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Numerical-relativity simulation is performed for rapidly spinning black holes (BHs) in a higher-

dimensional spacetime of special symmetries for the dimensionality 6 � d � 8. We find that higher-

dimensional BHs, spinning rapidly enough, are dynamically unstable against nonaxisymmetric bar-mode

deformation and spontaneously emit gravitational waves, irrespective of d as in the case d ¼ 5 [M.

Shibata and H. Yoshino, Phys. Rev. D 81, 021501(R) (2010).]. The critical values of a nondimensional

spin parameter for the onset of the instability are q :¼ a=�1=ðd�3Þ � 0:74 for d ¼ 6, � 0:73 for d ¼ 7,

and � 0:77 for d ¼ 8 where � and a are mass and spin parameters. Black holes with a spin smaller than

these critical values (qcrit) appear to be dynamically stable for any perturbation. Long-term simulations for

the unstable BHs are also performed for d ¼ 6 and 7. We find that they spin down as a result of

gravitational-wave emission and subsequently settle to a stable stationary BH of a spin smaller than qcrit.

For more rapidly spinning unstable BHs, the time scale, for which the new state is reached, is shorter and

fraction of the spin-down is larger. Our findings imply that a highly rapidly spinning BH with q > qcrit
cannot be a stationary product in the particle accelerators, even if it would be formed as a consequence of

a TeV-gravity hypothesis. Its implications for the phenomenology of a mini BH are discussed.
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I. INTRODUCTION

Clarifying formation and evolution processes of mini
black hole (BH) in higher-dimensional spacetimes has
become an important issue since a possibility of BH for-
mation in huge particle accelerators was pointed out. If our
space is a 3-brane in a higher-dimensional flat spacetime of
spacetime dimensionality d � 6 [1] or in an anti–de Sitter
(AdS) spacetime of d � 5 [2], the Planck energy could be
of OðTeVÞ that may be accessible with particle accelera-
tors in operation, the CERN Large Hadron Collider (LHC).
In the presence of the extra dimensions, BHs of very small
mass energy * TeV may be produced during the particle
collision in the accelerators because the true Planck energy
may be as low as TeV scale.

A hypothetical phenomenology of a BH produced in the
huge particle accelerator was first discussed in [3,4] (see
[5] for reviews). According to this standard scenario, a
mini BH evolves in the following manner: During the
high-energy particle collision of a sufficiently small impact
parameter and of energy sufficiently higher than the Planck
energy, two particles will merge to form a deformed BH,
and then, it settles to a quasistationary state after emission
of gravitational waves. The typically assumed time scale
for gravitational-wave emission is �10rþ=c (about 10
times of the dynamical time scale) where rþ and c are
the horizon radius and speed of light, respectively. The
quasistationary BH will be subsequently evaporated by the
Hawking radiation [6], because of quantum-field-effects in
a curved spacetime. Much effort has been devoted to
calculating the greybody factor in the Hawking radiation

for improving the prediction of signals in the particle-
collision experiments [7–12] (see also [13] for related
issues).
By contrast, the analyses for BH formation after the

particle collision and subsequent evolution by gravitational
radiation reaction in higher-dimensional spacetime have
not been done yet [but see [14–17] for studies in the four-
dimensional (4D) case]. These phases are expected to be
described well in the context of general relativity [18], but
due to its highly nonlinear nature, any approximation
breaks down. Obviously, numerical-relativity simulation
is the unique approach for studying this phase.
One of the important issues has been to clarify what type

of BH is formed and whether it is stable or not. In the 4D
case, any stationary BH formed in vacuum has to be a Kerr
BH (neglecting the electric charge of the BH) because of
the uniqueness theorem (e.g., [19] for review), and the Kerr
BH has been proven to be stable [20–22] (but see [23] for
remaining issues for a perfect proof). These facts strongly
constrain the possible scenario for mini BH formation and
its subsequent evolution. By contrast, there is no unique-
ness theorem and no proof for the stability of higher-
dimensional BHs (but see [24] for uniqueness of 5D BHs
of the spherical horizon topology). As a result, the standard
scenario described above (i.e., formation, evolution by
subsequent gravitational-wave emission, and evaporation
by the Hawking radiation) is quite uncertain.
A mini BH, if it is formed as a result particle collision in

a higher-dimensional spacetime, will have only one spin
parameter associated with the orbital motion. This can
restrict the possibility for the type of the formed BH.
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However, even in this case, one cannot restrict the BH type
in higher dimensions. For example, in the 5D case, there
are many types of BHs: e.g., usual Kerr-type BH (Myers-
Perry BH [25]) for which surface of the event horizon is S3,
fat and thin black rings for which surface has a ringlike
shape [26]. Recently, black di-ring [27] and black-saturn
[28] solutions were derived as well (see also [29] for other
exact solutions of 5D black objects but with two spin
parameters). Several authors [8,30,31] discuss a possibility
of the black-ring formation in particle collisions. Although
it is still an open question, the analysis of apparent horizons
in [30] indicates that black-ring formation is not very likely
in two point-particle system.

Higher-dimensional BHs with a high spin parameter are
known to be unstable against axisymmetric perturbations.
Emparan and Myers [32] speculated that rapidly spinning
BHs with the spacetime dimensionality d � 6 are subject
to the Gregory-Laflamme instability [33], because they
have a high degree of ellipticity (i.e., the black membrane
limit). Very recently, Dias et al. and Murata et al. indeed
showed, by a linear perturbation analysis, that rapidly
spinning BHs for 6 � d � 9 are unstable against axisym-
metric multiple-ring-like deformation [34,35] (see also
related papers [36]).

On the other hand, little is known for the stability of
spinning BHs against nonaxisymmetric perturbations.
Emparan and Myers [32] also speculated, based on a
thermodynamic argument, that rapidly spinning BHs with
a sufficiently high spin may be unstable against nonaxi-
symmetric perturbation for d � 5, because the horizon
area (the so-called entropy) of a rapidly spinning BH is
often smaller than that of two boosted Schwarzschild BHs
with the same total energy and angular momentum.
However, the correspondence between the thermodynam-
ical and dynamical instabilities has not been well estab-
lished. Authors in [37] guess, based on a hydrodynamic/
gravity correspondence argument, that a nonaxisymmetric
instability may occur for spinning BHs with spin smaller
than the critical value for the onset of axisymmetric insta-
bilities. However, a rigorous and quantitative analysis is
absent in these studies. To strictly clarify what the criterion
for the onset of nonaxisymmetric instabilities is and how
the instabilities occur and proceed, we have to solve
Einstein’s equation. Recently, we performed a numerical-
relativity simulation for 5D spinning BHs for the first time,
and found that BHs spinning rapidly are dynamically
unstable against nonaxisymmetric bar-mode deformation

if the spin parameter satisfies the condition q :¼ a=�1=2 *
0:87 (see Sec. II for the definitions of q, a, and�) [38]: An
interesting fact is that the critical value we found is close to
the value predicted by Emparan and Myers [32], � 0:85,
suggesting that their argument relying on BH thermody-
namics may be reliable (although we show in this paper
that this is not the case for d � 6).

In this paper, we study the stability of rapidly spinning
BHs with dimensionality d � 6 using a new numerical-

relativity code SACRA-ND, which is extended from SACRA

[39] and SACRA5D [38]. In this code, Einstein’s equation for
higher-dimensional spacetimes of any dimensionality for
d � 5 is fully solved without imposing axial symmetry.
Thus, in this work, we do not have to assume that the
amplitude of the perturbation from the background axi-
symmetric BH solution is small nor restrict attention to an
axisymmetric perturbation. The merits of this approach are
that (i) a wide variety of instabilities can be investigated
with no ambiguity and with no approximation (except for
finite-difference approximation); (ii) the final fate after the
onset of the instabilities can be determined because the
amplitude of the perturbation from the background BH
solution does not have to be small; and (iii) the criterion
for the onset of the instabilities is quantitatively deter-
mined. In this paper, we focus on the six-, seven-, and
eight-dimensional (6D, 7D, and 8D) BHs of single spin
parameter because such a class of BH is a possible out-
come in the particle accelerators. We shall show, for the
first time, that the rapidly spinning BHs are dynamically
unstable against bar-mode deformation irrespective of the
dimensionality. We, furthermore, evolve the 6D and 7D
unstable BHs for a long time until they settle to a new
stable state. This enables to quantitatively clarify a possible
(classical) evolution process of an unstable mini BH for the
first time.
The paper is organized as follows. In Sec. II, the for-

mulation for solving Einstein’s evolution equation in
higher dimensions is described. In Sec. III, a method for
evolving Einstein’s equation in the spacetime of a special
symmetry is summarized. In Sec. IV, we present the nu-
merical results focusing on the criterion for the onset of the
bar-mode dynamical instability of rapidly spinning BHs
and the fate after the onset of the instability. We will show
that the rapidly spinning BHs, which have a spin larger
than the critical value, are unstable against spontaneous
emission of quadrupole gravitational waves. We will also
show that all the unstable BHs, considered in this paper,
evolve as a result of gravitational radiation reaction, set-
tling to a stable BH of spin smaller than the critical value.
In Sec. V, the conditions for the spontaneous gravitational-
wave emission and associated spin-down process are clari-
fied. Section VI is devoted to a summary and discussion. In
particular, implications of our results for the phenomenol-
ogy of a mini BH are discussed in detail.
In Secs. I, II, III, IV, V, and VIB, we adopt the units in

which c ¼ 1. Only in Sec. VIC, the natural units c ¼ @ ¼
1, where @ is the Planck constant, are adopted. d denotes
the spacetime dimension with n :¼ d� 4 being the num-
ber of the extra dimension, and Gd denotes the
d-dimensional gravitational constant. The Cartesian coor-
dinates ðx; y; z; wqÞ are used for the space coordinates:

xa ¼ ðx; y; zÞ denote the usual three dimensional coordi-
nates, and wq (q ¼ 1� n) the coordinates of extra dimen-

sion. t denotes the time. Indices i, j, k, and l denote the
general spatial coordinates.
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II. FORMULATION

We consider a vacuum higher-dimensional spacetime of
SOðnþ 1Þ symmetry for which the line element is written
as

ds2 ¼ �ð�2 � �k�
kÞdt2 þ 2�kdx

kdtþ �abdx
adxb

þ �nnd�
2
n; (1)

where � is the lapse function, �k the shift vector, �ij the

space metric, and d�2
n the line element of n-dimensional

unit sphere. �nn is a conformal factor for the extra-
dimensional metric components. xa denotes ðx; y; �Þ where
� is a radial coordinate

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ Xn

q¼1

w2
q

vuut : (2)

The geometric quantities in this symmetric spacetime de-
pend only on t, x, y, and �. (Note that by SOðnþ 1Þ
symmetry, we imply that the subspace of ðz; w1; � � � ; wnÞ
coordinate directions is isotropic.)

The line element of a Myers-Perry BH of single spin
(i.e., the Kerr-type BH) in the Boyer-Lindquist-type coor-
dinates is [25]

ds2 ¼ �dt2 þ �

r̂d�5�
ðdt� asin2�d’Þ2 þ �

�
dr̂2 þ �d�2

þ ðr̂2 þ a2Þsin2�d’2 þ r̂2cos2�d�2
n; (3)

where � and a are mass and spin parameters, respectively,
� :¼ r̂2 þ a2cos2�, and � :¼ r̂2 þ a2 ��r̂5�d. Note that
the mass and angular momentum of this BH are

M ¼ ðd� 2Þ�d�2�

16�Gd

; (4)

J ¼ 2

d� 2
Ma; (5)

where�d�2 is the area of ðd� 2Þ-dimensional unit sphere,

i.e., �d�2 ¼ 2�ðd�1Þ=2=�½ðd� 1Þ=2�. Thus, the line ele-
ment denoted by Eq. (1) includes the spinning BH solution
(3), and nonstationary, nonaxisymmetric deformed states
can be described as well.

In numerical simulation, we adopt the Cartesian coor-
dinates ðx; y; z; wqÞ instead of the curvilinear coordinates;

e.g., for d ¼ 7, the relations between ðz; w1; w2; w3Þ and
radial and angular coordinates ð�; c ; ’1; ’2Þ are

z ¼ � cosc ; (6)

w1 ¼ � sinc cos’1; (7)

w2 ¼ � sinc sin’1 cos’2; (8)

w3 ¼ � sinc sin’1 sin’2: (9)

Then, Einstein’s evolution equation is solved in the
Cartesian coordinates using the so-called cartoon method
[40,41]. Namely, we solve the equations in the ðx; y; zÞ
hyperplane; the hyperplane of c ¼ ’i ¼ 0. The method
used in the present work will be described in the next
section.
To solve Einstein’s evolution equation in the Cartesian

coordinates, we adopt a multidimensional version of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism
[40,42] (see also [43] for a different formalism). We re-
write the line element in the form,

ds2 ¼ �ð�2 � �k�
kÞdt2 þ 2�kdx

kdtþ ��1 ~�ijdx
idxj;

(10)

where � ¼ ½detð�ijÞ��1=ðd�1Þ is a conformal factor and the

conformal spatial metric ~�ij satisfies the condition

detð~�ijÞ ¼ 1. In addition, we define the following quanti-

ties from the extrinsic curvature Kij,

~A ij :¼ �

�
Kij � 1

d� 1
�ijK

�
; (11)

K :¼ Kij�
ij; (12)

as well as an auxiliary variable

~� i :¼ �@j ~�
ij: (13)

Then, the variables ð�; ~�ij; K; ~Aij; ~�
iÞ are evolved solving

the following equations [40]:

ð@t � �k@kÞ� ¼ 2

d� 1
�ð�K � @i�

iÞ; (14)

ð@t � �k@kÞ~�ij ¼ �2� ~Aij þ ~�ik@j�
k þ ~�jk@i�

k

� 2

d� 1
~�ij@k�

k; (15)

ð@t � �k@kÞK ¼ �DiD
i�þ �

�
~Aij ~Aij þ K2

d� 1

�
; (16)

ð@t � �k@kÞ ~Aij ¼ �½�ðDiDj�ÞTF þ �RTF
ij �

þ �ðK ~Aij � 2 ~Aik
~Ak
jÞ þ ~Aik@j�

k

þ ~Akj@i�
k � 2

d� 1
~Aij@k�

k; (17)

ð@t � �k@kÞ~�i ¼ �2 ~Aij@j�� ~�j@j�
i þ 2

d� 1
~�i@j�

j

þ d� 3

d� 1
~�ik@k@j�

j þ ~�jk@j@k�
i

þ 2�

�
~�i
jk
~Ajk � d� 2

d� 1
~�ij@jK

� ðd� 1Þ
2

@j�

�
~Aij

�
: (18)
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Here, Di and Rij denote the covariant derivative and the

Ricci tensor with respect to �ij, and TF denotes taking the

trace-free part.
For evaluating RTF

ij , we first decompose Rij as

Rij ¼ ~Rij þ R
�
ij; (19)

where ~Rij is the Ricci tensor with respect to ~�ij and we

write it in the following form

~R ij ¼ �1
2
~�kl ~�ij;kl þ 1

2ð~�ki@j~�
k þ ~�kj@i~�

kÞ
� 1

2½ð@l ~�ikÞ@j ~�kl þ ð@l ~�jkÞ@i ~�kl � ~�l@l ~�ij�
� ~�l

ik
~�k
jl: (20)

Here, ~�i
jk is the Christoffel symbol with respect to ~�ij. R

�
ij

is sum of the terms associated with �,

R
�
ij ¼

ðd� 3Þ
2�

~Di
~Dj�� ðd� 3Þ

4

ð ~Di�Þ ~Dj�

�2

þ ~�ij

�
1

2�
~Dk

~Dk�� d� 1

4�2
ð ~Dk�Þ ~Dk�

�
: (21)

Then, we obtain

RTF
ij ¼ ~Rij � 1

d� 1
~�ij ~�

kl ~Rkl

þ d� 3

2�

�
~Di

~Dj�� 1

d� 1
~�ij

~Dk
~Dk�

�

� d� 3

4�2

�
ð ~Di�Þ ~Dj�� 1

d� 1
~�ijð ~Dk�Þ ~Dk�

�
: (22)

For the 4D case, the so-called puncture gauge conditions
are known to be robust for evolving BH spacetime with the
BSSN formalism [44]. This is also the case for the higher-
dimensional spacetime [40]. However, the freely chosen
coefficients in this gauge have to be carefully determined
for the stable and long-term evolution. Specifically, we
choose the equations in the form

@t� ¼ �1:5�K; (23)

@t�
i ¼ 0:3Bi; (24)

@tB
i ¼ ð@t � �k@kÞ~�i � 	B�

�1=ðd�3ÞBi; (25)

or

@tB
i ¼ @t~�

i � 	B�
�1=ðd�3ÞBi; (26)

where Bi is an auxiliary function, and 	B is a nondimen-
sional constant for which we give different values for
different number of d because a small value of 	B is not
allowed for a high number of d or for a high spin for
achieving the long-term stable numerical evolution. For
d ¼ 5, we gave 	B ¼ 1 in the previous work [38]. In the
present work, we employ	B ¼ 2–5 for d ¼ 6, 3–5 for d ¼
7, and 8 for d ¼ 8. For unstable BHs, a large value of 	B is

favored in performing a long-term simulation until the
growth of the instability saturates and subsequently the
deformation damps. We tried to use both Eqs. (25) and
(26), and found that both of them work well as far as BH
spin is not extremely large. For a very high spin (q * 1),
however, Eq. (26) works better than Eq. (25) for a long-
term stable simulation.

III. MODIFIED CARTOON METHOD

We solve Einstein’s evolution equation in the spacetime
of SOðnþ 1Þ symmetry with n ¼ d� 4 using the
Cartesian coordinates ðx; y; z; w1; � � � ; wnÞ with the BSSN
formalism. The SOðnþ 1Þ symmetry is imposed for the
ðz; w1; � � � ; wnÞ subspace [i.e., the subspace of
ðz; w1; � � � ; wnÞ coordinate directions is assumed to be
isotropic]. The method is qualitatively the same as those
described for 5D spacetime [40]. Namely, we solve the
equations in the ðx; y; zÞ hyperplane (i.e., w1 ¼ w2 ¼
� � � ¼ wn ¼ 0 hyperplane), and derivatives with respect
to these coordinates are evaluated by a straightforward
finite differencing. On the other hand, the derivatives
with respect to the extra-dimensional coordinates, wq (q ¼
1 � � � n), are evaluated using symmetry relations. In the
previous paper [40], we adopted the original prescription
in the cartoon method often employed for axisymmetric
spacetimes [41]: We prepare 4 additional grid points for the
fifth coordinate, w, i.e., 2��w and ��w. Then, the
values for all the geometric quantities at these grid points
are determined using the symmetry relation associated
with the Killing vector @=@c where c ¼ tan�1ðw=zÞ,
and then, the derivatives with respect to w are evaluated
using a fourth-order finite differencing.
This original method is quite simple for code implemen-

tation. However, it is memory-consuming in higher-
dimensional simulations, because we have to increase the
grid number by a factor of 5 whenever the number of extra
dimensions is increased. To save the memory used in
computation, we employ a different method in which the
derivatives with respect to wq are replaced to those with

respect to zwithout preparing additional grid points for the
extra-dimensional direction. In the following, we describe
the new method denoting the scalar, vector, and tensor by
Q, Qi, and Qij, respectively, and decomposing the sub-

scripts i, j into a, b ¼ x, y, z and wq (q ¼ 1� n).

In the ðx; y; zÞ hyperplane, the following relations hold
because of the assumed isotropy:

Qww :¼ Qw1w1
¼ � � � ¼ Qwnwn

(27)

and

Qwq ¼ Qawq
¼ Qwqwr

¼ 0 ðq � rÞ: (28)

The derivatives with respect to xa of Eq. (28) are trivially
zero. For other derivatives, the following relations hold:
For the scalar quantities,
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Q;wq
¼ 0; Q;wqwr

¼ ðQ;z=zÞ
qr; (29)

for the vector quantities,

Qa
;wq

¼ Qa
;bwq

¼ Qwp
;wqwr

¼ 0;

Qwq
;wr

¼ ðQz=zÞ
qr; Qwq
;wra ¼ ðQz=zÞ;a
qr;

QA
;wqwr

¼ ðQA
;z=zÞ
qr; Qz

;wqwr
¼ ðQz=zÞ;z
qr;

(30)

and for the tensor quantities,

Qab;wq
¼ Qwpwq;wr

¼ 0; QAwq;wr
¼ ðQAz=zÞ
qr;

Qzwq;wr
¼ ½ðQzz �QwwÞ=z�
qr;

QAB;wqwq
¼ QAB;z=z; QAz;wqwq

¼ ðQAz=zÞ;z;
Qzz;wqwq

¼ Qzz;z=z� ð2=z2ÞðQzz �QwwÞ;
Qwqwq;wqwq

¼ Qww;z=zþ ð2=z2ÞðQzz �QwwÞ;
Qwqwq;wrwr

¼ Qww;z=z ðq � rÞ:

(31)

Here, A, B ¼ x or y (not z) and 
qr is the Kronecker’s

delta. We did not evaluateQij;awq
andQij;wqwr

(q � r) even

if they are not vanishing, because they do not appear in the
BSSN equations with SOðnþ 1Þ symmetry: Note that the
second derivatives appear only in the term
�ð1=2Þ~�kl@k@l ~�ij of Eq. (20) and ~�kl satisfies the relation

of Eq. (28). We also do not have to evaluate Qawq;ij and

Qwqwr;ij (q � r), because they appear only in the awq and

wqwr components of Eq. (17) with Eq. (20) which do not

have to be evolved, as mentioned later.
Some of the above prescriptions can be used only for

z � 0 in computer because of the presence of the terms
associated with 1=z, although these terms are actually
regular. Thus for z ¼ 0, the following relations, which
are found from SOðnþ 1Þ symmetry, are employed:

Q;wqwq
¼Q;zz; Qwq

;wq
¼Qz

;z; QA
;wqwq

¼QA
;zz;

Qz
;wqwq

¼ 0; QAB;wqwq
¼QAB;zz; QAz;wqwq

¼ 0;

QAwq;wq
¼QAz;z; Qzwq;wq

¼ 0; Qzz;wqwq
¼Qww;zz;

Qwqwq;wqwq
¼Qzz;zz; Qwqwq;wrwr

¼Qwqwq;zz: (32)

The final remark is on the treatment of the advection
terms such as �k@k ~�ij: Because �wq ¼ 0 for the wq ¼ 0

hyperplane in the present case, the advection terms asso-
ciated with �wq is always vanishing in the computational
domain chosen in our method.

With these prescriptions, all the derivatives associated
with the extra-dimensional coordinates can be replaced to
the finite-differencing terms with respect to xa or with no
finite differencing. It is worthy to note that total amount of
computational operation is only slightly larger than that for
the 3þ 1 case.

Because of the relations (27) and (28) that follow from
SOðnþ 1Þ symmetry, the implementation for the higher-

dimensional contribution can be even simplified: We have
only to evolve the scalar equations, the ‘‘a’’ components of
the vector equations, and the ‘‘ab’’ components and (one
of) the wqwq components of the tensor equations (i.e., the

equations for ~�ij and ~Aij) of the BSSN formalism.

Therefore, we need to increase only one component for

~�ij and ~Aij irrespective of the dimensionality. In the evo-

lution equation, we often have terms such as �i
;i or

~�kl ~�ak;l, which are evaluated by

�i
;i ¼ �a

;a þ n�w1
;w1

; (33)

~� kl ~�ak;l ¼ ~�cd ~�ac;d þ n~�w1w1 ~�aw1;w1
; (34)

where the prescriptions shown in Eqs. (29)–(32) are used
for evaluating the second terms in the right-hand side.
These facts imply that once a 5D code is implemented, it
is quite straightforward to extend it to a code for d � 6,
even when we do not employ a curvilinear coordinate
system [43].

IV. NUMERICAL SIMULATION

A. Setting and methodology

We prepare 6D–8D Myers-Perry BHs of single spin
parameter [see Eq. (3) for the line element in the Boyer-
Lindquist coordinates] as the initial condition. Because the
Boyer-Lindquist coordinates are not suitable for the
Cauchy evolution of BH spacetimes, we transform the
radial coordinate introducing a quasiradial coordinate r;
we rewrite the line element in the form (see [45] for the 4D
case)

ds2 ¼�dt2 þ �

r̂d�5�
ðdt� asin2�d’Þ2 þ�ðdr2 þ r2d�2Þ

þ ðr̂2 þ a2Þsin2�d’2 þ r̂2cos2�d�2
n; (35)

where� is a conformal factor for the ðr; �Þ plane. Namely,
the two-dimensional metric for ðr; �Þ is written in a con-
formally flat form, and the following relations are satisfied:

�1=2dr ¼ �ð�=�Þ1=2dr̂; (36)

�1=2r ¼ �1=2: (37)

Then, r is defined by

r ¼ rh exp

�
�
Z r̂

rþ

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2 ��R5�d

q �
; (38)

where the plus and minus signs are adopted for the regions
r � rh and r � rh, respectively. rþ is the horizon radius in
the Boyer-Lindquist coordinates and a positive root of
r2þ þ a2 ¼ �r5�dþ . rh is the horizon radius in the quasir-
adial coordinate, which is determined by the condition r ¼
r̂ for r̂ ! 1. A fourth-order numerical integration is per-
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formed for the integral of Eq. (38) using the Bode’s rule
[46] because it cannot be analytically integrated in general.

With this transformation, the t ¼ const hypersurface
becomes spacelike everywhere for 0 � r <1, and further-
more, the singularity, which is originally located at r̂ ¼ 0,
is excluded. More specifically, the spacelike hypersurface
has an inversion symmetry with respect to r ¼ rh hyper-
sphere (i.e., this hypersphere is the wormhole throat), and
thus the ‘‘point,’’ r ¼ 0, represents the spacelike infinity of
(say) another world beyond the horizon. Although this
point is not a physical singularity, it becomes a coordinate
singularity, because� is proportional to r�4 irrespective of
the number of d. However, the puncture approach [specifi-
cally, appropriate choice of the conformal factor in nu-

merical simulation, � ¼ ½detð�ijÞ��1=ðd�1Þ, and choice of

the puncture gauge (23)–(25)] enables to stably evolve a
BH spacetime with no difficulty [40,44].

The condition for the onset of instabilities for spinning
BHs depends on a nondimensional spin parameter.
Because the stability does not depend on the magnitude
of �, all dimensional quantities can be scaled out of the
problem appropriately normalizing them by using �:

Specifically, �1=ðd�3Þ has the dimension of length and
time in the c ¼ 1 units (and is often referred to as rs,
e.g., [10]), and thus, we should define a nondimensional
spin as

q :¼ a

�1=ðd�3Þ : (39)

The stability of a Myers-Perry BH depends only on this
quantity. Note that this is different from a	 :¼ q=rþ which
is often used as another nondimensional spin parameter
[4,10].

Numerical simulation is performed in the ðx; y; zÞ coor-
dinates, and thus, the initial condition is prepared by
performing a coordinate transformation from ðr; �; ’Þ to
ðx; y; zÞ. In addition, we add a small bar-mode perturbation
to the conformal factor � as

� ¼ �0

�
1þ A

x2 � y2

�2=ðd�3Þ exp
�
� r2

2r2h

��
; (40)

where �0 is the nonperturbed solution and A the initial
perturbation amplitude, A 
 1. We focus here on the bar
mode because it is often the most relevant unstable mode
for self-gravitating, dynamically unstable rotating systems
such as a rotating star [47]. We chose the value of A for a
wide range from 10�6 to 0.02 and found that for unstable
BHs, the growth rate of the unstable mode does not depend
on the initial magnitude of A. Taking into account this
result, in a long-term evolution of unstable BHs for study-
ing the nonlinear growth of the unstable mode, we choose a
relatively large value of A ¼ 0:005 or 0.02 to save compu-
tational costs. It should be also pointed out that the nu-
merical error accumulates with time and a significant
resolution is needed to suppress it. This implies that if a

simulation was started with a very small value of A, quite
expensive computational costs would be required to accu-
rately follow the nonlinear growth of the perturbation.
Initially, the lapse function is chosen as � ¼ �. With

this modification, � becomes positive except for r ¼ 0
where � ¼ 0 (near r ¼ 0, � is proportional to r4 with
this choice). On the other hand, the shift vector is not
modified; we choose the same shift as in the Myers-Perry
BH initially.
We solve Einstein’s evolution equation in the BSSN

formalism using a new code, SACRA-ND, in which an
adaptive mesh refinement (AMR) algorithm is imple-
mented in the same manner as in SACRA [39]. Because
we solve the higher-dimensional equations only with the
ðx; y; zÞ coordinates, the methods of interpolation, extrapo-
lation, and evolution for the grid structure in SACRA-ND are
totally the same as those in SACRA: All the spatial deriva-
tives with respect to xa ¼ ðx; y; zÞ are evaluated using a
centered fourth-order finite differencing except for the
advection term such as �k@k� for which a fourth-order
upwind scheme is adopted. The time evolution is carried
out using the standard fourth-order Runge-Kutta method
[46]. The reader may refer to [39] for details about the
numerical methods.
For the AMR scheme, we prepare 6 refinement levels in

the present numerical simulation. As a test, we performed
several simulations enlarging the computational domain
with 7 refinement levels while the grid resolution in the
finest level is unchanged. We found that the results shown
in Sec. IVare essentially independent of the location of the
outer boundary. Computational domain for each refine-
ment level has a half cubic shape which covers [� Ll:Ll]
for x and y, and [0:Ll] for z; we assume the equatorial plane
symmetry. Here, Ll denotes the location of the refinement
boundary for the lth refinement level with l ¼ 0–Nl and
Nl ¼ 5 in the present work. We note that in SACRA and
SACRA-ND, six grid points are prepared outside the refine-

ment boundaries for buffer zone in each refinement level,
following [48]. The relation Ll ¼ 2Llþ1 is imposed for
SACRA-ND. Irrespective of l, we assign 2N þ 1 vertex-

centered grid points for [� Ll:Ll] where N was chosen
to be 30, 40, and 50 for checking convergence: We moni-
tored the violation of the Hamiltonian and momentum
constraints, conservation of gravitational mass, and con-
servation of the area and spin of BHs (for stable model),
and checked that the convergence with improving the grid
resolution is achieved. The grid spacing is Ll=N and LNl

is

chosen to be 1:2�1=ðd�3Þ irrespective of the number of d.
For the best resolved run, the apparent horizon radius is
covered by 30–40 grid points for rapidly spinning BHs: We
note that the initial coordinate radii of the BH horizon,

rh=�
1=ðd�3Þ, are in the range 0.584–0.630 (q ¼ 1:143� 0,

minimum at q� 1) for d ¼ 6, 0:750� 0:707 (q ¼
1:013� 0) for d ¼ 7, and 0:812� 0:758 (q ¼
0:832� 0) for d ¼ 8, respectively. Because of our choice
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of the puncture gauge, this coordinate radius increases by a
factor of 1.3–1.5 during evolution.

A steep gradient always appears for geometric quantities
near the origin for rapidly spinning BHs in the puncture
gauge, and this often causes a problem for stably evolving
the BHs, although such region is not important for studying
the stability of the BH at all. Thus, we employ a very
simple excision method for discarding this region.

Specifically, for r � rex, we set ~�ij ¼ 
ij and ~Aij ¼ K ¼
0. Other quantities,�,�k,�, and ~�i, are solved without any

prescription. In this work, rex is chosen to be 0:3�
1=ðd�3Þ or

0:4�1=ðd�3Þ which is typically�30%–40% of the apparent
horizon radius; thus, the excised region is well inside the
BH horizon. Because no information escapes from the BH
horizon and there are many grid points covering the inside
of apparent horizon, the results are insensitive to the choice
of rex as far as it is sufficiently small. We note that this
method is acceptable for the case that an unstable BH
deforms by a moderate degree (for 	 & 0:5; see
Sec. IVB for definition of 	). For a highly nonlinear
deformation, however, we will have to develop other pre-
scriptions for handling the steep gradient near the central
region, which is beyond the scope of this paper.

B. Numerical results

1. Critical spin for bar-mode instability

During numerical simulation, we determine the apparent
horizon and calculate its area and circumferential radii to
investigate the properties of the unstable BHs. We also
extract gravitational waves of quadrupole mode in a local
wave zone.

To determine the stability of a BH against bar-mode
deformation, we monitor two quantities. One is a deforma-
tion parameter of the BH horizon. To define this parameter,
we first calculate circumferential radii of the apparent
horizon along several meridians. Specifically, we measure
the proper length of the meridians for ’ ¼ 0 (and �), �=4
(and 5�=4), �=2 (and 3�=2), and 3�=4 (and 7�=4); the
proper length of each meridian for a given value of ’ð<�Þ
is defined by

l’ ¼ 2
Z �=2

0
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���ð’Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���ð’þ �Þ

q
Þd�: (41)

Then, we define a bar-mode deformation parameter

	 :¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0 � l�=2Þ2 þ ðl�=4 � l3�=4Þ2

q
l0 þ l�=2

: (42)

The value of 	 is zero for an axisymmetric apparent
horizon, and increases as the deviation from the axial
symmetry is enhanced. Thus, 	 is an indicator of non-
axisymmetric bar-mode deformation. A drawback of the
diagnostic with this quantity is that the apparent horizon is
a coordinate-dependent notion, and thus, 	 may not ex-

actly trace the deformation of the BH, although the appar-
ent horizon agrees with the event horizon for a stationary
spacetime, and hence, for 	 
 1, they are likely to agree,
at least approximately, with each other.
The other more physical quantity for measuring the

deformation of a BH is gravitational waveform observed
in a wave zone. This quantity should be coordinate-
invariant, and thus, tells us whether the BH spacetime is
stable or not with no ambiguity. In this work, we monitor a
dimensionless form of gravitational waves

hþ :¼ ~�xx � ~�yy

2

�
r

�1=ðd�3Þ

�ðd�2Þ=2
(43)

h� :¼ ~�xy

�
r

�1=ðd�3Þ

�ðd�2Þ=2
(44)

along the z-axis. Here, r is the coordinate distance from the
center, and hþ and h� are regarded as the plus (þ ) and
cross (� ) modes of quadrupole gravitational waves in the
wave zone.
Figure 1(a) plots the evolution of 	 for d ¼ 6 and for the

initial spin qi ¼ ai=�
1=3 ¼ 0:674–1:039 with A ¼ 0:005.

This shows that for t=�1=3 * 10, the value of 	 increases
or decreases in an exponential manner as

	 ¼ 	0e
t=�; (45)

where � is the growth time scale and 	0 is a constant.

Figure 1(b) plots the growth rate, ��1, in units of��1=3 as a
function of qi. We determine � by the least-square fitting of

the curve of ln	with linear lines for 15 � t=�1=3 � 100 or

for the data of 15 � t=�1=3 and 	 � 0:1. These figures
show that for qi * 0:75, 	 grows exponentially with time,
and otherwise, it damps exponentially. Therefore, the BHs
with qi * 0:75 are dynamically unstable against bar-mode
deformation [the critical value, qcrit, is found to be� 0:743
by interpolation; cf. Fig. 1(b)]. Because they are dynami-
cally unstable, such BHs have a quasinormal mode with a
negative value of the imaginary part of eigen angular
frequency, !I :¼ Imð!QNÞ, and the bar-mode deformation

grows in proportional to ei!QNt / e�!It. On the other hand,
the BH with qi & 0:74 is stable, and thus, !I are positive
for any mode (strictly speaking, there might exist a mode

of !I < 0 with j!Ij less than �0:01��1=3 because we
performed the simulations only for a finite duration of

order 100�1=3).
Figure 1(b) shows that the growth rate of the instability,

��1, increases monotonically with the spin q, and approxi-
mately linearly in q for 0:74 � q & 1. The growth rate
(��1 or !I) is approximately described as C�ðq� qcritÞ
where C� is a constant � 0:51��1=3.
The growth time scale of the bar-mode deformation for

the BHs of spin slightly larger than qcrit is of order 100�
1=3

(the damping time scale for a stable BH with q & qcrit is
also of this order). This is much longer than the spin period
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of the BHs defined by 2�=�H ¼ Oð10�1=3Þ where �H ¼
a=ðr2þ þ a2Þ is the angular velocity of the BH horizon.
Thus, the instability grows slowly with a time scale much
longer than the dynamical time scale �rþ=c for q� qcrit.
For a much larger value of q, however, the growth time
scale is much shorter: We find that � is as short as 2�=�H

for q � 0:95, and as �=�H for q � 1:15. Simply extrap-
olating the approximately linear relation for ��1ðqÞ, � is
likely to be much shorter than 2�=�H for q � 1.
Implications of these properties for the evolution of rapidly
spinning BHs will be discussed in Secs. VB and VI.

Figure 2(a) plots the long-term evolution of 	 for d ¼ 6
and for qi ¼ 0:801 with several magnitudes of initial per-
turbation (A ¼ 10�6, 0.001, 0.005, and 0.02) and for differ-
ent grid resolutions (N ¼ 30, 40, and 50 for A ¼ 0:005,
and N ¼ 40 and 50 for A ¼ 0:02). This shows that the
growth rate is independent of the initial perturbation mag-
nitude, implying that the instability sets in irrespective of
initial perturbation; even from an infinitesimally small
perturbation, the instability grows spontaneously. The
growth rate depends weakly on the grid resolution; for a
poor grid resolution (N ¼ 30), the growth rate is under-
estimated. However, for N � 40, it appears to approxi-
mately converge, and thus, the simulations with N � 40

(grid spacing smaller than 0:03�1=3) have an acceptable
resolution.

After the value of	 reaches the maximum, the growth of
the instability terminates, and then, 	 damps exponentially
with time. The reason for this is that during the nonlinear
growth of the bar-mode deformation, gravitational-wave
emission is enhanced, and energy and angular momentum
of the BHs are carried away. As a result, the BH spin

parameter, q, decreases and at the saturation, it reaches a
stable state with q < qcrit, for which the sign of the imagi-
nary part of eigen angular frequency for the corresponding
quasinormal mode changes to be positive. The evolution of
the BH spin will be analyzed in detail in Sec. IVB 2. Here,
we show an indirect evidence that this interpretation is
correct: The saturation value of 	 is larger for the BHs of
larger initial spin, because the required spin-down fraction
is qi � qcrit. Figure 2(b) plots the evolution of 	 for A ¼
0:02 and for relatively small initial spins, qi ¼ 0:821,
0.801, and 0.781. Figure 2(c) is the same as Fig. 2(b) but
for large initial spins qi ¼ 0:878, 0.933, 0.986, and 1.039
with A ¼ 0:005. These clearly illustrate that for the larger
initial spin, a BH has to emit more gravitational waves for
spinning down to reach a stable BH, and hence, the non-
linear growth of the bar-mode deformation has to continue
until a high saturation value of 	 is reached. Figure 2(d)
plots the maximum value of 	, 	max, as a function of qi.
This clearly shows that the value of 	max increases sys-
tematically with qi: The relation between 	max and qi is
approximately written in the form (68) (see Sec. VI B for
an approximate derivation of this relation). This result
suggests that for qi � 1, the BH may reach a highly
deformed state with 	� 1 (although we were not able to
evolve such ultra spinning BHs in the present work.)
The numerical results obtained in this paper are approxi-

mately derived using a semianalytic calculation, as illus-
trated here. Based on the analytic calculations, we will
show in Sec. V that the BH spin should be decreased by
gravitational radiation reaction.
It is worthy to note that for the larger initial spin qi � 1,

the damping time scale for the bar-mode deformation after
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FIG. 1 (color online). (a) Evolution of deformation parameter 	 for d ¼ 6 and for the initial spin qi ¼ a=�1=3 � 1:039, 0.986,
0.933, 0.878, 0.821, 0.801, 0.781, 0.761, 0.750, 0.740, 0.718, and 0.674 (from the upper to lower curves) with A ¼ 0:005. (b) The
growth rate of 	, 1=�, in units of ��1=3 as a function of q (solid curve). The dashed curve denotes�H=2�. For qi * 0:75, the value of
	 increases exponentially with time, and otherwise, an exponential damping is seen. For qi ¼ 0:750 (thick solid curve in panel (a)) and
0.740 (below the curve of qi ¼ 0:750), the growth and damping rates of 	 are quite small, indicating that these BHs are close to the
marginally stable state.

MASARU SHIBATA AND HIROTAKA YOSHINO PHYSICAL REVIEW D 81, 104035 (2010)

104035-8



the saturation is reached depends weakly on the initial spin:
The time scale (the duration until 	 � 10�3 is reached) is

�100�1=3. This seems to be due to the fact that the damp-
ing time scale depends primarily on the BH state after the
saturation is reached; i.e., the property of a BH of spin q &
qcrit determines the damping time scale. The damping time

duration is fairly long �100�1=3, implying that the un-
stable BHs always have to spend a long time until they
reach a stationary, stable state.

Figure 3(a) plots the evolution of 	 for d ¼ 7 and qi ¼
a=�1=4 ¼ 0:719–0:960. This shows that for qi * 0:735, 	
grows exponentially with time, and otherwise, it damps
exponentially. Figure 3(b) displays the growth rate, ��1, in

units of ��1=4, and shows that it monotonically increases,
approximately linearly with q for 0:719 � q & 1 as in the
case of d ¼ 6. The critical spin for the onset of the bar-
mode instability is determined as qcrit � 0:730, and near

q ¼ qcrit the growth rate (��1 and !I) behaves as C�ðq�
qcritÞwhereC� is a constant�0:54��1=4. It is interesting to

note that the coefficient C��
1=ðd�3Þ for d ¼ 7 is close to

that for d ¼ 6.
The critical spin, qcrit, for the onset of the bar-mode

instability is also very close to that for d ¼ 6. Simulations
for d ¼ 8 also clarified that the critical spin is qcrit � 0:77,

where q ¼ a=�1=5 for d ¼ 8, again close to those for d ¼
6 and 7. This suggests that the critical value of q depends
weakly on the value of d as long as d � 6 (note, however,
that for d ¼ 5, we found it a relatively large value, � 0:87
[38]). The values of qcrit and the corresponding values of
a	 ¼ a=rþ are summarized in Table I.
As in the case d ¼ 6, the growth rate, ��1, increases

monotonically with the value of qi for d ¼ 7. For qi *
0:92, it is larger than the BH spin frequency �H=2�.
This indicates the growth time scale is much shorter
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FIG. 2 (color online). (a) Evolution of deformation parameter 	 for d ¼ 6 and for qi ¼ 0:801 with initial perturbation amplitude
A ¼ 0:02, 0.005, 0.001, and 10�6 (from the upper to lower curves) and with N ¼ 30 (dotted curve), 40 (dashed curves), and 50 (solid
curves), respectively. (b) The same as (a) but for qi ¼ 0:821, 0.801, and 0.780 (from left to right) with A ¼ 0:02 and with N ¼ 40
(dashed curves) and 50 (solid curves). (c) The same as (b) but for qi ¼ 1:039, 0.986, 0.933, and 0.878 (from the upper to lower curves)
with A ¼ 0:005. (d) The maximum value of 	 as a function of qi. The dashed line and solid curve denote 	max ¼ 2ðqi � qcritÞ and
relation (68), respectively, (see Sec. VIB for an approximate derivation of these relations).
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than the BH spin for qi � 1 irrespective of the dimension-
ality.

Figure 3(c) plots the long-term evolution of 	 for d ¼ 7
with higher spins, qi ¼ 0:813–1:017. For these BHs, the
growth of the bar-mode deformation saturates at a large
value of 	 as 	max ¼ 0:1–0:5 due to gravitational radiation
reaction, and then, 	 decreases exponentially as in the case
of d ¼ 6. At the saturation, the BH spin parameter, q, is
likely to be slightly smaller than qcrit. As in the case of d ¼
6, the damping rate of the bar-mode deformation after the
saturation is reached depends only weakly on the initial
value of qi. The reason for this is that it depends primarily
on the spin achieved just after the saturation is reached
(q & qcrit), as mentioned before. One point to be noted is
that the damping time-scale is much longer than the growth
time-scale for qi � 1 (in the 6D case, two time-scales are

not very different and smaller than 50�1=3). The damping

time-scale is * 100�1=4 in the 7D case. This suggests that
it always takes a long time for the unstable BHs to reach a
stable state for d � 7.

To confirm that the bar-mode deformation of the BHs is
indeed physical (the growth of 	 is not due to a coordinate
choice for finding apparent horizons), we extract gravita-
tional waves in the wave zone. Figure 4 plots gravitational
waveforms, hþ and h�, as a function of a retarded time t�
r for d ¼ 6 and for qi � 0:801 and 0.986. We note that
gravitational waveforms for different values of qi are
qualitatively similar. Here, r denotes the coordinate dis-
tance of extracting gravitational waves. We also plot to-

gether evolution of 	=2 as a function of t. As in the
behavior of 	, the amplitude of gravitational waves in-
creases exponentially with time in the early phase, and
after the saturation point is reached, it starts exponential
damping. For the larger initial spin, the growth time scale is
shorter; for qi ¼ 0:986, the grow time-scale is comparable
to the oscillation period. hþ and h� behave essentially in
the same manner except for a phase difference of �=2. The
amplitude of gravitational waves is approximately equal to
	=2 for the small amplitude and slightly smaller than 	=2

for the amplitude ðh2þ þ h2�Þ1=2 * 0:1. This slight dis-
agreement in the amplitude for the high-amplitude case
is likely due to the fact that the nonlinear deformation of
the BH enhances the amplitude of gravitational waves of
modes other than the quadrupole ones, suppressing the
quadrupole modes. It is worthy to point out that the oscil-
lation frequency remains approximately constant (besides
a small secular shift associated with the evolution of the
BHs). This indicates that one fundamental quasinormal
mode contributes to the instability.

2. Evolution of spin and area

Now, we illustrate how the BH spin evolves as a result of
gravitational radiation reaction. To approximately deter-
mine the value of the BH spin from the shape of apparent
horizon, we calculate the ratio of a polar circumferential
length, Cp, to the equatorial circumferential length, Ce, for

which we define

Cp :¼ l0 þ l�=2
2

; (46)

Ce :¼
Z 2�

0

ffiffiffiffiffiffiffiffiffi
�’’

p
d’; (47)

where the integral for Ce is performed along the surface of
the apparent horizon at � ¼ �=2. For the Myers-Perry BH
of single spin, the ratio Cp=Ce is given by

TABLE I. The values of qcrit and the corresponding values of
a	 and Cp=Ce for d ¼ 5–8. Cp=Ce is defined in Eq. (48).

d 5 6 7 8

qcrit 0.87 0.74 0.73 0.77

a	 1.76 0.91 0.83 0.86

Cp=Ce 0.38 0.65 0.68 0.67
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FIG. 3 (color online). (a) The same as Fig. 1 but for d ¼ 7 and for qi ¼ a=�1=4 ¼ 0:960, 0.903, 0.844, 0.813, 0.783, 0.767, 0.751,
0.735, and 0.719 (from the upper to lower curves) with N ¼ 50. For qi * 0:73, the value of 	 increases exponentially with time,
otherwise, an exponential damping is seen. For q ¼ 0:735, the growth (or damping) rate of 	 is close to zero, implying that this BH is
close to the marginally stable one. (b) The growth rate of 	, 1=�, in units of ��1=4 as a function of q (solid curve). The dashed curve
denotes �H=2�. (c) The same as panel (a) but for long runs with qi ¼ 1:017, 0.960, 0.903, 0.873, 0.844, and 0.813.
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Cp

Ce

¼ 2rd�3þ
��

Z �=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2cos2�

r2þ

s
d�; (48)

which is a monotonically decreasing function of q ¼
a=�1=ðd�3Þ for any given number of d (see Fig. 5). Thus,
as far as the state of a BH is close to an axisymmetric
stationary BH, we may use it for measuring the spin, q. We
note that 5D BHs become dynamically unstable only for a
small value of Cp=Ce & 0:38 [38], whereas for d � 6, the

critical values of Cp=Ce are rather large universally;

Cp=Ce ¼ 0:65 for d ¼ 6, 0.68 for d ¼ 7, and 0.67 for d ¼
8 (listed in Table I). This illustrates that the 5D BHs are
qualitatively different from the higher-dimensional BHs
with d � 6.

Figure 6(a) plots the evolution of Cp=Ce for d ¼ 6 and

for relatively small initial spins qi ¼ 0:821, 0.801, and
0.781. The initial value of this ratio is � 0:587 for qi ¼
0:821, � 0:602 for qi ¼ 0:801, and � 0:618 for qi ¼
0:781, respectively. When 	 is much smaller than 0.1,
the value of Cp=Ce remains approximately constant.

With the nonlinear growth of the bar-mode deformation,
it starts increasing due to the decrease of the spin by
gravitational radiation reaction, and it eventually settles
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qi ¼ 0:801 as a function of a retarded time defined by t� r where r is the coordinate distance from the center. We also plot 	=2 as a
function of t (dashed curve). The initial condition is A ¼ 0:005 and the result for the grid resolution of N ¼ 50 is plotted. (c) and
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to a constant � 0:700 for qi ¼ 0:821, � 0:690 for qi ¼
0:801, and � 0:677 for qi ¼ 0:781, respectively, when
	 
 1 being achieved (we adopt the values of Cp=Ce

when we stopped the simulations). We note that with a
poor grid resolution, the value of Cp=Ce spuriously in-

creases even for 	 
 1 because numerical dissipation
tends to decrease the BH spin. This spurious variation is
suppressed for the better grid resolutions (see also Fig. 7).
The final values of Cp=Ce indicate the final spin qf �
0:675, 0.688, and 0.705 for qi ¼ 0:821, 0.801, and 0.781,

respectively, for which the BHs appear to be stable against
any perturbation. It is worthy to note that the larger initial
spin leads to the smaller final spin because a larger amount
of gravitational-wave emission is enhanced during the
evolution (see also Sec. V for the reason to this); the value
of qf is approximately written as qf ¼ 2qcrit � qi for qi ¼
0:781–0:821.
Figure 6(b) plots the evolution of Cp=Ce for d ¼ 6 and

for larger initial spins qi ¼ 0:878, 0.933, 0.986, and 1.039.
As in the case of relatively small initial spins, the value of
Cp=Ce increases with the evolution, and eventually settles

to a constant after the BH is stabilized by gravitational
radiation reaction. However, the final value of Cp=Ce

depends only weakly on the initial spin, and hence, the
final spin estimated from Cp=Ce is much larger than the

value of qf ¼ 2qcrit � qi. Figure 6(b) shows that the frac-

tional change of Cp=Ce after the BH is stabilized is smaller

than that before the stabilization. This indicates that the
fraction of spin-down is suppressed after the evolution of
the nonlinear bar-mode deformation is saturated; again,
this seems to be due to the fact that the evolution of the
BHs after the saturation is achieved is determined by the
property of the BH of spin slightly smaller than qcrit. For
qi ¼ 0:878–1:039, the final spin is relatively in a narrow
range as qf � 0:65� 0:61. The results we found suggest

that even for qi � 1, the final spin qf will not be close to

zero, but moderately large as �0:6.
Qualitatively the same results for the final spin are

obtained for d ¼ 7. In this case, Cp=Ce relaxes to 0:72�
0:01 for 0:85 & qi & 1, implying that the final spin is in a
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narrow range qf ¼ 0:66–0:69; even for qi � 1, the final

spin qf will not be close to zero, but moderately large as

�0:65. The results of qf for d ¼ 6 and 7 together with the

weak dependence of qcrit on d suggest that also for d � 8,
the final spin will be moderately large * 0:6–0:7.

The area of the BH has to increase as a result of spin-
down [19]. Figure 7 plots the evolution of the horizon area
for d ¼ 6 and qi ¼ 0:781, 0.801, and 0.821 with N ¼ 50.
For qi ¼ 0:801, we plot the results for different grid reso-
lutions. Figure 7 shows that the area indeed increases. As
noted above, the area gradually increases with time even in
the state of 	 
 1. This is partly due to numerical dis-
sipation. Indeed, the error decreases significantly with
improving the grid resolution; for N ¼ 50, the spurious
increase of the area seems to be negligible, and hence, we
can determine the magnitude of the physical increase due
to gravitational-wave emission. The area increases by �
1:0%, 1.4%, and 1.8% for qi ¼ 0:781, 0.801, and 0.821,
respectively. For the larger initial spins, the area increases
more due to gravitational radiation reaction. A noteworthy
fact is that the fractional increase of the area is much small
than those for spin and mass energy of the BH (cf. Fig. 9).

V. PROPERTIES OF UNSTABLE BLACK HOLES

A. Conditions for spontaneous gravitational wave
emission

The first law of BH thermodynamics allows us to deter-
mine the variation in the BH area 
A as [32]

�

8�Gd

A ¼ ��H
J þ 
E; (49)

where � is the surface gravity of the BH horizon, � ¼
½2rd�3þ þ ðd� 5Þ��=ð2�rþÞ, which is positive for the BHs
considered in this paper. 
E and 
J are the variations of
energy and angular momentum of the BH, and if the energy
and angular momentum are carried away by gravitational
waves, they should be negative. If we assume that gravita-
tional waves of monochromatic wavelength are emitted,
the following relation holds;


E ¼ !

m

J < 0: (50)

Here, ! is the (real) angular frequency of the unstable
mode [we regard it as ! ¼ Reð!QNÞ in the following],

and m is the azimuthal quantum number for which we set
m ¼ 2 because we focus on the bar-mode instability. The
assumption of monochromatic wave emission is approxi-
mately correct because gravitational waves associated with
the fundamental quasinormal mode are likely to be most
strongly emitted. Indeed, Fig. 4 indicates that this is the
case.

Substituting the relation (50) into Eq. (49), we obtain

�

8�Gd

A ¼

�
�H �!

m

�
j
Jj: (51)

This shows that only for�H >!=m, 
A becomes positive
and the evolution by emission of gravitational waves is
allowed without violating the area theorem [19]. This is the
so-called superradiance condition [49]: If this condition
holds, the energy flux of ingoing waves of an angular
frequency k ¼ !�m�H at the BH horizon becomes
negative because k < 0.
This is a necessary condition that the unstable quasinor-

mal mode should satisfy for the spontaneous emission of
gravitational waves. However, this is not the sufficient
condition. The superradiance is similar to secular instabil-
ity in the terminology of an instability for rotating stars
[47,50], because for the superradiance emission of gravi-
tational waves from a stable BH with!I > 0, one needs an
artificial wave injection which satisfies the condition k <
0. We note that for the spontaneous emission of gravita-
tional waves, one further needs to require the presence of a
quasinormal mode with negative imaginary part for its
angular frequency, !I < 0.
To confirm that the superradiance condition is satisfied

for the oscillation mode of unstable BHs, we first deter-
mine the real value of ! by performing the Fourier trans-
formation of hþ for the BHs. We identify the angular
frequency at the spectrum peak as !. Figure 8 plots the
resulting values for !=2 (points) as well as�H (curves) as
functions of q. We also plot the results for 5D BHs ob-
tained in the previous paper [38]. This figure shows that the
unstable modes with !I < 0 always satisfy the superra-
diance condition �H >!=2 and gravitational waves can
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FIG. 8 (color online). �H as a function of q ¼ a=�1=ðd�3Þ for
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�H approximately denote the critical points for the onset of bar-
mode instability (i.e., for spontaneous gravitational-wave emis-
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be spontaneously emitted from the unstable BHs. A note-

worthy point is that!�1=ðd�3Þð� 1:0–1:1Þ depends weakly
on the spin q; for d ¼ 6, ! decreases slowly with q for
0:7 � q & 1:1 and for d ¼ 7 and 8,! behaves in a manner
similar to that of d ¼ 6 for 0:7 � q & 1.

In the following, we refer to the value of q, at which the
real part of the quasinormal frequency becomes equal to
the threshold frequency for the superradiance, as qSR. The
superradiance condition is satisfied for the quasinormal
modes when q * qSR, where qSR � 0:6 for d ¼ 5, qSR �
0:65 for d ¼ 6, qSR � 0:7 for d ¼ 7, and qSR � 0:75 for

d ¼ 8. Because the maximum value of �H�
1=ðd�3Þ de-

creases as the number of d is increased and !�1=ðd�3Þ for
a given value of q depends weakly on d, the value of qSR
will increase as d is increased. This indicates that the
critical value of spin, qcrit, for the onset of the bar-mode
instability (i.e., for the spontaneous gravitational-wave
emission) will also increase with d for d � 8.

We note that Fig. 8 shows �H �!=m 
 �H for 6 �
d � 8, and thus, the area increases only slightly even if a
large amount of angular momentum is dissipated by
gravitational-wave emission [see Eq. (51)]. This explains
why the area increases only slightly (see Fig. 7) even when
q changes by a large factor �0:1–0:2.

B. Mechanism of spin-down

Next, we consider the evolution of nondimensional spin
parameter, q, as a result of gravitational-wave emission.
The variation for this quantity, in the assumption of mono-
chromatic gravitational-wave emission, is written as


q ¼ 8�Gd�
�ðd�2Þ=ðd�3Þ��1

d�2

�

J � 2a

d� 3

E

�

¼ �8�Gd�
�ðd�2Þ=ðd�3Þ��1

d�2j
Jj
�
1� 2

d� 3

a!

m

�
;

(52)

or


q ¼ �j
Jj
J

q

�
1� 2

d� 3

a!

m

�
: (53)

As found from Eq. (51), the gravitational-wave emission is
possible only for �H >!=m. Thus,

1� 2

d� 3

a!

m
> 1� 2

d� 3
a�H ¼ 1� 2

d� 3

a2

r2þ þ a2
:

(54)

Because 2=ðd� 3Þ � 1 and a2=ðr2þ þ a2Þ< 1 for any BH
with d � 5, we find that 
q is always negative for the
superradiance mode. Thus, the unstable BHs have to spin
down by gravitational radiation reaction and evolve toward
a stable state, as we found in numerical simulation
(cf. Fig. 6).

We quantitatively confirm from Eq. (53) that the spin-
down of the unstable BHs is indeed due to gravitational-

wave emission as shown in the following. Using a formula
of gravitational-wave luminosity [51] (the Landau-Lifshitz
pseudo tensor [40] also gives the same formula after partial
integration), the luminosity of quadrupole gravitational
waves (l ¼ jmj ¼ 2 mode) is written as

dE

dt
¼ ð _h2þ þ _h2�Þ�d�2

16�Gd

ðd� 3Þd
ðd� 2Þðdþ 1Þ�

ðd�2Þ=ðd�3Þ:

(55)

For monochromatic gravitational waves with angular fre-
quency !, the luminosity may be rewritten as

dE

dt
¼ !2ðh2þ þ h2�Þ�d�2

16�Gd

ðd� 3Þd
ðd� 2Þðdþ 1Þ�

ðd�2Þ=ðd�3Þ:

(56)

In the following, we assume hþ½!ðt� rÞ� ¼ h�½!ðt�
rÞ þ �=2� (and set h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2�

q
), and ! ¼ const for

simplicity, which approximately hold as mentioned before.
Rewriting Eq. (52) in the form of spin evolution as

dq

dt
¼ � 8�mGd�

�ðd�2Þ=ðd�3Þ

!�d�2

��������dEdt
��������
�
1� 2

d� 3

a!

m

�
;

(57)

and integrating this equation, we may infer the spin-down
history of a BH for the whole evolution process by

j
qðtÞj ¼
Z t

0
dt0

m!h2dðd� 3Þ
2ðd� 2Þðdþ 1Þ

�
1� 2

d� 3

a!

m

�
: (58)

We also calculate dissipation history of the mass energy by


EðtÞ ¼
Z t

0
dt0

dE

dt
; (59)

where we use Eq. (56) for dE=dt. We note that Eq. (52) is
valid only for the case that deformation from a stationary
BH solution is small. Thus, we here apply Eq. (58) only for
the small values of qi � qcrit < 0:1 for which the maximum
value of 	 is & 0:15 and the deformation remains in a
weakly nonlinear level.
Figure 9 plots j
qj and 
E=M as functions of t for d ¼ 6

and for qi ¼ 0:821, 0.801, and 0.781. Here, we assume that

a! ¼ 1:05qi (!�1=3 ¼ 1:05) taking into account the re-
sults shown in Fig. 8, and also neglect the dissipation of
mass and spin of the BHs in computing the integrals of
Eqs. (58) and (59), because the variation of these quantities
gives a minor effect on 
q and 
E for qi � qcrit < 0:1; the
error is likely to be less than 10%. As shown in Fig. 9, we
obtain 
qtot � 0:14, 0.11, and 0.07 for qi � 0:821, 0.801,
and 0.780, respectively, which agree with the results de-
termined from the final value of Cp=Ce within the error

�ð
qÞ � 0:006. Based on this good agreement, we con-
clude that the gravitational radiation reaction determines
the spin-down of the unstable BHs and that in our simula-
tions, the spin-down process is computed accurately. We
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also note that the numerical results for the fractional in-
crease of the area (cf. Fig. 7) agree well with that calculated
from 
q and 
E obtained here.

As we have described above, the evolution process of an
unstable BH with q & 1 is determined by gravitational
radiation reaction. As far as the growth rate of the unstable
mode is comparable with or smaller than the spin-down
rate due to gravitational radiation reaction, the scenario
presented here will be always correct. Figures 1(b) and 3(b)
show that for the unstable BHs with qi & 1:1, which have
the growth time scale (�) longer than �=�H, this scenario
holds. We, however, note that this scenario might not be
valid for q � 1: If the growth time scale is too short (e.g.,
�! & 1), the BH could not emit a significant amount of
gravitational waves in � for spinning down, and as a result,
it can achieve a state for which the deformation parameter
is of order unity. Extrapolation of the results shown in
Fig. 2(d) indeed suggests that for qi * 1:6, 	 may reach
* 1 for d ¼ 6. For such case, gravitational radiation reac-
tion may not prevent the growth of the bar-mode deforma-
tion, and then, highly nonlinear deformation may lead to
fragmentation of the BH (in the classical argument, for-
mation of a naked singularity may be the result), as dis-
cussed in [32]. In the present work, we have not pursued
the possibility that 	 reaches �1, because a long-term
simulation for such an ultra spinning BH is not an easy
task technically. We leave such a work for the future. In
Sec. VI B, we speculate a condition for an ultra spinning
BH to cause fragmentation.

Before closing this section, we note that the fraction of
total radiated energy of gravitational waves is much
smaller than that of angular momentum. The reason for
this is that the following relation holds:


J

J0
¼ d� 2

a!


E

M0

: (60)

Here,M0 and J0 are initial mass and angular momentum of
a BH. For d ¼ 6 and qi ¼ 0:801, for example, 
E=M0 is
only � 4%, whereas 
J=J0 is � 20%. This significant
angular-momentum dissipation is essential for the spin-
down of the unstable BHs. It is worthy to note that the
angular-momentum dissipation rate is even larger for the
larger number of d for a given value of q because

!�1=ðd�3Þ depends weakly on d for the unstable BHs.

VI. SUMMARYAND DISCUSSIONS

A. Summary

We show by numerical-relativity simulation that BHs
spinning sufficiently rapidly are unstable against nonaxi-
symmetric bar-mode deformation for d ¼ 6, 7 and 8, as in
the case d ¼ 5 [38]. In this instability, gravitational waves
are emitted spontaneously. The critical BH spin for the
onset of the bar-mode instability is qcrit � 0:74 for d ¼ 6,
� 0:73 for d ¼ 7, and � 0:77 for d ¼ 8, respectively.
Thus, the critical value is smaller than unity, and depends
only weakly on the dimensionality for d � 6. After the
instability sets in, the degree of the bar-mode deformation
increases exponentially with time, and eventually, it satu-
rates. The saturation is caused by gravitational radiation
reaction. For the larger initial spin, the growth time scale is
shorter. The degree of the maximum deformation is larger
for the larger initial value, approximately in proportional to
qi � qcrit.
The unstable BHs emit gravitational waves significantly,

and then, spin down, settling to a stable BH with q < qcrit.
The final value of the BH spin, qfð<qcritÞ, is smaller for the

larger initial spin: For d ¼ 6 with qi � qcrit < 0:1, the final
spin is approximately written as qf ¼ 2qcrit � qi, and for

0:1 & qi � qcrit & 0:3, the final spin is in a narrow range
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FIG. 9 (color online). j
qj (left) and 
E=M (right) as functions of t for d ¼ 6. The results for qi ¼ 0:801 with A ¼ 0:005 and 0.02,
and for qi ¼ 0:781 and 0.821 with A ¼ 0:02 are displayed for N ¼ 50. For qi ¼ 0:821, we stopped the simulation at t=�1=3 � 370
because the BH reaches approximately stationary state.
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qf � 0:6–0:65. For d ¼ 7, qf � 0:66–0:69 for 0:85 &

qi & 1. The smaller value of qf for the larger initial spin

qi is due to a larger amount of gravitational-wave emission
induced by the higher degree of the bar-mode deformation.
The results for qi � 1 indicate that for qi � 1, the final
spin is likely to be�0:6 for d ¼ 6 and�0:65 for d ¼ 7, if
the BH settles to a stable state.

The dynamically unstable BHs satisfy two conditions.
One is that a quasinormal mode satisfies a superradiance
condition; the real part of the eigen angular frequency for
the quasinormal mode, ! ¼ Reð!QNÞ, has to satisfy the

condition !<m�H. The other is that the imaginary part
of the eigen angular frequency,!I ¼ Imð!QNÞ, is negative.
The superradiance condition referred to here is satisfied not
only for the dynamically unstable BHs but also for the
stable BHs with the spin smaller than the critical value
(qcrit). The minimum spin for which the real quasinormal
frequency satisfies the superradiance condition, qSR, is
�0:6 for d ¼ 5, �0:65 for d ¼ 6, �0:7 for d ¼ 7, and
�0:75 for d ¼ 8, respectively. Thus, qSR increases with the
number of d. This suggests that qcrit also increases with d
for d > 8, because qcrit has to be larger than qSR for the
spontaneous gravitational-wave emission.

It is worthy to note that the dynamically unstable BHs
we found always satisfy the above two conditions. If the
superradiance condition were not satisfied, a BH could not
emit gravitational waves spontaneously, even if it is dy-
namically unstable (!I < 0). Probably, there would exist a
mathematical proof for the relation qcrit � qSR.

The value of qcrit depends weakly on the dimensionality
for d � 6 as mentioned above. By contrast, this value is
slightly larger for d ¼ 5 (qcrit � 0:87) [38] and absent for
d ¼ 4. This shows that properties of the spinning BHs are
qualitatively similar for d � 6, whereas those for d ¼ 4
and 5 have their intrinsic properties.

B. Axisymmetric vs nonaxisymmetric vs fragmentation
instabilities

The critical spin for the onset of the bar-mode instability
found in this paper is much smaller than that for the onset
of axisymmetric instabilities [34,35], q � 1:56–1:80 for
d ¼ 6–9, respectively, (the minimum spins depend weakly
on the dimensionality). Considering the analogy with the
instabilities on rotating stars, we find that this is a quite
reasonable consequence [47,52–54]: Rapidly and rigidly
rotating stars can be unstable against axisymmetric insta-
bilities (e.g., against toroid or ring formation) only for an
extreme case in which the axial ratio of the polar axial
length to the equatorial one is quite small (e.g., smaller
than 0.171 for the incompressible fluid [52]). By contrast, a
variety of nonaxisymmetric instabilities can set in even for
the case that such ratio is not very small (for & 0:58,
secular instabilities set in, and for & 0:31, dynamical in-
stabilities set in for the incompressible fluid [47,53]). Also,
the bar-mode instability occurs at the lowest critical spin

among many other instabilities for most rotating stars; the
bar-deformation is the most efficient way for decreasing
total energy of the system. The bar-mode instability may
be most relevant for any self-gravitating spheroidal objects
spinning rapidly.
According to an estimate based on the BH thermody-

namics by Emparan andMyers [32], the critical spin for the
onset of a nonaxisymmetric instability is approximately
unity, qfrag � 1, irrespective of the number of d for d � 6.

The assumption in their argument is that a rapidly spinning
BH of area Ai will fragment into two nonspinning boosted
BHs of the total area Af which is larger than Ai. For the

instability found in this paper for qi & 1, the growth of the
perturbation saturates at a weakly nonlinear level at 	 &
0:5, because gravitational-wave emission suppresses the
further nonlinear growth. Thus, the fragmentation does
not occur for qi & 1. However, this does not imply that
the fragmentation instability is not relevant for any spin. As
we showed in Figs. 1 and 3, the growth time scale of the
unstable mode depends strongly on the magnitude of the
spin, and for q * 1, it is shorter than a spin period of the
BH, � < 2�=�H. For q � 1, the growth time scale is
likely to be even shorter. In such case, gravitational-wave
emission will play a minor role and nonlinear growth will
continue until a state of 	� 1 is achieved, as discussed in
Sec. V. Then, highly nonlinear bar-mode deformation may
lead to a fragmentation of the BH due to the Gregory-
Laflamme instability [33]. In the following, we infer how
large initial spin is required for achieving the fragmenta-
tion focusing on the case d ¼ 6.
As we showed in Figs. 1 and 3, the degree of bar-mode

deformation for the unstable BHs increases exponentially
with time as far as 	 & 0:1 as

_	 ¼ 	

�
; (61)

where � is a function of q, and for d ¼ 6, ��1 � C�ðq�
qcritÞ with C� � 0:51��1=3. Gravitational radiation reac-
tion plays a crucial role for suppressing the growth of the
deformation. A nonlinearity associated with this effect
plays an important role for larger values of 	. We take
into account this nonlinear effect by phenomenologically
replacing � to �ð1þ Cs	=2Þ where Cs is a constant of
order unity. Because the amplitude of gravitational waves,
h, is approximately written as 	=2, we may assume the
following approximate equation for the growth of
gravitational-wave amplitude:

_h ¼ h

�ð1þ CshÞ : (62)

Combining this relation with Eq. (57), we obtain

ð1þCshÞdh
2

dq
¼� 4

�m!

ðd�2Þðdþ1Þ
ðd�3Þd

�
1� 2

d�3

a!

m

��1
:

(63)
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This equation is valid only for h 
 1, but in the following,
we use it even for h ¼ Oð1Þ to infer the maximum value of
h as a function of qi. For d ¼ 6withm ¼ 2 and qcrit < q &
1:1, this relation is approximately written as

ð1þ CshÞ dh
2

dq
� �C�ðq� qcritÞ 289!

�
1� a!

3

��1
: (64)

Because the factor, 1� a!=3, is a slowly varying function
of q in the range 0.76–0.64 for q ¼ 0:7–1:1, we assume that
it is a constant and denote it by F�1. In addition, we assume

!�1=3 � 1 for simplicity. Using the approximate relation
for C�, we finally obtain

ð1þ CshÞ dh
2

dq
� �1:6Fðq� qcritÞ: (65)

Here, we assume that the maximum value of h (hpeak) is

achieved when the spin q reaches qcrit as a result of spin-
down. Then, integrating Eq. (65) from q ¼ qi to q ¼ qcrit
gives

h2peak þ
2Cs

3
h3peak � 0:8Fðqi � qcritÞ2; (66)

or, using hpeak � 	max=2,

	2
max þ Cs

3
	3
max � 3:2Fðqi � qcritÞ2: (67)

Here, 3:2F is � 4:2–5:0 for q � 0:7–1:1.
Equation (67) is indeed a good approximate relation for

an appropriate choice of Cs. The solid curve of Fig. 2(d) is

	2
max þ 2	3

max ¼ 4ðqi � qcritÞ2; (68)

and fits the numerical results well. It is found that for a high
spin qi * 0:9, the nonlinearity associated with gravita-
tional radiation reaction [the second term in the left-hand
side of Eq. (68)] plays an important role in determining the
value of 	max.

Assuming that Eq. (68) is valid even for qi > 1:1, we
expect the maximum value of 	 and find that 	max * 1 for
qi * 1:6 (note that the possible maximum value of 	 is 2).
This suggests that the fragmentation may occur for an ultra
spinning BH and the critical spin for the fragmentation,
qfrag, is * 1:6; this predicted critical value is much larger

than the value predicted in [32]. The critical spin for the
onset of axisymmetric instabilities is fairly close to qfrag as

qaxis � 1:56 for d ¼ 6 [35]. Therefore, for the ultra spin-
ning case, the BH may fragment in a complicated manner.
We note that for 	max * 1, several additional nonlinear
effects will play an important role for the evolution of the
deformed BH. For example, emission of gravitational
waves with modes other than the lowest-order quadrupole
mode could contribute to the spin-down and to suppressing
the growth of the bar-mode instability. Thus, the critical
spin for the fragmentation may be even larger than 1.6.
Finally, we note that essentially the same argument holds
also for d � 7.

C. Implications for mini black hole evolution

The bar-mode instability found in this paper changes the
hypothetical picture for the evolution of a mini BH which
may be formed in particle accelerators. It is natural to
expect that most of the mini BH is formed for a large
impact parameter, which is close to a critical value, bmax,
in two-particle collision, and that the BH should be rapidly
spinning at its formation. In fact, analyses [55,56] for high-
velocity two-particle collisions indicate that a BH can be
formed for impact parameters such that the resulting BH is
rapidly spinning with q > 1 for d � 6. To clarify this point,
we first review the results of an analysis for high-velocity
particle collision with the impact parameter b and with the
energy of each incoming particle p [55,56]. For this phe-
nomenon, the total mass energy and angular momentum of
the system isM ¼ 2p and J ¼ bp, respectively, assuming
that the particles move with the speed of light. As in the
case of the Myers-Perry BH of single spin, we define spin
and mass parameters, a and �, for this system using the
same formulas as Eqs. (4) and (5), and then calculate

nondimensional spin q ¼ a=�1=ðd�3Þ. Table II shows the

maximal impact parameters bmax=�
1=ðd�3Þ for the apparent

horizon formation obtained in [56] and the corresponding
value of the spin q ¼ qmax for d ¼ 5–8. The value of qmax

is larger than unity for d ¼ 6–8, and thus, the resulting BH
is likely to be rapidly spinning so that it can be subject to
the dynamical bar-mode instability.1

The phenomenology of a mini BH formed in particle
accelerators is determined by two time scales: One is the
time scale of gravitational-wave emission �GW � 1=j!Ij.
The other is the time scale of Hawking radiation �H. For
convenience, we denote these time scales in terms of the
Planck mass mP. Among several manners of defining the
Planck mass (summarized in [4]), we adopt the definition
as

mP ¼
�ð2�Þd�4

4�Gd

�
1=ðd�2Þ

: (69)

Then, the Planck time is defined by �P :¼ 1=mP in the
natural units.
The time scale of gravitational-wave emission is written

as

�GW ¼ CGW�P

�
M0

mP

�
1=ðd�3Þ

; (70)

whereM0 is the initial BHmass. If the formed BH is stable,

1In this analysis, we assume that the mass and angular mo-
mentum for the formed BH are equal to those of the system for
simplicity. However, this is not likely to be the case because
gravitational waves should be significantly emitted during the
collision. The value of qmax is nothing but a roughly approxi-
mated value. As we showed in this paper, angular momentum
will be more efficiently emitted by gravitational waves than
energy. Thus, the resulting spin could be smaller than qmax in
reality.
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�GW should be defined by 1=j!Ij, and the coefficient is

CGW ¼ 2�

!I

�
2

�ðd� 2Þ�d�2�

�
1=ðd�3Þ

: (71)

For the 6D head-on collision (q ¼ 0), for example, CGW �
3:8 [57], and this factor depends weakly on the dimension-
ality as long as q ¼ 0. For spinning BHs, it becomes larger,
and CGW � 1 for q� qcrit as found in the present paper;
practically CGW ¼ Oð100Þ, if gravitational radiation reac-
tion is taken into account.

If the value of q is further increased to be q > qcrit, the
value of CGW should be approximately written as

CGW ¼ 2�

j!Ij
�

2

�ðd� 2Þ�d�2�

�
1=ðd�3Þ þ CGW0; (72)

where the first term in the right-hand side is associated with
the growth time scale for the bar-mode deformation and the
second one is the time scale of damping after the saturation
is achieved, which is approximately equal to CGW in
Eq. (71) for q & qcrit and thus of order 10–102

[cf. Fig. 2(b) and 2(c)]. The first term is comparable to
the second term for qcrit < q & qcrit þ 0:1 but the second
term dominates for the larger value of q.

The time scale of Hawking radiation is

�H ¼ CH�P

�
M0

mP

�ðd�1Þ=ðd�3Þ
; (73)

where CH is a q-dependent constant and determined taking
into account all emission processes (i.e., emission of scalar,
spinor, vector particles and gravitons). For the
Schwarzschild case, CH can be evaluated using numerical
results of the greybody factor [7]; e.g.,CH � 1:7 for d ¼ 6.
The greybody factors for spinning BHs are studied for
brane spacetimes [8–11] whereas those for bulk gravitons
have never been completely evaluated (but see [12]). The
general tendency is that the emission rate is enhanced
significantly as the value of q or d is increased: The
luminosity for q� 1 is�100 times as large as that for q ¼
0 (e.g., [10]). The angular momentum emission rate is
more significantly enhanced as the spin is increased, in-
dicating that a rapidly spinning BH spins down in a short
time scale. Thus, strictly speaking, we should take into
account two time scales: One is the evaporation time scale
�H and the other is the spin-down time scale referred to as
�Hs (i.e., the time scale in which the BH spin is decreased to
become q ¼ qcrit). Reference [10] shows that for q� 1,
�Hs 
 �H: �Hs is shorter than �H typically by a factor of 10.

The ratio of �H to �GW is

�H
�GW

¼ CH

CGW

�
M0

mP

�ðd�2Þ=ðd�3Þ
; (74)

and proportional to Mðd�2Þ=ðd�3Þ
0 where 1< ðd� 2Þ=ðd�

3Þ � 4=3 for d � 6. Thus, the ratio depends moderately on
M0 formP <M0 & 10mP. On the other hand, CH=CGW are
in the range�10�3–1, depending strongly on the spin. This
implies that the evolution of a mini BH formed after a
particle collision depends strongly on the spin q (or equiv-
alently, the impact parameter b).
Now, we discuss the phenomenology of a mini BH

assuming that mP ¼ 1 TeV and M0 ¼ 10 TeV ¼ 10mP,
which are plausible values in TeV-gravity scenarios and
in LHC. Note that the scenario is qualitatively unchanged
as far as M0 & 102mP. As a specific example, we further
fix d ¼ 6 in the following. For M0 ¼ 10mP, �GW � 8�P
and �H � 80�P � �GW for q ¼ 0. As the value of q is
increased from q ¼ 0, �GW becomes longer and �H shorter.
Thus, two time scales, �GW and �H, become identical,
�GW ¼ �H, at a value of q ¼ qeq. The result in this paper

indicates qeq < qcrit, because �GW becomes very long

(CGW is of order 100) for q� qcrit.
Then, the phenomenology is classified into three types

depending on the spin q; (i) 0�q&qeq, (ii) qeq&q<qfrag,

and (iii) q � qfrag. Here, we assume a hypothetical critical

value for the onset of fragmentation as qfrag * 1:6 follow-

ing the estimate in Sec. VIB, although it is not clear
whether the fragmentation really occurs. Because of the
high value of q, the fragmentation will proceed in a time

scale of order M1=ðd�3Þ
0 � �H 
 �GW, if it occurs.

For the case (i), the standard hypothetical picture of BH
evaporation holds; a formed BH emits gravitational waves
and settles to a stationary state in a short time scale. Then,
it will be evaporated by Hawking radiation. The formed
BH is spinning, but not very rapidly, and the effect of the
energy loss and spin-down by gravitational radiation reac-
tion plays a minor role. The spin-down will proceed pri-
marily by Hawking radiation, and finally, a nearly
nonspinning BH will be evaporated. This type of BH
formation and evaporation will not be a dominant process
in particle accelerators, because a mini BH with such a
small spin (q < qeq < qcrit) or with a small impact parame-

ter will not be formed frequently; the formation rate will be
by a factor of ðqeq=qmaxÞ2 smaller than the total.

For the case (ii), the BH will not be relaxed to a stable
state by gravitational-wave emission, because of its long
emission time scale. Such a nonstationary BH will start
radiating quantum particles while emitting gravitational
waves, and the signal of the quantum radiation in this
phase is likely to be different from the idealized
Hawking radiation (which is the result only from a sta-
tionary, axisymmetric BH). Because a BH with a large
initial spin reaches a highly deformed state, non-

TABLE II. The values of maximal impact parameter
bmax=�

1=ðd�3Þ for the apparent horizon formation obtained in
[56] and the corresponding nondimensional spin of the system,
qmax.

d 5 6 7 8

bmax=�
1=ðd�3Þ 1.24 1.47 1.59 1.66

qmax 0.93 1.47 1.98 2.50
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Hawking-type quantum radiation will be enhanced for the
higher spin. Obviously, an improved analysis for predicting
the spectrum of the quantum radiation is required.
Assuming that the spin-down time scale by the quantum
radiation is shorter than the evaporation time scale as in the
Hawking radiation [10], the BH spin will subsequently
become smaller than qcrit after the substantial quantum
radiation, and thus, the BH relaxes eventually to a stable,
quasistationary, axisymmetric state and will stop emitting
gravitational waves. After the condition q < qcrit is
achieved, the quantum radiation process will be identical
to the ordinary Hawking radiation.

For the case (iii), the time scale for the growth of bar-
mode deformation and subsequent fragmentation is likely

to be of order �M1=ðd�3Þ
0 . This may be as short as �Hs. If

fragmentation occurs, a rapidly spinning BH is likely to
change to two slowly spinning BHs before the quantum
(Hawking) radiation becomes the dominant dissipation
process. A supportive evidence for this possibility is that
the apparent horizon formed in particle collisions takes a
peanut shape for b � bmax as shown in Figs. 5 and 6 of
[56], which indicates that gravity combining the two par-
ticles is weak. If the fragmentation occurs (the BH horizon
pinches off) because of quantum-gravity effect, two
boosted BHs will be the outcome (binary will not be the
result for d � 5). Thus, the Hawking radiation from the
two boosted BHs may be observed subsequently, as two
jets in particle accelerators. Here, we note that the two time

scales,M1=ðd�3Þ
0 and �Hs, may be as short as the Planck time

�P for M0 � 10mP, and thus, such a (semi) classical phe-
nomena may be veiled by quantum-gravity effects in LHC.

D. Issues for the future

The present paper reports the results for the stability of
rapidly spinning BHs against bar-mode deformation. We
analyzed the BHs only with the spin q & 1:15 and did not
study for the ultra spinning case with q * 1:5 because it is
not technically easy to perform a long-term simulation for
such BHs. As discussed above, the evolution of the ultra
spinning BHs may be qualitatively different from that for

q & 1. Furthermore, such ultra spinning BHs may be the
frequent outcomes, if the TeV-gravity hypothesis is correct.
Clarifying the evolution of the ultra spinning BHs is ob-
viously an important issue left for the future.
The stability of black rings against bar-mode deforma-

tion is one of the interesting issues. The analytic solutions
for the black rings are found in five dimensions [26], and
numerical-relativity simulation in a similar manner to that
in this paper may be possible. The black rings always have
a high spin with q > qcrit for d ¼ 5. Perhaps, they are also
unstable against bar-mode deformation and evolve as a
result of gravitational radiation reaction as far as q is not
extremely large; if the spin is very large, fragmentation
may occur.
In the present paper, we start simulations in a highly

idealized situation; we prepare nearly stationary, axisym-
metric BHs and evolve them approximately in a quasista-
tionary manner. In particle accelerators, however, the
situation will be highly different. The rapidly spinning
BHs after the particle collision will be highly nonstationary
and nonaxisymmetric. Such BHs may evolve qualitatively
in a similar manner to that in the present analysis, but
quantitative properties on the evolution process will be
significantly different. To clarify the formation and evolu-
tion of such BHs, it is necessary to perform a simulation
started from high-velocity two-BH collision. Our goal is to
successfully perform this simulation and to clarify the
possible outcome in this setting.
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[48] B. Brügmann, J. A. Gonzalez, M. Hannam, S. Husa, U.
Sperhake, and W. Tichy, Phys. Rev. D 77, 024027 (2008).

[49] S. A. Teukolsky and W.H. Press, Astrophys. J. 193, 443
(1974).

[50] J. L. Friedman and B. F. Schutz, Astrophys. J. 222, 281
(1978).

[51] V. Cardoso, O. J. C. Dias, and J. P. S. Lemos, Phys. Rev. D
67, 064026 (2003).

[52] S. Chandrasekhar, Astrophys. J. 147, 334 (1967); J.M.
Bardeen, Astrophys. J. 167, 425 (1971); Y. Eriguchi and
D. Sugimoto, Prog. Theor. Phys. 65, 1870 (1981).

[53] Y. Eriguchi and I. Hachisu, Prog. Theor. Phys. 67, 844
(1982).

[54] V. Cardoso and L. Gualtieri, Classical Quantum Gravity
23, 7151 (2006).

[55] H. Yoshino and Y. Nambu, Phys. Rev. D 67, 024009
(2003).

[56] H. Yoshino and V. S. Rychkov, Phys. Rev. D 71, 104028
(2005); 77, 089905(E) (2008).

[57] H. Yoshino, T. Shiromizu, and M. Shibata, Phys. Rev. D
72, 084020 (2005).

MASARU SHIBATA AND HIROTAKA YOSHINO PHYSICAL REVIEW D 81, 104035 (2010)

104035-20

http://dx.doi.org/10.1103/PhysRevLett.96.071301
http://dx.doi.org/10.1103/PhysRevLett.96.219902
http://dx.doi.org/10.1103/PhysRevD.67.064025
http://dx.doi.org/10.1103/PhysRevD.67.064025
http://dx.doi.org/10.1103/PhysRevD.69.049901
http://dx.doi.org/10.1103/PhysRevD.71.124039
http://dx.doi.org/10.1103/PhysRevD.71.124039
http://dx.doi.org/10.1103/PhysRevD.73.124022
http://dx.doi.org/10.1103/PhysRevD.73.124022
http://dx.doi.org/10.1016/j.physletb.2005.10.025
http://dx.doi.org/10.1088/1126-6708/2005/09/049
http://dx.doi.org/10.1088/1126-6708/2005/09/049
http://dx.doi.org/10.1103/PhysRevD.80.084016
http://dx.doi.org/10.1103/PhysRevLett.85.499
http://dx.doi.org/10.1103/PhysRevLett.85.499
http://dx.doi.org/10.1103/PhysRevD.67.084004
http://dx.doi.org/10.1103/PhysRevD.67.084004
http://dx.doi.org/10.1103/PhysRevD.68.064011
http://dx.doi.org/10.1016/j.physletb.2003.06.065
http://dx.doi.org/10.1103/PhysRevLett.94.011603
http://dx.doi.org/10.1103/PhysRevLett.101.161101
http://dx.doi.org/10.1103/PhysRevD.78.101501
http://dx.doi.org/10.1103/PhysRevD.78.101501
http://dx.doi.org/10.1103/PhysRevLett.103.131102
http://dx.doi.org/10.1103/PhysRevLett.103.131102
http://dx.doi.org/10.1103/PhysRevLett.104.111101
http://dx.doi.org/10.1103/PhysRevLett.104.111101
http://dx.doi.org/10.1103/PhysRevD.70.104026
http://dx.doi.org/10.1103/PhysRevD.70.104026
http://dx.doi.org/10.1086/152445
http://dx.doi.org/10.1086/152445
http://dx.doi.org/10.1098/rspa.1985.0119
http://dx.doi.org/10.1063/1.528308
http://dx.doi.org/10.1103/PhysRevD.69.124005
http://dx.doi.org/10.1016/0003-4916(86)90186-7
http://dx.doi.org/10.1016/0003-4916(86)90186-7
http://dx.doi.org/10.1103/PhysRevD.75.064018
http://dx.doi.org/10.1103/PhysRevD.75.064018
http://dx.doi.org/10.1103/PhysRevD.78.069903
http://dx.doi.org/10.1088/0264-9381/26/12/125018
http://dx.doi.org/10.1088/1126-6708/2007/05/050
http://dx.doi.org/10.1088/1126-6708/2007/05/050
http://arXiv.org/abs/hep-th/0612005
http://arXiv.org/abs/hep-th/0612005
http://dx.doi.org/10.1143/PTP.119.757
http://dx.doi.org/10.1088/1126-6708/2008/04/045
http://dx.doi.org/10.1088/1126-6708/2008/04/045
http://dx.doi.org/10.1103/PhysRevD.70.084036
http://dx.doi.org/10.1103/PhysRevD.70.084036
http://dx.doi.org/10.1103/PhysRevD.76.084021
http://dx.doi.org/10.1103/PhysRevD.76.084021
http://dx.doi.org/10.1088/1126-6708/2003/09/025
http://dx.doi.org/10.1088/1126-6708/2003/09/025
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevD.80.111701
http://dx.doi.org/10.1143/PTP.120.561
http://dx.doi.org/10.1143/PTP.120.561
http://dx.doi.org/10.1103/PhysRevD.81.044007
http://arXiv.org/abs/1001.4527
http://dx.doi.org/10.1088/1126-6708/2009/04/125
http://dx.doi.org/10.1088/1126-6708/2009/04/125
http://dx.doi.org/10.1007/JHEP01(2010)021
http://dx.doi.org/10.1007/JHEP01(2010)021
http://dx.doi.org/10.1103/PhysRevD.81.021501
http://dx.doi.org/10.1103/PhysRevD.81.021501
http://dx.doi.org/10.1103/PhysRevD.78.064054
http://dx.doi.org/10.1103/PhysRevD.78.064054
http://dx.doi.org/10.1103/PhysRevD.80.084025
http://dx.doi.org/10.1103/PhysRevD.80.084025
http://dx.doi.org/10.1142/S0218271801000834
http://dx.doi.org/10.1142/S0218271801000834
http://dx.doi.org/10.1143/PTP.104.325
http://dx.doi.org/10.1143/PTP.104.325
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1103/PhysRevD.81.084052
http://dx.doi.org/10.1103/PhysRevD.81.084052
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1103/PhysRevD.58.104003
http://dx.doi.org/10.1103/PhysRevD.58.104003
http://dx.doi.org/10.1103/PhysRevD.77.024027
http://dx.doi.org/10.1086/153180
http://dx.doi.org/10.1086/153180
http://dx.doi.org/10.1086/156143
http://dx.doi.org/10.1086/156143
http://dx.doi.org/10.1103/PhysRevD.67.064026
http://dx.doi.org/10.1103/PhysRevD.67.064026
http://dx.doi.org/10.1086/149003
http://dx.doi.org/10.1086/151040
http://dx.doi.org/10.1143/PTP.65.1870
http://dx.doi.org/10.1143/PTP.67.844
http://dx.doi.org/10.1143/PTP.67.844
http://dx.doi.org/10.1088/0264-9381/23/24/001
http://dx.doi.org/10.1088/0264-9381/23/24/001
http://dx.doi.org/10.1103/PhysRevD.67.024009
http://dx.doi.org/10.1103/PhysRevD.67.024009
http://dx.doi.org/10.1103/PhysRevD.71.104028
http://dx.doi.org/10.1103/PhysRevD.71.104028
http://dx.doi.org/10.1103/PhysRevD.77.089905
http://dx.doi.org/10.1103/PhysRevD.72.084020
http://dx.doi.org/10.1103/PhysRevD.72.084020

