

Following our previous works [3,4], we adopt NS-NS
binaries of the irrotational velocity field in quasi-
equilibrium circular orbits as initial conditions. The
quasi-equilibrium state is computed in the so-called con-
formally flat formalism for the Einstein equations [48]. The
irrotational velocity field is assumed because it is consid-
ered to be a good approximation of the velocity field for
coalescing binary NSs in nature [49]. We employ the
numerical solutions computed by Taniguchi and
Gourgoulhon, which are involved in the LORENE library
[50–52]. Specifically, we pick up two models computed in
the polytropic EOS with � ¼ 2 [51]; one is an equal-mass
binary for which compactness of each NS is 0.16 and
coordinate separation between two centers of mass is
45 km in the LORENE unit. The other is an unequal-
mass binary for which compactness are 0.14 and 0.16,
and coordinate separation between two centers of mass is
45 km in the LORENE unit. We simulate this to demon-

strate that our code can follow unequal-mass binaries as
well as equal-mass ones. We list several key parameters for
these models in units of c ¼ G ¼ � ¼ 1 in Table IV.

2. Setting

Simulations were performed for a variety of grid struc-
tures and grid resolutions (see Table V). For model
NS1616, we also performed a simulation using Shibata’s
code in which a nonuniform unigrid is adopted. This code
is the same as that presented in Ref. [29,30]; the Einstein
evolution equations are solved in the Fi-BSSN formalism
with a fourth-order finite differencing in space, and the
hydrodynamic equations are solved in the same scheme as
SACRA. The third-order Runge-Kutta scheme is employed
for evolution forward in time.
Grid resolutions and grid sizes in the simulations with

SACRA are listed in Table V. For all the cases, the NSs are
covered by the finest and second-finest levels (central
region of each NS is covered by the finest level and the
region near the surface is covered by the second-finest
level). For models NS1616a–NS1616c, the simulations

were performed both in the Fi-BSSN and ~�i-BSSN formal-
isms, whereas the simulations for models NS1616s,
NS1616d, NS1616e, and NS1416a–c were done in the
~�i-BSSN formalism. The best-resolved runs for models
NS1616 and NS1416 are NS1616s and NS1416a,
respectively.

TABLE IV. List of several quantities for irrotational binary NSs in quasi-equilibrium circular orbits. We show the compactness of
each NS in isolation (MNS=RNS), gravitational mass of each NS in isolation (MNS), maximum density for each star (
max), total baryon
rest mass (M�), ADM mass at t ¼ 0 (M0), nondimensional angular momentum parameter (J0=M

2
0), and angular velocity in units of

M�1
0 (M0�0). All these quantities are shown in units of c ¼ G ¼ � ¼ 1; in other words, they are normalized by � appropriately to be

dimensionless. We note that the mass, the radius, and the density can be rescaled to desirable values by appropriately choosing �.

Model MNS=RNS MNS 
max M� M0 J0=M
2
0 M0�0

NS1616 0.160, 0.160 0.1478, 0.1478 0.152, 0.152 0.3200 0.2924 0.9584 0.0305

NS1416 0.140, 0.160 0.1363, 0.1478 0.118 0.152 0.3061 0.2810 0.9685 0.0289

TABLE V. The same as Table II but for simulations of models NS1616 and NS1416. �x is the minimum grid spacing, Rdiam the
coordinate length of the semi-major diameter of NSs, L the location of outer boundaries along each axis, �0 the gravitational
wavelength at t ¼ 0, and �xgw the grid spacing at which gravitational waves are extracted. MNS is the ADM mass of larger NS in

isolation, which is 0.1478 in the present units. For models NS1616a–NS1616c, simulations are performed both in the Fi-BSSN and
~�i-BSSN formalisms.

Run Levels N �x=MNS Rdiam=�x L=M0ðL=�0Þ �xgw=M0

NS1616s 8 (3þ 5) 36 0.068 130 158 (1.53) 1.09

NS1616a, aF 8 (3þ 5) 30 0.081 108 158 (1.53) 1.31

NS1616b, bF 8 (3þ 5) 24 0.101 87 158 (1.53) 1.64

NS1616c, cF 8 (3þ 5) 20 0.122 67 158 (1.53) 1.97

NS1616d 7 (3þ 4) 30 0.135 65 131 (1.27) 1.09

NS1616e 7 (3þ 4) 24 0.169 52 131 (1.27) 1.37

Shibata — — 0.147 60 106 (1.03) 1.09

NS1416a 8 (3þ 5) 30 0.081 100 164 (1.51) 1.37

NS1416b 8 (3þ 5) 24 0.101 87 164 (1.51) 1.71

NS1416c 8 (3þ 5) 20 0.122 67 164 (1.51) 2.05
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For the initial values of� and�i, we employ those of the
quasi-equilibrium solutions. Even when such initial condi-
tion is adopted in the �-freezing gauge condition, the
orbital eccentricity appears to be not as large as that in
the BH-BH-binary case. The value of 	s in the �-freezing
gauge is set to be� 1:7=M0 irrespective models. (	s ¼ 0:5
in units of c ¼ G ¼ � ¼ 1.)

3. Evolution of NSs and the final outcome

Figure 7(a) plots orbital trajectories for one of two NSs
for runs NS1616s, a, b, and c. Here, the trajectories of the
NSs are determined by tracking location of the maximum
value of 
�. Note that for these runs, the locations of outer
and refinement boundaries are the same, although the grid
resolution is different. This figure shows that the binary
experiences � 9=4, 10=4, 11=4, and & 3 orbits before the
onset of merger for runs NS1616c, b, a, and s, respectively.
For finer grid resolutions, the number of orbits is system-
atically larger, because numerical dissipation of angular
momentum and energy is smaller. Figure 7(a) indicates that
convergence of numerical results for hL�1 ! 0 appears to
be not very fast, and for hL�1 ! 0, the number of orbits
would be larger than 3 (see Fig. 11 and related discussion
below).

Figure 7(b) compares orbital trajectories for runs
NS1616b–d, and run by Shibata’s code. For these runs,
the finest grid spacing is �x=MNS ¼ 0:101, 0.122, 0.135,
and 0.147, respectively. Although the grid resolution of the
finest level for NS1616c is better than that for NS1616d
(and also for run by Shibata’s code), the merger time for
NS1616c is shortest among four runs, and hence, the
numerical dissipation is most serious in this run. (The
merger time TAH is defined in the same manner as that in
the BH-BH binary case.) The reason for this is that for
NS1616d, most of the NS is covered by the finest level (for
run by Shibata’s code, the entire region of the NS is
covered by the finest grid), whereas for NS1616c, a rela-
tively wide region of the NS is covered by the second-finest
level: Dissipative effects of the second-finest level is much
larger than that of the finest one, and hence, they spuriously
enhance the decrease rate of orbital separation. This sug-
gests that it is desirable to cover the entire region of the
NSs by the finest level. However, to do this with a sufficient
grid resolution, it is necessary to take a large number of
grid points in the finest level. This is not desirable from the
viewpoint of computational cost. We tried to perform
simulation using several grid structures and found that an
optimistic choice is that the finest level approximately
covers about two-thirds of the NSs, from the viewpoints
of grid resolution and computational cost. The grid struc-
ture for runs NS1616a–c and NS1416a–c is selected due to
this reason.

Figure 7(c) plots orbital trajectories for more massive
NS for runs NS1416a–c. This figure is similar to Fig. 7(a),
and indicates that slight mass difference does not change
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FIG. 7 (color online). (a) Orbital trajectories of an NS to
formation of apparent horizon for runs NS1616s (thick solid
curve), NS1616a (solid curve), NS1616b (long-dashed curve),
and NS1616c (dashed curve). (b) The same as (a) but for runs
NS1616d (solid curve), NS1616b (long-dashed curve), NS1616c
(dashed curve), and for run by Shibata’s code (dotted curve).
(c) The same as (a) but for runs NS1416a (solid curve), NS1416b
(long-dashed curve), and NS1416c (dashed curve). In this case,
the trajectories for more massive NS are plotted.
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qualitative properties for the orbital trajectories and con-
vergence. As in the case of model NS1616, the merger time
depends strongly on the grid resolution and convergence is
not achieved even with the best-resolved run.

For models NS1616 and NS1416, a BH is soon formed
after the onset of merger. This is reasonable because the
total rest mass of these systems is more than 1.6 times as
large as the maximum rest mass of nonrotating NSs ( �
0:180) for the given EOS. We note that this result agrees
well with our previous result obtained in the simulation
with the �-law EOS and � ¼ 2 [4] (see also a recent work
by the Illinois group which confirms our result [7]).

The present code can follow the evolution of the formed
BH for a long time stably. We find that � 99:99% of the
total rest mass is swallowed by the BH for model NS1616
(cf. Figure 9). This is due to the facts that (i) specific
angular momentum for most of the material at the onset
of merger is not large enough to escape from capturing by
the BH and (ii) there is no mechanism for transporting
angular momentum outward in the merger of equal-mass
binaries. This result agrees again with our previous result
[4], and also, with a recent result by the Illinois group [7].

By contrast, a disk is formed for model NS1416. The rest
mass for run NS1416a is �2% of the total rest mass when
we stopped the simulation (see Figs. 8 and 9 and Table VI).

The disk formation results primarily from the mass differ-
ence of two NSs: Just before the merger, the smaller-mass
NS is tidally disrupted by the larger-mass companion (see
Fig. 8). Because of asymmetry in the mass distribution,
angular momentum is subsequently transported, and the
tidally disrupted material can spread outward. Because the
specific angular momentum of such material is �
2:5J0=M0 and larger than that at the innermost stable
circular orbit around the formed rotating BH, a compact
disk is formed (see the last panel of Fig. 8). The maximum
density of the disk is � 10�4 in the present units, which is
�1=1000 of the maximum density of the NSs before
merger (i.e., �1012 g=cm3 in the cgs units if we assume
that the maximum density of the NS is 1015 g=cm3).
Figure 8 shows that the material of the disk is located in
a small region whose coordinate radius is�3–6M0. This is
a result of small averaged specific angular momentum of
the disk, 2:5J0=M0 � 2:4MBHf where MBHf is the mass of
the BH finally formed, which is � 0:97M0 (see below and
Table VI). Such compact disk can be formed due to the fact
that the formed BH is rapidly rotating with the spin pa-
rameter a * 0:8; the specific angular momentum for the
innermost stable circular orbit around a Kerr BH is jISCO �
2:38MBHf for a ¼ 0:8. (Note that jISCO=MBHf � 3:46,
2.59, and 2.10 for a ¼ 0, 0.7, and 0.9, respectively.)
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FIG. 8 (color online). Snapshots of density contour curves and density contrasts from merger phase to formation of a BH for run
NS1416a. The contour curves are plotted for 
w ¼ 10�i, where i ¼ 2; 3; 	 	 	 ; 6 (the outermost short-dashed and dashed curves always
denote 
w ¼ 10�6 and 10�5). In the first panel, the NS located for y < 0 is more massive one. The filled circle near the origin in the
last panel shows the region inside the apparent horizon.
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Figure 9 plots the time evolution of the total rest mass of
material located outside apparent horizon. As mentioned
above, it settles down to �2% of the total rest mass at the
end of the simulations for runs NS1416a–c, indicating that
a disk of substantial mass is formed around the formed BH.
The disk mass gradually decreases with time even at the
end of the simulations, but the decrease time scale is much
longer than the orbital period of the material. For a hypo-
thetical value of M� ¼ 3M�, the disk mass is about
0:06M�. By contrast, for run NS1616a, it decreases to
�10�4M� implying that the disk of substantial mass is
not formed. It is worth noting that the disk mass for model
NS1416 is much larger than that for the case that stiff
realistic EOSs are used for modeling NSs [4], for the
same value of mass ratio: For the stiff EOSs used in the
previous works [4], the disk mass around BH is less than

0:01M� for mass ratio of* 0:9 [4]. The possible reason for
this difference is that the smaller-mass NS for the present
EOS are less compact than those in the stiff EOSs, and
hence, its outer part can spread outward more extensively.
Because the EOS adopted here is not very realistic (in the
realistic EOSs the radius depends on the mass in a much
weaker manner), one should not consider at face value that
a massive disk would be formed after the merger of
unequal-mass NS-NS binaries.
In Table VI, we summarize quantities extracted from the

apparent horizon of the formed BH. We note that the area
and the ratio of circumferential lengths decrease by �5%
for the time duration of 150M0 after formation of the
apparent horizon, and thus, the irreducible mass and spin
of the BH are not determined within�5% error in contrast
to the case for BH-BH and BH-NS (see the next subsec-
tion) binaries even for the best-resolved run. Currently, the
reason is not clear (a possible reason is that the spin
parameter is too large and hence the radius of the apparent
horizon is too small for the chosen grid resolution to
resolve the BH accurately). Nevertheless, the final state
of the BH is determined with an accuracy that is acceptable
for quantitative discussion: For model NS1616, the final
mass of the formed BH is � 0:99M0, and the spin is
�0:81–0:84 irrespective of the grid resolution, grid struc-
ture, and chosen formalism. These results are also in good
agreement with those in the simulation by Shibata’s code.
For model NS1416, the final mass of the BH is evaluated to
be � 0:97M0 and the spin is �0:8–0:85. The BH mass is
smaller than that for model NS1616. We understand this
fact as follows: A disk is formed in this case and a part of
mass and angular momentum are distributed to it.

TABLE VI. Numerical results for simulations of NS-NS binaries. We list the time at which apparent horizon is first formed (TAH),
approximate final value of the irreducible mass of the apparent horizon (Mirr), ratio of the polar circumferential length to the equatorial
one for the apparent horizon (Cp=Ce), BH mass estimated from the equatorial circumferential length (Ce=4�), BH spin parameter

estimated from Cp=Ce (a), energy and angular momentum carried away by gravitational waves (�E and �J), and rest mass and

angular momentum of disk formed around the BH (Mdisk and Jdisk). The state of the disk was determined when we stopped the
simulation (cf. Figure 9). For model NS1616, the mass and angular momentum of disk are determined only for run NS1616a.

Run TAH=M0 Mirr=M0 Cp=Ce Ce=ð4�M0Þ a �E=M0 �J=J0 Mdisk=M0 Jdisk=J0

NS1616s 478 0.86–0.87 0.81–0.83 0.993 0.83–0.86 0.7% 12% — —

NS1616a 454 0.85–0.87 0.79–0.83 0.995 0.83–0.89 0.7% 11% �0:01% �0:03%
NS1616aF 448 0.85–0.87 0.79–0.83 0.995 0.83–0.89 0.7% 12% — —

NS1616b 410 0.84–0.88 0.78–0.84 0:997 0:001 0.81–0.91 0.7% 11% — —

NS1616bF 399 0.85–0.88 0.78–0.84 0:995 0:001 0.81–0.91 0.7% 11% — —

NS1616c 357 0.84–0.88 0.78–0.84 0:997 0:002 0.81–0.91 0.6% 10% — —

NS1616cF 349 0.84–0.89 0.78–0.84 0:996 0:001 0.81–0.91 0.6% 10% — —

NS1616d 386 0.84–0.89 0.78–0.84 0:995 0:001 0.81–0.91 0.7% 11% — —

NS1616e 325 0.84–0.89 0.78–0.84 0:995 0:003 0.81–0.91 0.7% 8% — —

Shibata 423 0.874 0.83 0:989 0:001 0.83 0.8% 12% — —

NS1416a 469 0.83–0.85 0.80–0.85 0.971 0.80–0.88 0.5% 9% 2.4% 6.0%

NS1416b 419 0.82–0.85 0.78–0.85 0:976 0:001 0.80–0.90 0.4% 8% 2.3% 5.9%

NS1416c 364 0.80–0.85 0.76–0.86 0:982 0:002 0.78–0.93 0.4% 7% 2.0% 5.1%
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FIG. 9 (color online). Evolution of rest mass of material lo-
cated outside apparent horizon for NS1416a–c, and NS1616a.
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For BHs formed after the merger of equal-mass BH-BH
binaries, the final spin parameter is � 0:7. For the best-
resolved run, the spin parameter is 0:85 0:02 for model
NS1616 and 0:83 0:03 for model NS1416. Thus, the spin
parameter of the BHs formed after the merger of equal-
mass NS-NS binary is by �0:1–0:15 larger. The primary
reason for this difference is that the angular momentum
carried away by gravitational waves in the merger of NS-
NS binaries is much smaller than that in the merger of BH-
BH binaries: For BH-BH binaries, �30% of the initial
angular momentum is dissipated by gravitational radiation,
whereas for NS-NS binaries, it is �10%. This difference
comes primarily from difference in amplitude of gravita-
tional waves emitted in the final merger phase. BH-BH
binaries can take much closer orbital separations than NS-
NS binaries can because BHs are more compact than NSs.
Thus, gravitational waves of a higher amplitude are emit-
ted at the final inspiral orbit in the former cases. In addi-
tion, ringdown gravitational waves associated with
quasinormal-mode oscillation of fundamental l ¼ m ¼ 2
mode is excited more significantly in the merger phase for
BH-BH binaries. Indeed, the amplitude is as high as that
emitted at the last inspiral orbit (cf. Figure 4). By contrast,
in the case of NS-NS binaries, it is not excited as signifi-
cantly as in the case of BH-BH binaries (cf. Figure 12),
because of smaller degree of nonaxisymmetric deforma-
tion of the spacetime curvature at the merger. In another
paper [11], we performed simulations for NS-NS binaries
using a realistic stiff EOS, which is highly different from
the �-law EOS with � ¼ 2, and found that the final spin
parameter is � 0:8 for the BH-formation case. Thus, the
value of �0:8 for the spin parameter seems to be a univer-
sal outcome for the BHs formed after the merger of NS-NS
binaries.

4. Conservation of energy and angular momentum

Validity of the results about mass and spin of BHs finally
formed is checked by examining whether the following
conservation relations hold:

MBHf þMdisk þ �E ¼ M0; (69)

M2
BHfaþ Jdisk þ�J ¼ J0: (70)

Here, Mdisk and Jdisk are the rest mass and the angular
momentum of disk, respectively. As in Refs. [29,30], Jdisk
is calculated approximately by

Jdisk �
Z
r>rAH


�hutu’
ffiffiffiffi
�

p
d3x; (71)

where the ’ coordinate is defined for an origin determined
from the maximum of 
�, which is approximately equal to
the center of the BH. For model NS1616 for which disk
mass is �10�4M� and negligible, the energy conservation
holds within a 0.2–0.3% error and the angular momentum
one holds with a 2–3% error. For model NS1416, errors in

the energy and angular momentum conservations are �
0:3% and �5%, respectively. Here, the error is defined,
respectively, by

1� ðMBHf þMdisk þ �EÞ=M0; (72)

1� ðM2
BHfaþ Jdisk þ�JÞ=J0: (73)

The magnitude of the error is approximately the same as
that for BH-BH binaries. For both models, the primary
error source in the angular momentum conservation comes
from the fact that Cp=Ce is not determined in a good

accuracy.

5. Merger time

The merger time, defined as the time at formation of
apparent horizon (TAH), systematically increases with im-
proving grid resolution. Figure 10 plots TAH as a function
of h2L�1 for runs NS1616s, NS1616a–c, and NS1616aF–cF.
This figure shows a systematic behavior for convergence of
TAH irrespective of the chosen formalism and spatial
gauge. For models NS1416a–c, the similar relation holds,
and hence, we do not present the figure. It is worth noting

that runs with the ~�i-BSSN and Fi-BSSN formalisms give
approximately the same values of TAH. This indicates that
in the absence of BHs, difference in the spatial gauge does
not affect the orbital evolution of compact stars signifi-
cantly. Another point to be noted is that the convergence is
relatively slow, although the order of convergence appears
to be second order. Extrapolating the results to the limit
hL�1 ! 0 under the assumption of the second-order con-
vergence, a realistic time of TAH is determined to be �
530M0 for sequences of both formalisms. Thus, even for
the best-resolved run NS1616s, the value of TAH is under-
estimated by � 50M0 (by �10% of TAH), which is ap-
proximately a half orbital period for an innermost stable
circular orbit withM0�� 0:06 [51,53]. This indicates that
for obtaining an orbital evolution and gravitational wave-
forms with a small phase error (say within 10M0 error), the
grid resolution should be by a factor of�2 finer than that in
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FIG. 10 (color online). TAH as a function of h2L�1 for runs
NS1616a–c and s (plus) and NS1616aF–cF (cross).
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the best-resolved run in the current code, or we should
employ a hydrodynamic scheme in which numerical dis-
sipation is not as large as that in the present code (but see
discussion related to gravitational waves described below).

The Taylor T4 formalism predicts the approximate
merger time as 650M0, which is obtained by integrating
Eq. (50) from the orbit of � ¼ �0 to the orbit of M0� ¼
0:1 at which the merger should already proceed. This value
is much larger than the extrapolated numerical result for
the merger time. We explain this discrepancy as follows: In
the Taylor T4 formalism, effects due to tidal deformation
of the NSs are not included. The tidal-deformation effect
increases attraction force between two NSs, and as a result,
the inspiral phase is significantly shortened [54], in par-
ticular, for orbits with M0� * 0:04. Indeed, numerical
study for quasi-equilibrium NS-NS binaries indicates that
tidal effect plays an important role for M0� * 0:04 (e.g.,
[51,53]). Thus, it is natural that the Taylor T4 formalism
significantly overestimates the merger time.

6. Rest-mass conservation

Figure 11 plots the change in total rest mass with time
for runs NS1616a–d and NS1616s. (Similar relations also
hold for runs NS1416a–c; e.g., the maximum violation of
the rest-mass conservation is � 1:5% for run NS1416a.)
Although the total rest mass should be conserved, this is
not guaranteed in our AMR code (note that in Shibata’s
code in which unigrid is employed, the rest mass is con-
served in a much better accuracy). The reasons for this are
as follows: (i) Numerical flux determined at refinement
boundaries of a child level does not exactly agree with that
determined for the corresponding parent level. This mis-
match of the flux generates slight violation of the rest-mass
conservation. (ii) At the moment of the regridding, values
for a part of the child level are given by interpolating the
values of its corresponding parent level. This process does
not guarantee the rest-mass conservation. However, Fig. 11

shows that the magnitude of violation is small. For the
best-resolved runs NS1616s, the violation is at most 0.7%,
and furthermore, the magnitude of the violation systemati-
cally converges with improving the grid resolution. (The
value of jM�=M�0 � 1j converges approximately at second
order.) Therefore, we conclude that in the well-resolved
simulations, the violation of the rest-mass conservation
only gives a minor effect for the numerical results.

7. Gravitational waves

Figures 12(a) and 12(b) plot gravitational waveforms for
runs NS1616s and NS1416a, respectively. In the early
phase with tret & 400M0, the waveforms are characterized
by the inspiral waveforms, and in the final phase, ringdown
gravitational waveforms associated with a quasinormal
mode of the formed BH are seen. In these simulations,
the BH is not immediately formed at the onset of merger
because thermal energy generated by shock heating and/or
centrifugal force due to large angular momentum halt the
collapse of the merged object to a BH for a short time scale.
The transient object emits quasiperiodic gravitational
waveforms just before gravitational waves associated
with a quasinormal mode are emitted. Amplitude of gravi-
tational waves associated with the quasiperiodic oscillation
and the quasinormal mode is by about 1 order of magnitude
smaller than that emitted in the final inspiral phase. This
feature is different from that in the merger of BH-BH
binaries. Because of this small amplitude, total energy
and angular momentum carried away by gravitational
waves are much smaller than those in the merger of BH-
BH binaries (see Table VI). Because of the relatively small
emitted angular momentum, the spin parameter of the BH
finally formed is by a factor of 0.1–0.15 larger than that in
the merger of BH-BH binaries, as already mentioned.
Figure 12(c) compares gravitational waveforms (plus

mode) for run NS1616a and run by Shibata’s code. It is
seen that two results agree qualitatively well besides a
phase error caused by the difference in the grid resolution.
This shows that the results by SACRA and Shibata’s code
agree in a reasonable manner. Figure 12(d) compares
gravitational waveforms (plus mode) for runs NS1616s,
a, and b. For comparing gravitational waveforms for the
last inspiral and merger phases, the data for NS1616a
and NS1616b are plotted as functions of tret þ 10M0 and
tret þ 54M0 for hþ cosð0:2�Þ � h� sinð0:2�Þ and
�½hþ cosð0:2�Þ � h� sinð0:2�Þ�, respectively. It is found
that the waveforms in the late �2 inspiral orbits (about for
3–4 wavelengths) agree well among three models. From
the orbit just before the merger, the difference in the wave
phases becomes outstanding. This is because the evolution
in such a phase depends sensitively on the degree of tidal
deformation, which is sensitive to the grid resolution. The
agreement of the waveforms in the intermediate phase also
indicates that the strong dependence of TAH on the grid
resolution is primarily due to the fact that the inspiral orbit
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FIG. 11 (color online). Change in total rest mass due to nu-
merical error with time for runs NS1616s (thick solid curve),
NS1616a (solid curve), NS1616b (long-dashed curve), NS1616c
(dashed curve), and NS1616d (dotted-dashed curve).
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at a large orbital separation depends on the grid resolution.
Thus, to follow at least only the late �2 orbits, the grid
resolution used in the present work is acceptable.
Figure 13 plots angular velocity of gravitational waves

as a function of time for runs NS1616a–c. The angular
velocity (and frequency) of gravitational waves gradually
increases in the inspiral phase. Then, at the onset of
merger, it forms a spiky peak. This appears simply due to
the fact that the amplitude of gravitational waves remains
approximately a constant for a moment soon after merger
sets in, and the denominator of Eq. (64) approaches to zero.
In such moment, collapse of the merged object to a BH is
halted for a short time scale and a very compact object of a
relatively small nonsphericity is temporally formed.
However, this phase is short and the compact object soon
collapses to a BH. Then, gravitational waves associated
with a quasinormal mode are emitted, and therefore, the
angular velocity eventually reaches M0� � 0:3. This
value agrees approximately with the angular velocity of
the fundamental l ¼ m ¼ 2 quasinormal mode of a BH
with spin parameter �0:8 and the final ADM mass �M0.
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FIG. 13 (color online). (a) Angular velocity of gravitational
waves as a function of retarded time for runs NS1616a–c. For
runs NS1616b and NS1616c, the curves are plotted as functions
of tret þ 46M0 and tret þ 97M0, respectively. (b) The same as (a)
but for runs NS1416a–c. For runs NS1416b and NS1416c, the
curves are plotted as functions of tret þ 47M0 and tret þ 101M0,
respectively.
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FIG. 12 (color online). (a) Gravitational waveforms for run
NS1616s. l ¼ m ¼ 2 mode is plotted. The solid and dashed
curves denote the plus and cross modes, respectively. (b) The
same as (a) but for run NS1416a. (c) hþ for run NS1616a (solid
curve) and run by Shibata’s unigrid code (dashed curve). (d) hþ
for runs NS1616s, a, and b (solid, long-dashed, and dashed
curves). For runs NS1616a and NS1616b, the gravitational
waveforms are plotted as functions of tret þ 10M0 and tret þ
54M0, respectively. In addition, for NS1616a and b,
hþ cosð0:2�Þ � h� sinð0:2�Þ and �½hþ cosð0:2�Þ �
h� sinð0:2�Þ� are plotted to align the phase.
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Figure 13 also indicates slow convergence of the merger
time with improving the grid resolution; for improving the
grid resolutions, the inspiral time increases by a large
factor. This makes us reconfirm that for an accurate long-
term simulation of inspiraling NS-NS binaries, a high grid
resolution is required. However, this figure also shows that
for tret * 200M0, the curves for runs NS1616a and
NS1616b and for runs NS1416a and NS1416b approxi-
mately agree with each other. This reconfirms that for
computing gravitational waveforms for the late �2 orbits,
the grid resolution for NS1616a and NS1416a is
acceptable.

Gravitational waveforms for model NS1416 are very
similar to those for model NS1616. One difference worth
noting is that energy and angular momentum carried away
by gravitational waves for model NS1416 are smaller than
those for model NS1616. The reason for these small values
is that tidal disruption occurs at a relatively large orbital
separation. For the case of NS-NS binaries, gravitational
waves are emitted most effectively at the final inspiral
phase just before the merger. Thus, absence of such phase
due to the tidal disruption significantly decreases the total
amount of gravitational wave emission.

C. BH-NS binaries

As the last test, we performed simulations for BH-NS
binaries.

1. Initial condition

We adopt BH-NS binaries in quasi-equilibrium circular
orbits computed in the moving puncture framework as
initial conditions, following our previous works [29,30]
(see these references for basic equations and methods for
solving them). We pick up two models in this work. In both
models, the BH is nonspinning and the NS has the irrota-
tional velocity field with its compactness� 0:145. Ratio of
irreducible mass of the BH to gravitational mass of the NS
in isolation is � 3:05–3:06. Several key quantities are
listed in Table VII. Model BHNS-A is the same as
model A of Ref. [30] in which the initial value of the
angular velocity satisfies M0�0 � 0:040. In the previous
paper [29], we find that for the best-resolved run, the binary
orbits for about 1.7 times before the onset of tidal disrup-
tion for this model. We compare numerical results obtained
by SACRAwith those in the previous simulation. The other

model, referred to as BHNS-B, has a smaller initial orbital
angular velocity as M0�0 � 0:034. Third post-Newtonian
equations of motion for two point masses predict that the
binary orbits�4 times before the onset of merger. We will
show that our code can stably and accurately follow such a
long-term orbit.
As we indicated in the previous paper [30], the quasi-

equilibria used in this paper have a nonzero eccentricity
(see Ref. [55] for the related topic). The primary reason
seems to be a slight deficit of angular momentum in the
quasi-equilibria. Figure 14 plots angular momentum
(J=m2

0) as a function of angular velocity (m0�) for models

BHNS-A and B as well as that calculated for two point
particles in the third post-Newtonian theory [2]. This
shows that the angular momenta for models BHNS-A
and B are by �1% smaller than those in the third post-
Newtonian results for a given value of m0�. Because of
this deficit, the orbital separation quickly decreases soon
after the simulations are started. More detailed analysis of
the quasi-equilibria in the moving puncture framework as
well as comparison of the results with those in the excision
framework [56–58] will be presented in a separate paper
[59].

2. Setting

Following previous papers [29,30], the initial condition
for� is modified from the solution of the quasi-equilibrium

TABLE VII. List of several quantities for quasicircular states of BH-NS binaries. We show the mass parameter of puncture (Mp),
irreducible mass of the BH (MBH), rest mass of the NS (M�), mass (MNS) and compactness defined by ratio of MNS to circumferential
radius (RNS) of the NS in isolation, mass ratio (q ¼ MNS=MBH), ADMmass at t ¼ 0 (M0), total angular momentum at t ¼ 0 in units of
M0 (J0=M

2
0), and M0�0ðm0�0Þ where �0 is orbital angular velocity at t ¼ 0 and m0 ¼ MBH þMNS. The BH irreducible mass is

computed from the area of apparent horizon A as ðA=16�Þ1=2. All these quantities are normalized by � appropriately to be
dimensionless.

Model Mp MBH M� MNS MNS=RNS q M0 J0=M
2
0 M0�0ðm0�0Þ

BHNS-A 0.4185 0.4260 0.1500 0.1395 0.145 0.327 0.5604 0.662 0.0403 (0.0408)

BHNS-B 0.4185 0.4250 0.1500 0.1395 0.145 0.328 0.5598 0.687 0.0337 (0.0340)

FIG. 14. Angular momentum (J=m2
0) vs angular velocity

(m0�) for models BHNS-A and B. For comparison, the same
relation for a binary of q ¼ 1=3:06 in the third post-Newtonian
theory (the solid curve) is shown together.
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state so as to satisfy the condition of �> 0 everywhere.
For the shift, we adopt the quasi-equilibrium solution with
no change.

Simulations were performed for three grid resolutions
(see Table VIII). For all the cases, a numerical domain is
composed of eight refinement levels (four finer and coarser
levels) and locations of outer and refinement boundaries
are chosen to be the same. The NSs are covered by the
finest and second-finest levels. The finest grid resolution
for run BHNS-A2 is approximately the same as that for run

A0 in Ref. [30]. The ~�i-BSSN formalism is used for all the
runs performed in the AMR code, and the Fi-BSSN for-
malism is used for the simulations of model BHNS-A1. In

the following, results with the ~�i-BSSN formalism are
basically presented, because they depend very weakly on
the chosen formalism, as in the case of NS-NS binaries.

3. Evolution of the BH and the NS, and final outcome

Figure 15(a) plots orbital trajectories of the NS for
model BHNS-A. Figures 15(b) and 15(c) plot xiNS � xiBH
for models BHNS-A and BHNS-B, respectively. For the
best-resolved run, orbital trajectory of the BH is also

plotted in Fig. 15(a). Here, the trajectories of the NSs are
determined from the location of the maximum value of 
�,
and that of the BHs is from the location of the moving
puncture. For both models BHNS-A and BHNS-B, the NS
is tidally disrupted by the companion BH before it is
swallowed by the BH. Before the onset of tidal disruption,
models BHNS-A and BHNS-B spend about 2 and about
3þ 3=4 orbits, respectively, for the best-resolved runs.
Here, the approximate time for the onset of tidal disruption
(referred to as Tdisr) is determined from the time at which
1% of the total rest mass is swallowed into apparent
horizon of the BH.
For runs BHNS-A1, A2, and A3, the tidal disruption

starts at�1:95, 1.75, and 1.45 orbits, respectively, (see also
Table IX for the time in units of M0). In the run A0 of
Ref. [30], the tidal disruption starts approximately at the
same time as that for run BHNS-A2. This is quite reason-
able because the grid resolution around the BH and the NS
for run BHNS-A2 agrees approximately with that of run
A0 of Ref. [30]. The values of Tdisr depend weakly on the
chosen formalism for a given grid resolution. This illus-
trates that the numerical results depend weakly on the
formalism and gauge.

TABLE VIII. The same as Table V but for simulations of models BHNS-A and BHNS-B. �x is the minimum grid spacing, Rdiam the
coordinate length of semi-major diameter of the NS, L the location of outer boundaries along each axis, �0 the gravitational
wavelength at t ¼ 0, and �xgw the grid spacing at which gravitational waves are extracted.Mp denotes the mass parameter of puncture

BH [30].

Run Levels N �x=M0ð�x=MpÞ Rdiam=�x L=M0ðL=�0Þ �xgw=M0

BHNS-A1, A1F 8 (4þ 4) 30 0.036 (0.048) 76 138 (1.8) 0.58–2.32

BHNS-A2, A2F 8 (4þ 4) 24 0.045 (0.060) 62 138 (1.8) 0.72–2.88

BHNS-A3, A3F 8 (4þ 4) 20 0.054 (0.072) 51 138 (1.8) 0.86–3.46

Ref. [30] — — 0.047 (0.063) 59 66.7 (0.86) 1.05

BHNS-B1 8 (4þ 4) 30 0.036 (0.048) 76 138 (1.5) 0.58–2.32

BHNS-B2 8 (4þ 4) 24 0.045 (0.060) 61 138 (1.5) 0.72–2.88

BHNS-B3 8 (4þ 4) 20 0.054 (0.072) 51 138 (1.5) 0.86–3.46
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FIG. 15 (color online). (a) Orbital trajectories of NSs for runs BHNS-A1 (solid curve), BHNS-A2 (long-dashed curve), and BHNS-
A3 (dashed curve). Trajectory of the BH for run BHNS-A1 (inner solid curve) is also plotted. (b) The same as (a) but for xiNS � xiBH.
(c) The same as (b) but for runs BHNS-B1 (solid curve), BHNS-B2 (long-dashed curve), and BHNS-B3 (dashed curve). For (a) and (c),
the plus mark denotes location of the NSs at the onset of tidal disruption (at t ¼ Tdisr).

SIMULATING COALESCING COMPACT BINARIES BYA . . . PHYSICAL REVIEW D 78, 064054 (2008)

064054-27



For runs BHNS-B1, B2, and B3, the tidal disruption
starts at �3:7, 3.3, and 2.75 orbits, respectively. Because
the time spent in the inspiral phase for model BHNS-B is
longer than that for model BHNS-A, numerical error is
accumulated more, resulting in a larger dispersion in Tdisr.
A characteristic feature for model BHNS-B is that its
orbital eccentricity is initially very large: Soon after the
simulation is started, the orbital separation decreases by a
large factor, and then, it significantly increases. The first
two orbit are obviously different from circular orbits.
Gravitational waveforms shown later also illustrate that
the orbit is eccentric. As mentioned in Sec. IVC1, the
primary reason for the presence of the eccentricity is that
the angular momentum of the quasi-equilibrium initially
given is likely to be by �1% smaller than that for the true
quasi-equilibrium. However, in the last �2 orbits, the
orbital separation gradually and monotonically decreases
to merger (see the trajectory for run BHNS-B1), suggesting
that the eccentricity is reduced by emission of gravitational
waves.

As reported above, the time at the onset of tidal disrup-
tion Tdisr systematically increases with improving the grid
resolution. Figures 16(a) and 16(b) plot Tdisr as a function
of h2L�1 for models BHNS-A and BHNS-B, respectively.

Figure 16(a) shows that Tdisr is approximately proportional
to h2L�1. Extrapolating this relation to hL�1 ! 0, it is found
that the converged value for Tdisp is � 240M0. This sug-

gests that by the onset of tidal disruption, the binary would
orbit for�9=4 times. Thus, the results in run BHNS-A1 are
near the convergent ones, although the phase error of �
30M0 (about a quarter orbit) would still be present. The
value determined by the extrapolation is much smaller than
the value predicted by the Taylor T4 formalism, which
gives � 315M0. This is reasonable because the Taylor T4
formalism neglects effects associated with tidal deforma-
tion of the NS and BH, which accelerates the inward
motion and shortens Tdisr (e.g., see Ref. [54]).

Figure 16(b) shows that the results of Tdisr converge with
improvement of the grid resolution at an order better than
the second order. The results for three grid resolutions
appear to be approximately fourth-order convergent, but
such a high order is unlikely for the chosen scheme for
hydrodynamics. This may be due to a too small value of
Tdisr for run BHNS-B3 for which convergence may not
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FIG. 16 (color online). Tdisr as a function of h
2
L�1. (a) The open

squares denote the data by runs BHNS-A1–A3, and the triangle
denotes the result obtained in Ref. [30]. (b) The same as (a) but
for the data by runs BHNS-B1–B3.

TABLE IX. Numerical results for simulations of BH-NS binaries. We list the approximate time at the onset of tidal disruption (Tdisr),
irreducible mass of apparent horizon formed after merger (Mirr), ratio of polar circumferential length to the equatorial one for the
apparent horizon formed after merger (Cp=Ce), final BH mass estimated from the equatorial circumferential length (Ce=4�), final BH

mass estimated from Mirr and Cp=Ce (MBHf), final spin parameter of the BH estimated from Cp=Ce, and energy (�E) and angular

momentum (�J) carried away by gravitational waves.

Run Tdisr=M0 Mirr=M0 Cp=Ce Ce=ð4�M0Þ MBHf=M0 a �E=M0 �J=J0

BHNS-A1 206 0.942 0.938 0.982 0.983 0.55 0.9% 14%

BHNS-A1F 202 0.942 0.938 0.983 0.983 0.55 0.9% 14%

BHNS-A2 186 0.942 0.938 0.983 0.983 0.55 0.8% 12%

BHNS-A2F 182 0.943 0.939 0.983 0.984 0.55 0.8% 13%

BHNS-A3 158 0.943 0.935 0.985 0.986 0.56 0.7% 11%

BHNS-A3F 156 0.945 0.937 0.986 0.987 0.55 0.7% 11%

Ref. [30] 179 0.935 0.939 0.975 0.976 0.55 0.7% 11%

BHNS-B1 472 0.940 0.937 0.982 0.982 0.56 0.9% 17%

BHNS-B2 433 0.940 0.936 0.983 0.983 0.56 0.8% 15%

BHNS-B3 353 0.941 0.933 0.985 0.985 0.57 0.8% 15%
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hold. Thus, we assume the second-order convergence, as
inferred from the result for model BHNS-A, and use the
values for runs BHNS-B1 and B2 for extrapolation. Then,
the extrapolation gives Tdisr � 540M0. Thus, in run BHNS-
B1, the value of Tdisr is underestimated by � 70M0. (Note
that if we assume the fourth-order convergence, the pre-
dicted value of Tdisr is � 500M0.) The primary reason for
this underestimation is that numerical dissipation spuri-
ously shortens the inspiral time. The extrapolated value
of Tdisr � 540M0 is again smaller than the value predicted
by the Taylor T4 formalism, which gives � 585M0. As
mentioned above, this disagreement is reasonable because
tidal effects are neglected in the Taylor T4 formalism.

Figure 17 plots the evolution of Mirr=M0, Cp=Ce, and

Ce=ð4�M0Þ as functions of time. This shows that BHs are
approximately in stationary states before and after tidal
disruption of the companion NS. By contrast, they quickly
evolve during tidal disruption and subsequent accretion
process, irrespective of the initial condition. The figure
for Cp=Ce shows that the BH is approximately nonrotating

before the onset of tidal disruption because it is approxi-
mately unity. However, as the mass accretion proceeds, its
value decreases, reflecting the fact that the BH spins up by
getting angular momentum from the infalling material. The
mass accretion is also reflected in the figures of Mirr=M0

and Ce=4�M0 because they increase after the onset of tidal
disruption. The values of these quantities are approxi-
mately the same before the onset of tidal disruption, re-
flecting that the spin of the BH is approximately zero. After
the onset of tidal disruption, these are different, because the
final state is a spinning BH for which Mirr � Ce=4�.

The final values of Mirr, Cp=Ce, and Ce=ð4�M0Þ for

both models BHNS-A and BHNS-B depend only weakly
on the grid resolution. In particular, the results for models
BHNS-A1 and BHNS-A2 and for BHNS-B1 and BHNS-
B2 show approximate convergence. This indicates that
with the present numerical simulation, the final state of
the BH is determined with good accuracy, although the
merger time depends strongly on the grid resolution.
The final value of the BH spin for model BHNS-A

agrees approximately with the result in Ref. [30]. As
reported in Ref. [30], the final value of the BH spin is
smaller than the initial spin of the system. The reason is
that gravitational waves carry away a substantial fraction
of angular momentum. (For the previous result in Ref. [30],
a part of the angular momentum is distributed to disk, and
this is also a part of the reason.) The final value of the BH
mass for model BHNS-A slightly disagrees with the pre-
vious result [30]. The reason for this difference is that a
disk of�0:017M0 is formed around the BH in the previous
result (see discussion in Sec. IVC5).

4. Conservation of energy and angular momentum

The numerical results for the final outcome are checked
by examining whether or not the conservation relations
Eqs. (69) and (70) hold. As shown below, the contribution
of disk formed around the BH is negligible in this case.
From Table IX, we find that errors in the conservation for
the best-resolved runs are � 1% for the energy and � 5%
for the angular momentum; 1� �E=M0 � 1% and 1�
�J=J0 � 5%. Namely, the final values of mass and angular
momentum of the BH are smaller than those expected from

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 0  200  400

M
irr

 / 
M

0

t / M0

A-1
A-2
A-3
ST

(d)

 0.75

 0.8

 0.85

 0.9

 0.95

 0  200  400  600  800

M
irr

 / 
M

0

t / M0

B-1
B-2
B-3

(b)

 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01

 0  200  400

C
p 

/ C
e

t / M0

A-1
A-2
A-3

(e)

 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01

 0  200  400  600  800

C
p 

/ C
e

t / M0

B-1
B-2
B-3

(c)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  200  400

C
e 

/ 4
πM

0

t / M0

A-1
A-2
A-3

(f)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  200  400  600  800

C
e 

/ 4
πM

0

t / M0

B-1
B-2
B-3

FIG. 17 (color online). (a) Mirr of the BH as a function of time for runs BHNS-A1–A3. ‘‘ST’’ denotes the results of run A0 in
Ref. [30]. (b) The same as (a) but for Cp=Ce. (c) The same as (a) but for Ce=ð4�M0Þ. (d) The same as (a) but for BHNS-B1–B3. (e) The

same as (d) but for Cp=Ce. (f) The same as (d) but for Ce=ð4�M0Þ.
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the conservation relation. The possible reasons are either
(i) the energy and angular momentum carried away by
gravitational radiation might be underestimated or
(ii) during the evolution, the energy and angular momen-
tum might be dissipated by some spurious numerical ef-
fects. We note that the conservation relations hold in a
much better manner in the previous result [30] (in this case,
contribution of disk plays an important role). Thus, the
reason for the violation of conservation may be associated
with interpolation and extrapolation performed in the
AMR algorithm, which are absent in the previous simula-
tion [30]. Currently, the source for the error is not specified.
Improving the accuracy for the conservation is an issue for
the future work.

5. Disk mass

Figure 18 displays snapshots of density contour curves
and density contrasts as well as the location of the BH,
from tidal-disruption phase to the semifinal state of the BH
for run BHNS-B1. The tidal disruption sets in when the
coordinate separation between BH and NS centers be-
comes �5M0 (see the first panel of Fig. 18). Because the
separation is small and the orbit is close to the innermost
stable circular orbit, the radial approaching velocity in-
duced by gravitational radiation reaction is not small at the

onset of tidal disruption. This implies that the NS is dis-
rupted while it is approaching the BH at a high speed,
which is a substantial fraction of the orbital velocity.
Because of this large approaching velocity, most of the
NS material is swallowed by the BH soon after the onset of
tidal disruption. However, the material in the outer part of
the NS still spreads outward and subsequently forms a
spiral arm around the BH (see the second and third panels).
Mass of the spiral arm is �0:1M� initially and the spiral
arm spreads to a large radius with r * 5M0 (see the third
panel). These properties are qualitatively the same as those
found in the previous paper [30]. However, most of the
material in the spiral arm subsequently falls toward the BH
and only a tiny fraction of the material can escape from the
BH (see the fourth panels of Fig. 18). This result disagrees
with the previous one for a given NS radius and mass ratio
[30,60].
The present result indicates that the material in the spiral

arm does not obtain specific angular momentum large
enough for forming a disk around the BH. Although the
material in the outer part receives angular momentum from
the material in the inner part during tidal disruption and
subsequent spiral-arm formation via an angular-
momentum transport process, this effect may not play a
significant role. Alternatively, some mechanisms for dis-
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FIG. 18 (color online). Snapshots of density contour curves and density contrasts as well as location of the BH, from the onset of
tidal disruption to the semifinal state of the BH for run BHNS-B1. The contour curves are plotted for 
w ¼ 10�i, where i ¼
2; 3; 	 	 	 ; 6 (the outermost curve always denotes 
w ¼ 10�6). The first panel denotes the state at about 3.2 orbits. The filled circles
show the region inside apparent horizon.
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sipation and/or anti transportation of the angular momen-
tum may work during the evolution of the spiral arm,
which might not be accurately computed in the previous
work [30] due to some computational problems. For ex-
ample, (i) the grid structure might not be appropriate for
accurately following the angular momentum transport and
(ii) in the previous simulation [30], we evolved � (instead
of W), which has large magnitude and gradient near the
moving puncture, and hence, the trajectory of the BH,
which depends sensitively on �, might not be accurately
computed to follow the BH orbit after the tidal disruption
sets in (e.g., see Fig. 4 of Ref. [61]). For example, if the BH
spuriously moves away from the spiral arm, disk formation
would be spuriously enhanced. A completely alternative
possibility is that the grid resolution far from the BH may
not be high enough in the present grid structure to follow
the evolution of the spiral arm accurately (see discussion
below).

For a more specific discussion about the fate of material
after the tidal disruption, we generate Figs. 19(a) and 19(b),
which plot the total rest mass of material located outside
apparent horizon as a function of time for runs BHNS-A1–
A3 and BHNS-B1–B3, respectively. Irrespective of models
and grid resolutions, this decreases monotonically after the
tidal disruption sets in. However, there are two phases after
the tidal disruption. For the first 100–150M0, the infall rate
of the material into the BH is relatively low. In such a
phase, a part of the tidally disrupted material spreads out-
ward and subsequently a spiral arm is formed around the
BH (cf. the third panel of Fig. 18). The presence of this
phase agrees qualitatively with our previous result [30]. In
the second phase, the infall rate increases and the fraction
of the rest mass around the BH decreases quickly to be
much smaller than 1%, implying that a disk or torus with
substantial mass is not formed. The presence of this later
phase disagrees with our previous result [30,60].

A possible reason for the small disk mass is that in the
present simulation, the grid resolution for following the
formation of disk or torus around the BH might not be
sufficient: During tidal disruption, the NS is elongated and
then a fraction of material escapes from the finest-
refinement domain. The motion of such material around
the BH might not be accurately computed in relatively
coarser levels. As a consequence, spurious dissipation or
transportation of the angular momentum by numerical
viscosity would happen, and the material might subse-
quently fall into the BH spuriously. To improve this situ-
ation, it is necessary to prepare a fine grid that covers a
larger region around the BH (say within a radius of
�10M0). To perform such simulation, modification of
the present AMR scheme may be necessary, e.g., to in-
crease the grid number N for the finer refinement levels
while fixing it for the coarser levels. Such improvement is
an issue for the future.

Assume that the present result for no disk formation is
correct. Then, the typical life time of the accreting material

with mass larger than 10�2M� � 0:01M� is �100M0 �
2:5ðM0=5M�Þ ms. Here, we assume that a hypothetical
mass of the NS is �1:4M� and as a result M0 � 5M�.
Such short life time is not appropriate for explaining
generation of gamma-ray bursts from the accretion disk,
for which the duration is longer than at least 10 ms.

6. Gravitational waves

Figure 20 plots gravitational waveforms for runs BHNS-
A1 and BHNS-B1. As shown in Ref. [30], the waveforms
are composed of two components. One is the inspiral
waveform, and the other is the merger waveform. The
amplitude quickly decreases after the onset of tidal dis-
ruption. The reason for this behavior is explained as fol-
lows: At the tidal disruption, material of the NS spreads,
and then, the matter density as well as degree of nonaxial
symmetry quickly decrease. Hence, the amplitude of gravi-
tational waves, which depends strongly on the compact-
ness and degree of nonaxial symmetry, damps. In the final
phase, the ringdown gravitational waveform associated
with quasinormal mode oscillation is seen. As pointed
out in Ref. [30], the amplitude is not as large as that in
the merger of BH-BH binaries; the amplitude is �10% of
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FIG. 19 (color online). Total rest mass of material located
outside apparent horizon as a function of time (a) for model
BHNS-A and (b) for model BHNS-B. ‘‘ST’’ in panel (a) denotes
the result of Ref. [30].
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that at the last inspiral orbit. We explain the reason as
follows: The material does not coherently fall into the
BH because of tidal disruption, and the resulting phase
cancellation suppresses coherent excitation of the quasi-
normal mode oscillation.
Because of a large eccentricity of the binary orbit for

model BHNS-B, the gravitational waveforms are modu-
lated in the early inspiral phase. To derive more realistic
waveforms emitted during quasicircular orbits, it is neces-
sary to prepare a better initial condition. This issue is left
for future work. However, in the last�2 inspiral orbits, the
BH and the NS for run BHNS-B1 appear to be approxi-
mately in a circular orbit. Thus, even if a simulation is
started from an eccentric orbit, the orbit is eventually
circularized. To pay attention only to gravitational waves
emitted from the final inspiral to the merger phases, the
present initial condition may be acceptable.
Figure 20(c) compares the plus mode of gravitational

waveform for run BHNS-A1 with that of run A0 in
Ref. [30]. Because the tidal disruption time (Tdisr) is differ-
ent between two simulations, the phase does not agree.
However, the qualitative feature is very similar; in the early
phase, gravitational waves associated with inspiral motion
are seen. After the onset of tidal disruption, the amplitude
quickly damps, and eventually, waveforms are character-
ized by a ringdown oscillation of small amplitude associ-
ated with a quasinormal mode of the BH. This qualitative
agreement confirms the conclusion about gravitational
waveforms in the previous paper [30].
Figure 20(d) plots angular velocity of gravitational

waves for runs BHNS-B1–B3 and BHNS-A1. For
BHNS-A1, the curve is plotted as a function of tret þ
266M0. The dotted curve denotes the result predicted by
the Taylor T4 formalism for m0�0 ¼ 0:034 and 0.036.
This also shows that the binary for model BHNS-B is in
an eccentric orbit, because� considerably modulates with
time. The plots for runs BHNS-B1–B3 clarify again that
the value of Tdisr depends strongly on the grid resolution.
The results for runs BHNS-A1 and BHNS-B1 agree ap-
proximately for the late inspiral phase. This is expected
because the waveforms for both models are similar as
shown in Figs. 20(a) and 20(b). The curve for run
BHNS-B1 does not agree with that derived by the Taylor
T4 formalism for m0�0 ¼ 0:034, but agree relatively with
that for m0�0 ¼ 0:036. Part of the reason is that the
inspiral time is spuriously shortened by numerical dissipa-
tion. Another possible reason is that the binary has a large
eccentricity initially, which enhances gravitational wave
emission and shortens the inspiral time; namely, an aver-
aged orbital velocity of the initial condition does not satisfy
m0�0 ¼ 0:034 but may be close to m0�0 ¼ 0:036.

V. SUMMARY

We have reported our new numerical relativity code,
named SACRA, in which an AMR algorithm is imple-
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FIG. 20 (color online). Gravitational waveforms (a) for run
BHNS-A1 and (b) for run BHNS-B1. The solid and dashed
curves denote the plus and cross modes, respectively. (c) Plus
mode of gravitational waveforms for run BHNS-A1 (solid curve)
and for run A0 in Ref. [30] (dashed curve). (d) Angular velocity
of gravitational waves for BHNS-B1–B3 (solid, long-dashed,
dotted curves) and BHNS-A1 (dashed curve). For BHNS-A1, the
curve is plotted as a function of tret þ 266M0. The dotted-dashed
curves denote the results predicted by the Taylor T4 formalism
for m0�0 ¼ 0:0340 (lower curve) and 0.0360 (upper curve).
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mented. In this code, the Einstein evolution equations are
solved in the BSSN formalisms with a fourth-order spatial
finite-differencing scheme, the hydrodynamic equations
are solved by a third-order high-resolution central scheme,
and the time integration is done in the fourth-order Runge-

Kutta scheme. Both Fi-type and
~�i-type BSSN formalisms

are implemented. In both cases, W ¼ e�2� is evolved
instead of evolving �. This enables us to adopt grid-
center-grid coordinates.

A. Technical points and issues for the future

To check the feasibility of SACRA, we performed simu-
lations for coalescence of BH-BH, NS-NS, and BH-NS
binaries. All the simulations were performed on personal
computers using at most 5 GBytes of memory. The re-
quired CPU time is at most 1 month even for the best-
resolved runs. For simulating BH-BH binaries, we em-
ployed the same initial conditions as those adopted by
Buonanno et al. [23]. Our results agree with theirs in a
reasonable manner except for a slight disagreement possi-
bly associated with the difference in choices of gauge
conditions and numerical scheme. We also show that our
code can follow inspiraling BH-BH binaries at least for
about 4.5 orbits even in the absence of dissipation term
such as the Kreiss-Oliger-type dissipation term. This im-
plies that even in the AMR code, the dissipation term is not
always necessary, if appropriate schemes for interpolation
and extrapolation are employed for the procedures at re-
finement boundaries.

Our numerical results for BH-BH binaries indicate that
for accurately evolving final 2.5 orbits before the merger, a
relatively small number of grid points is sufficient. The
orbit of the BH is computed accurately and, as a result,
gravitational waveforms are computed with a small phase
error. In the present simulations, the used memory is at
most 3 GBytes, and a personal computer with 4 GBytes of
memory is sufficient for accurate evolution of the final
phase of BH-BH binaries.

By contrast, numerical results, in particular, the merger
time, depend strongly on the grid resolution, grid structure,
and gauge condition for evolving� 4:5 inspiral orbits. The
estimated phase error in gravitational waveforms for such
cases is about 40m0 even in the finest-resolution simulation
in this paper. For obtaining convergent results within the
phase error of, say, 10m0 for the entire evolution, the grid
resolution has to be finer by a factor of �2. However, we
note the following: Numerical results for the final state of
the BH formed after merger do not depend on the grid
resolution as strongly as the merger time and gravitational
wave phase. It should be noted that for determining the
final state of the BH within a 1% error, it is not necessary to
take a high-grid resolution. We find that the present choice
is appropriate.

We find that the merger time and gravitational wave
phase could depend on spatial gauge conditions. The rea-

son for this is explained as follows: The physical grid
spacing and grid structure depend on the spatial gauge
condition, in particular, around BHs. Thus, the magnitude
of numerical dissipation also depends on the spatial gauge
and may be reduced for a simulation performed with an
appropriate choice for the spatial gauge, even if the same
grid structure is employed. Therefore, an appropriate
choice of the spatial gauge condition may reduce computa-
tional costs, and a careful choice is required.
We also show that our code can evolve NS-NS and BH-

NS binaries. Numerical results obtained by SACRA agree
with those in the previous simulations, if we resolve the
NSs and BHs by approximately the same accuracy.
However, the computational cost is at most 5% of the
previous unigrid simulations, and the robustness of the
AMR scheme is confirmed. Simulations with much better
accuracy than those in the previous simulations can be
performed by less computational costs. Because we per-
formed the simulations for a wide range of grid resolutions,
we can also estimate the magnitude of the phase error of
gravitational waveforms in the present and previous nu-
merical results [30] in an inexpensive computational cost.
We followed the inspiral phase of BH-NS binaries for a

long time (� 4 orbits) for the first time. In the best-
resolved simulation, the inspiral orbit up to the onset of
tidal disruption is followed for about 3.7 orbits. Subsequent
merger and ringdown phases are also computed well for
producing gravitational waveforms. However, we find that
the prepared quasicircular initial condition has a large
eccentricity, and the inspiral orbit is highly eccentric for
the first�2 orbits, although the eccentricity for a few orbits
just before the merger is reduced by the emission of
gravitational waves. To perform a realistic simulation for
the inspiral phase with small eccentricity, it is necessary to
improve the initial condition (see, e.g., Ref. [62] for a
method). This is an issue for the future.
We compare the duration spent in the inspiral phase

obtained by numerical simulations with that predicted by
the Taylor T4 formalism for BH-BH and BH-NS binaries.
For long-term runs with the merger time * 500M0, the
merger time determined by extrapolation of the numerical
results agree with the prediction by the Taylor T4 formal-
ism within an error of�10%. This makes us reconfirm that
the Taylor T4 formalism provides a good semi-analytical
estimate for the time spent in the inspiral phase. We also
find that the Taylor T4 formalism always provides an
overestimated value of the merger time for NS-NS and
BH-NS binaries. The reason for this overestimation is that
in this formalism, tidal effects of NSs, which accelerate the
infalling process to merger, are not included. Nevertheless,
the error is not extremely large, because tidal effects play a
crucial role only for close orbits. Therefore, for validating a
numerical result, it is useful to compare the merger time
with the result derived by the Taylor T4 formalism.
We find that the convergence of the merger time for NS-

NS binaries is relatively slow. For this case, the evolution
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of NSs in the late inspiral phase depends on the effects of
tidal deformation of each NS, which in general shortens the
merger time. Thus, to accurately determine the orbital
evolution, the tidal deformation of each NS has to be
followed accurately in hydrodynamics. The degree of tidal
deformation is in general larger near the surface of the NS,
because the tidal force is approximately proportional to the
distance from the center of each NS. In our AMR scheme,
the grid resolution around the surface region is not as high
as that in the central region. Consequently, the tidal defor-
mation is not followed as accurately as that in the central
region. A simple way to overcome this problem is to
resolve the surface region as accurately as the central
region, i.e., to cover each NS in the finest level.
However, doing this in our present scheme is computation-
ally expensive, because we have to choose a large value of
N for the finest level. There may be a better grid structure
to overcome this problem, e.g., to change the cube size in
each refinement level. Improving our AMR scheme is an
issue in the next step. A completely alternative possibility
is to employ a different hydrodynamic scheme that is less
dissipative. Improving this scheme is also an issue in the
future.

We note that the final state of the BH and surrounding
disk after merger of NS-NS binaries do not depend on the
grid resolution as strongly as the merger time. This prop-
erty is the same as that in the case of BH-BH binaries.
Thus, for studying the final state, the present choice of the
grid resolution is acceptable.

We check whether or not the conservation relations of
energy and angular momentum denoted by Eqs. (67) and
(68) or by Eqs. (69) and (70) hold. The energy conservation
holds within �1% error irrespective of the binary compo-
nents for the best-resolved run. The error of angular mo-
mentum conservation is larger: The error is�3%–5%. The
resulting total energy and angular momentum of BHs are
always smaller than the values predicted by the conserva-
tion relations, and hence, numerical dissipation is the most
likely source of the error. The error size for the angular
momentum conservation may not be negligible, in particu-
lar, for studying disk formation around the BH formed after
merger. In our results, the disk mass is likely to be under-
estimated. Indeed, the result for the disk mass in this paper
does not agree with the previous result of a BH-NS binary
[30]. In the previous result, the angular momentum con-
servation holds in a much better manner. Thus, the small
disk mass in the present results might be partly due to the
spurious loss of angular momentum [63].

Another possible drawback in our present AMR scheme
is that we might not be able to accurately follow material
that spreads around the BH after tidal disruption of the NS.
The reason is that a large fraction of material escapes from
the finest level soon after the onset of tidal disruption. The
motion of such material orbiting the BH is located at
relatively coarser levels and hence it may not be followed

accurately. The material, which forms a spiral arm around
the BH, subsequently falls into the BH in a short time scale
in the present result. This may be in part due to the fact that
its angular momentum is spuriously dissipated. In the
present simulations, we found that the resulting mass of
accretion disk is much smaller than 10�3M� for q � 0:33
and MNS=RNS ¼ 0:145. This result totally disagrees with
our previous results [30,60] as mentioned above. Note that
the evolution of binaries up to tidal disruption agrees well
indicating that the grid structure is appropriate at least up to
the onset of tidal disruption. This suggests that the grid
structure in our AMR code might not be well suited only
for following the material orbiting the BH of a distant
orbital separation. To improve this situation, it may be
necessary to prepare a fine grid that covers a larger region
around the BH. To perform such a simulation, it will be
necessary to change the grid structure, e.g., to increase the
grid number for the finer levels while fixing that for the
coarser levels. Such improvement of our current AMR
scheme is an issue in the next step.

B. Comparison of numerical results for three types of
binaries

We performed simulations for three types of binaries.
Because of the presence of strong equivalence principle,
the orbital evolution and gravitational waveforms in the
inspiral phase with a large orbital separation depend very
weakly on the components of the binaries. By contrast, the
final outcome and gravitational waveforms in the merger
phase depend strongly on the components. As already
found in the previous studies (e.g., [23]), we found that
after merger of slowly spinning two equal-mass BHs, a
rotating BH with spin � 0:7 is formed. However, the
magnitude of the spin parameter is much higher for a BH
formed after merger of NS-NS binaries: The present results
show that the spin is �0:8–0:85. This disagreement comes
primarily from the difference in amplitude of gravitational
waves emitted in the final merger phase. In the case of BH-
BH binaries, the BHs can have a closer orbit than the NSs,
because the BHs are more compact. As a result, gravita-
tional waves are significantly emitted in the final inspiral
orbit. In addition, the quasinormal mode oscillation of
fundamental l ¼ m ¼ 2 mode is excited significantly in
the merger phase. Indeed, the gravitational wave amplitude
is as high as that emitted at the last inspiral orbit
(cf. Figure 4). By these gravitational wave emissions, the
angular momentum is significantly dissipated in the final
phase. By contrast, in the case of NS-NS binaries, the
merger sets in at a relatively distant orbit, because NSs
are not as compact as BHs, and moreover, the quasinormal
mode is not excited as significantly as in the case of BH-
BH binaries because of smaller degree of nonaxisymmetric
deformation of the spacetime curvature at the merger.
Because of the difference in amplitude of ringdown

gravitational waveforms, the property of gravitational
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waveforms in the final merger phase depends strongly on
the binary components. As mentioned above, the ampli-
tude of ringdown gravitational waves is as high as that in
the last inspiral phase for the merger of BH-BH binaries.
By contrast, the amplitude is �10% as high as that in the
last inspiral phase for the merger of NS-NS binaries. Thus,
the wave amplitude quickly decreases in this case.

We also study the merger of BH-NS binaries. In the
present paper, we focus on the case that the NS is tidally
disrupted before it is swallowed by the companion BH. In
this case, the quasinormal mode is not significantly excited
as in the case of NS-NS binaries, and hence, the amplitude
of ringdown gravitational waves is also much smaller than
that in the last inspiral orbit. However, this may not be
always the case. If the mass ratio qð¼ MNS=MBHÞ is small
enough, the NS will not be tidally disrupted before swal-
lowing by the BH. In such case, a quasinormal mode may
be excited significantly at a moment that the NS falls into
the BH. This topic should be investigated in future work.

As summarized in this section, gravitational waveforms
at merger phase depend strongly on the binary compo-
nents. This makes us reconfirm that gravitational waves
at merger phase will carry information about the properties
of binary components. As reviewed in Sec. I, a number of
simulations have been performed in the past decade.
However, there are huge parameter spaces for which nu-
merical study has not been done yet, in particular, for NS-
NS and BH-NS binaries. Obviously, further study is re-
quired. Our new code SACRA will be able to make a
contribution to this purpose.
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APPENDIX A: APPARENT HORIZON FINDER

Apparent horizon is defined as a marginally outermost
trapped two surface on which the following equation is
satisfied:

K � Kijs
isj �Dis

i ¼ 0: (A1)

Here, si denotes a unit normal vector, orthogonal to the two
surface of the apparent horizon. Denoting the location of
the apparent horizon as r ¼ hð�;’Þ for an appropriately
chosen coordinate center, si is written as

si ¼ CW�1ð1;�h;�;�h;’Þ; (A2)

where C ¼ ð~�ijsisjÞ�1=2. Substituting Eq. (A2) into

Eq. (A1), the equation for hð�;’Þ is derived, and its

schematic form is

h;�� þ cot�h;� þ
h;’’

sin2�
� 2h ¼ S; (A3)

where S denotes the source term composed of �ij, Kij, h,

and its derivatives. In the method of Ref. [40], we write the
source term in a straightforward manner and solve the 2D
elliptic-type Eq. (A3) iteratively.
In SACRA, first of all, we slightly change the form of the

basic equation, simply rewriting Eq. (A1) as

h;�� þ cot�h;� þ
h;’’

sin2�
� 2h

¼ h;�� þ cot�h;� þ
h;’’

sin2�
� 2h

� ðK � Kijs
isj �Dis

iÞ=ðCWÞ; (A4)

where on the right-hand side, we input trial values for h in
each iteration step. In our previous method, Dis

i is calcu-
lated to be a complicated function of h, h;�, h;��, h;’, h;’’,

h;�’, and �
ij. In the present method, we simply use a finite

differencing for evaluating Dis
i. Namely, we write it as

W3

�
1

r2
@rðr2W�3srÞ þ 1

sin�
@�ðsin�W�3s�Þ

þ @’ðW�3s’Þ
�
; (A5)

and evaluate each term by the second-order finite-
differencing. Here, @� and @’ are evaluated on the apparent

horizon and hence the evaluation is straightforward,
whereas @r cannot be evaluated on the apparent horizon.
To compute it, we prepare two dummy points for each
point of ð�;’Þ, which are located at slightly outside and
inside of the apparent horizon along an orthogonal direc-
tion with respect to the two surface. The coordinate dis-
tance from those dummy points to the apparent horizon is
chosen to be � h=20. By this method, the source term of
Eq. (A4) is significantly simplified.
With this setting, the solution of h is obtained by solving

2D elliptic-type Eq. (A4). The method for solving this
equation is the same as that described in detail in
Ref. [40]. We compare the results of the apparent horizon
mass obtained in the present and previous methods and find
that both results agree well.

APPENDIX B: NUMERICAL RESULTS FOR BH-BH
BINARY WITH A DIFFERENT INITIAL
CONDITION OF GAUGE VARIABLES

As we mentioned in Sec. IVA, the coordinate trajectory
of BHs in inspiraling BH-BH binaries depends strongly on
the initial condition for �k, although gravitational wave-
forms depend only very weakly on it. This appendix is
denoted to a summary of the results. Specifically, we
performed two simulations for d ¼ 19 using the solution
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of the quasi-equilibrium condition for the gauge variables
as the initial condition. We prepared the same grid struc-
ture as that of runs 19a and 19aF. The simulations were

performed both in the ~�i- and Fi-BSSN formalisms.
Hereafter these simulations are referred to as runs 19a’
and 19aF’, respectively.

Figure 21 plots the coordinate trajectories for runs 19a’
and 19aF’ together with those for runs 19a and 19aF. We
find that for run 19a’, the trajectory is highly elliptical and
different from that of run 19a. By contrast, the trajectory of
run 19aF’ is approximately the same as that of run 19aF.
For runs 19a’ and 19aF’, the merger time is slightly longer
than that for runs 19a and 19aF. However, the parameters

of BHs finally formed depend very weakly on the initial
condition for the gauge variables (see Table X).
Although the coordinate trajectory depends on the initial

condition for gauge variables, this is purely a gauge effect.
One evidence is found from the fact that the merger time
for runs 19a and 19a’ is approximately the same (see
Table X). To further show the evidence for this, we gen-
erate Fig. 22, which compares the gravitational waveforms
of runs 19a and 19a’. This figure shows that twowaveforms
agree approximately with each other besides a small phase
error in the final phase. This indicates that the waveform
for run 19a’ is not as elliptic as the trajectory suggests, and
hence, the orbit is physically circular.
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J. A. González, Phys. Rev. D 77, 044020 (2008).

[27] P. Marronetti, W. Tichy, B. Brügmann, J. A. González, and
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