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We present results from numerical solution of Einstein’s equation in five dimensions describing

evolution of rapidly rotating black holes. We show, for the first time, that the rapidly rotating black

holes in higher dimensions are unstable against nonaxisymmetric deformation; for the five-dimensional

case, the critical value of spin parameter for onset of the instability is � 0:87.
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I INTRODUCTION

Black holes (BHs) are the most strongly self-gravitating
objects in nature and also the simplest celestial objects,
described by a small number of parameters. Therefore,
BHs are expected to reflect the natures of gravitational
theories in the clearest manner. This fact motivates exten-
sive studies of BHs not only for four-dimensional (4D)
spacetime (see, e.g., [1] for a historical review) but also for
a higher-dimensional one (see, e.g., [2] for a review).

Since a possibility of BH formation in particle accelera-
tors was pointed out, studies for BHs in higher-dimensional
spacetimes have been accelerated. If our space is a 3-brane
in large [3] or warped [4] extra dimensions, the Planck
energy could be of OðTeVÞ that may be accessible with
huge particle accelerators like the Large Hadron Collider
(LHC). In the presence of the extra dimensions, mini BHs
may be produced in the accelerators and its evidence may
be detected.

A hypothetical phenomenology in the accelerators is as
follows [5,6]: In a high-energy particle collision of a
sufficiently small impact parameter, two particles merge
to form a distorted rotating BH, and then it perhaps relaxes
to a quasistationary state after emission of gravitational
waves. Then the BH will evaporate by Hawking radiation
due to a quantum-field-theory effect in a curved spacetime.
The BH formation and subsequent evolution by gravita-
tional radiation can be described by classical general rela-
tivity [7]. Since any approximation breaks down for this
phase because of its highly nonlinear nature, numerical
simulation in full general relativity is the unique approach
(see [8–11] for the 4D case).

One of the most important issues to be clarified is what
type of a black object is formed and whether it is stable or
not. In the 4D case, the formed object has to be a Kerr BH
because of the uniqueness theorem of BHs (e.g., [12] for a
review), and the numerical analysis of a Kerr BH strongly
suggests that it should be stable [13]. These facts strongly
constrain the possible scenarios for the BH formation and
subsequent evolution. By contrast, there is no uniqueness
theorem in higher dimensions: In the 5D case, the black
ring solution with the ringlike horizon is known in addition

to the Myers-Perry BH solution with the spherical horizon
(but see [14] for uniqueness of 5D black holes with the
spherical horizon topology). Even if we assume that the
black rings are unlikely to be formed in two-particle sys-
tems, the scenario of mini BHs at accelerators is still
uncertain because there is no proof for the stability of the
higher-dimensional BHs [2].
Higher-dimensional BHs with certain parameters are

known to be unstable against axisymmetric perturbations.
Emparan and Myers [15] suggested that rotating BHs with
a high spin parameter is unstable for the spacetime dimen-
sionalityD � 6. The reason is that the rapidly rotating BHs
have a high degree of ellipticity (i.e., the black membrane
limit) and such objects are subject to the Gregory-
Laflamme instability [16]. Very recently, Dias et al. indeed
showed, by a linear perturbation analysis, that rapidly
rotating BHs for 7 � D � 9 are unstable against axisym-
metric multiple-ring-like deformation [17].
On the other hand, little is known for the stability of BHs

against the nonaxisymmetric perturbation and, also, for the
dimensionality D ¼ 5. Emparan and Myers [15] discussed
the possibility that the rapidly rotating BHs may be un-
stable also against nonaxisymmetric perturbation for D �
5 using a thermodynamical argument (i.e., by comparing
the horizon area of a rotating BH and that of two boosted
Schwarzschild BHs with the same total energy and angular
momentum). However, the correspondence between the
thermodynamical and dynamical instabilities has not
been well established, and thus, a rigorous analysis is
required in order to clarify whether the rapidly rotating
BHs are actually unstable against nonaxisymmetric pertur-
bation or not.
In this paper, we tackle this stability issue of rapidly

rotating 5D BHs by fully solving Einstein’s equation. The
merits of this approach are that a wide variety of instabil-
ities can be clarified with no ambiguity, and that the final
fate after the onset of the instabilities could be determined
since the amplitude of the perturbation from the back-
ground BH solution need not be assumed to be small. In
this letter, we focus on the 5D BHs of only one spin
parameter because such a BH will be an outcome in the
particle accelerators. We shall explicitly show, for the first
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time, that rapidly rotating 5D BHs are unstable against
nonaxisymmetric distortion.

II SETTING AND METHODOLOGY

We numerically study the stability against nonaxisym-
metric deformation of a 5D rotating BH of single spin
parameter. Its line element in the Boyer-Lindquist-type
coordinates is [18]

ds2 ¼ �dt2 þ�

�
ðdt� asin2�d’Þ2 þ �

�
dr̂2 þ �d�2

þ ðr̂2 þ a2Þsin2�d’2 þ r̂2cos2�d�2; (1)

where � and a are mass and spin parameters, respectively,

and � :¼ r̂2 þ a2cos2� and � :¼ r̂2 þ a2 ��. r̂ ¼ rh :¼
ð�� a2Þ1=2 is the radius of the event horizon. In five

dimensions, q :¼ jaj=�1=2 has to be less than the unity

(i.e., jaj<�1=2) by the requirement of global hyperbol-
icity. Note that we adopt the geometric units G ¼ 1 ¼ c
throughout this article.

We evolve this BH adopting the so-called quasi-
isotropic coordinate r defined by r̂ ¼ rþ r2h=4r. Here,

the location of the horizon is r ¼ rh=2. With this trans-
formation, the t ¼ const hypersurface becomes spacelike
everywhere for 0 � r <1, and the physical singularity is
not included in the initial surface t ¼ 0. In this coordinate,
the event horizon corresponds to the wormhole throat, and
the sphere denoted by r ¼ 0 represents spacelike infinity of
another asymptotically flat region and becomes a coordi-
nate singularity. However, the puncture approach of nu-
merical relativity (with the appropriate choice of the
conformal factor and gauge conditions) enables us to sta-
bly follow the evolution of BHs not only for 4D spacetimes
[19] but also for 5D ones [20].

Einstein’s equation for a 5D vacuum spacetime is
solved in the higher-dimensional version of the BSSN
(Baumgarte-Shapiro-Shibata-Nakamura) formalism
[20,21] with a fourth-order finite differencing scheme in
space and time. All the equations are solved in the 4þ 1
form with the Cartesian coordinates ðx; y; z; wÞ where w
denotes the coordinate of the extra dimension. The follow-
ing so-called puncture gauge conditions are adopted for the
lapse function � and shift vector �i,

@t� ¼ �1:5�K; (2)

@t�
i ¼ �BB

i; @tB
i ¼ @t~�

i ���1=2Bi; (3)

where Bi is an auxiliary gauge variable, K the trace part of

the extrinsic curvature, ~�i is an auxiliary variable for the
BSSN formalism, and we choose �B ¼ 1=3.

For this BH, rotational motion exists only in the ðx; yÞ
plane. Because we consider the nonaxisymmetric stability
against a bar deformation, the z- and w-axes directions are
equivalent. Thus, a rotational Killing vector ð@=@�Þ� is
present where � ¼ tan�1ðw=zÞ. This fact motivates us to

adopt a cartoon method [20,22] that enables solving 4þ 1
Einstein’s evolution equation in the 3D grid ðx; y; zÞ (see
[20]).
Numerical simulation was performed with two codes.

One is the code reported in [20]. This code prepares a
nonuniform grid for which the region around the BH is
resolved with a high accuracy and the distant region is
covered by a sparse grid spacing. The other is the SACRA5D

code in which an adaptive mesh refinement algorithm is
implemented. This is the code extended from the SACRA

code which was originally developed for simulations of 4D
spacetimes [23]. SACRA5D has been tested by solving the
problems listed in [20]. Several simulations were per-
formed for both codes and we have confirmed that the
two codes provide the same conclusion concerning the
stability of BHs.
Although the numerical solutions show a behavior of

convergence with improving grid resolution, the conver-
gence speed depends strongly on the spin parameter, q. In
this work, we measured the accuracy by monitoring the
area of the apparent horizon by evolving nonperturbed
rotating BHs and determined the required resolution: We

evolved the BHs at least for 50�1=2 and checked required
resolution with which the horizon area remains approxi-
mately constant within 1% error. For q & 0:7, we found

that the grid spacing near horizon �x � 0:03�1=2 is small
enough for this requirement. However, for q * 0:8, the
required value for �x changes steeply: For q ¼ 0:8 with

�x=�1=2 ¼ 0:015 and 0.0225, the errors at t ¼ 50�1=2 are
0.2% and 1.2%, respectively. For q ¼ 0:85 and 0.88,

�x=�1=2 should be smaller than� 0:01 and 0.008, respec-

tively, to guarantee the error within 1% at t ¼ 50�1=2. For

q � 0:89, accurate simulation up to t ¼ 50�1=2 is not

feasible even for �x ¼ 0:008�1=2. Therefore, for this
case, the simulations were performed up to the time at
which numerical error of the apparent horizon area exceeds

3% error (at t < 50�1=2) choosing �x ¼ 0:008�1=2. Even
these short-term simulations are long enough to show that
rapidly rotating BHs are unstable.
To investigate the nonaxisymmetric stability, we ini-

tially superimpose a small nonaxisymmetric perturbation
on the rotating BH solution. Specifically, we perturb a

conformal factor of the 4D space defined by W ¼
detð�ijÞ�1=4 (�ij is the 4D space metric) as

W ¼ W0½1þ A��1ðx2 � y2Þ expð�r2=2r2hÞ�; (4)

where W0 is the nonperturbed solution. In the following,
we choose A ¼ 0:005. Simulations were also done with
values A ¼ 0:01 and 0.02, but the evolution of the per-
turbed part obeys a scaling relation [e.g., W=ðW0AÞ be-
haves approximately in the same manner]. Thus, the
magnitude of A does not change the conclusion in this
paper, as far as A � 1.
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During numerical simulation, we monitor two quantities
for determining the stability against the nonaxisymmetric
deformation. One is a deformation parameter of the BH
horizon. To define this parameter, we calculate the circum-
ferential radii of the apparent horizon along several meri-
dians. Specifically, we measure the proper length of the
meridians (referred to as l’) for ’ ¼ 0 (and �), �=4 (and

5�=4), �=2 (and 3�=2), and 3�=4 (and 7�=4), and then
define the deformation parameter

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl0 � l�=2Þ2 þ ðl�=4 � l3�=4Þ2
q

=l0: (5)

The other is the gravitational waveform in a wave zone
defined along the z axis by

hþ � r3=2��3=4ð~�xx � ~�yyÞ=2; (6)

where ~�ij is the conformal 4D metric. This quantity is

regarded as the þ mode of gravitational waves.
In the 4D case, the amplitude of these quantities de-

creases exponentially with time as far as q < 1, because
the BHs are stable; the damping rate is primarily deter-
mined by the fundamental quasinormal modes. However,
this is not the case in the 5D case (see below).

III RESULTS

Figure 1 plots the evolution of� as a function of time for
q ¼ 0:8–0:89. Irrespective of the values of q, � quickly

increases for t & 10�1=2. This is simply because the per-
turbation initially given relaxes. Indeed, the value of �
after this relaxation phase is of Oð10�3Þ, which is the
same order as the initial perturbation amplitude.
However, the evolution after the relaxation depends
strongly on the values of q. For q � 0:86, the value of �
decreases; in particular, for q � 0:80, this damping occurs
very quickly. By contrast, for q * 0:88, the perturbation

grows exponentially for t=�1=2 * 25. The growth rate does
not depend on the initial perturbation amplitude. Thus, the
BHs of q * 0:88 are dynamically unstable against the

nonaxisymmetric deformation. For q ¼ 0:87, the value of
� grows slowly with time. This suggests that this value is
near the critical value for the onset of this instability.
Figure 2 plots hþ and jhþj as a function of a retarded

time tret � t� r. The amplitude for t * 25�1=2 exponen-
tially increases with time for q ¼ 0:89 as in Fig. 1.
From gravitational waveforms, it is possible to extract

the frequency of gravitational waves, f. Figure 3 plots a
characteristic frequency of gravitational waves as a func-
tion of q. Here, the characteristic frequency is determined
by performing the Fourier transformation of hþðtÞ and then
by identifying its peak. Figure 3 shows that f increases
with q for q � 0:8. This property agrees with that of the
fundamental quasinormal mode for 4D Kerr BHs [24].
Furthermore, the frequency determined for a ¼ 0 gives

f � 0:15=�1=2 which agrees with that obtained by a per-
turbation analysis [25]. Hence, it is natural to consider that
emitted gravitational waves are associated with the quasi-
normal modes of the BHs.
A remarkable fact is that the angular velocity defined by

! :¼ �f is smaller than that of BHs � ¼ a=ðr2h þ a2Þ ¼
a=� for a large value of a. Remember that the total
radiated energy (�E) and angular momentum (�J) ap-
proximately obey a relation !�J ¼ �E, and the first law
of the BH thermodynamics allows us to obtain the variation
in the BH area 	A as 
	A=8� ¼ �	J � 	E where 
 is
the surface gravity of the BH horizon, and 	E and 	J are
the variation of the energy and angular momentum of the
BH. If 	E and 	J are equal to�E and�J, respectively, we
obtain the relation


	A ¼ 8�ð��!Þ	J: (7)

For �>!, 	A becomes positive, and thus, the evolution
by emission of gravitational waves is allowed: A rapidly
rotating BH in five dimensions may be unstable against
gravitational radiation reaction (although this is not a
sufficient condition). This fact seems to be at least a part
of the reason why rapidly rotating BHs are unstable against
nonaxisymmetric deformation.

FIG. 1 (color online). Evolution of deformation parameter �
for a=�1=2 ¼ 0:80–0:89.

FIG. 2. hþ and its absolute value as functions of retarded time
for a=�1=2 ¼ 0:85, 0.87, and 0.89 (dashed, long-dashed, and
solid curves). hþ is extracted for r� � where � is a
gravitational-wave length.
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IV SUMMARY

We showed, for the first time, that rapidly rotating BHs
in 5D vacuum spacetime are unstable against nonaxisym-
metric deformation. The critical value for the spin parame-
ter is � 0:87: The rotating 5D black holes are unstable for

q * 0:87 and are stable for q & 0:87 where q :¼ a=�1=2.
The critical value we find is close to the value predicted by
Emparan and Myers, � 0:85 [15]. This suggests that their
heuristic thermodynamic argument concerning the stability
of higher-dimensional rotating BHs may be reliable.

Unfortunately, the present numerical simulation cannot
clarify the final fate of the unstable BHs, because it is not
easy to maintain the numerical accuracy to follow the
unstable BH for a sufficiently long time. To clarify the
final fate, a simulation with a much better grid resolution is
required. This issue is left for future study.

There will be at least two possible fates for an unstable
BH. One is that the perturbation grows until the unstable
BH fragments into two BHs [15], and the other is that the
growth of the perturbation saturates at a stage when the
emission rate of gravitational waves is large enough to

quickly carry angular momentum of the BHs for stabiliza-
tion. This issue is quite similar to the nonaxisymmetric
dynamical stability of rotating stars in four dimensions: For
many cases, rotating stars are dynamically unstable if the
ratio of rotational kinetic energy to gravitational potential
energy is larger than 0:27 or the ratio of the polar axial
length to the equatorial axial length is smaller than �0:2
[26]. This condition holds irrespective of equations of
state, as far as the degree of differential rotation is not
extremely large (e.g., [27] and references therein).
Dynamically unstable rotating stars evolve after the onset
of the instability via several mechanisms such as angular
momentum transfer and gravitational radiation reaction.
Then they settle to a new stable state. A noteworthy fact
is that fragmentation rarely occurs for stars (for tori, it may
occur).
For the 5D BHs, the ratio of the meridional circum-

ferential length to the equatorial one decreases with q,
and Cm=Ce ¼ 0:38 for q ¼ 0:87. Thus, a BH is unstable
for Cm=Ce & 0:38. For the 4D case, the minimum value of
this ratio is at most Cm=Ce ¼ 0:64 (for the extreme Kerr
BH); all the BHs are not very oblate. This may be the
reason that BHs are stable in four dimensions. These facts
suggest that a sufficiently oblate BH with Cm=Ce & 0:4 is
dynamically unstable against nonaxisymmetric deforma-
tion irrespective of the dimensionality, as in rapidly rotat-
ing stars. Rapidly rotating BHs in any higher dimensions
can have small values of Cm=Ce [2], and thus, this issue
should be also explored by numerical-relativity simulation.
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