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We present the first quantitative comparison of two independent general-relativistic hydrodynamics

codes, the WHISKY code and the SACRA code. We compare the output of simulations starting from the same

initial data and carried out with the configuration (numerical methods, grid setup, resolution, gauges)

which for each code has been found to give consistent and sufficiently accurate results, in particular, in

terms of cleanness of gravitational waveforms. We focus on the quantities that should be conserved during

the evolution (rest mass, total mass energy, and total angular momentum) and on the gravitational-wave

amplitude and frequency. We find that the results produced by the two codes agree at a reasonable level,

with variations in the different quantities but always at better than about 10%.
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I. INTRODUCTION

Given the absence of astrophysically relevant exact so-
lutions in general relativity and the difficulty to compare
results from numerical-relativity codes with empirical ob-
servations (or experiments), it is necessary to find alter-
native ways to assess the capacity of existing codes to
faithfully describe the physical phenomena that they are
supposed to simulate, and to check the validity of their
results. Among the strategies to achieve such a reassuring
confirmation, the most widely used are convergence tests
and checks of the violations of the physical constraints
imposed by the Einstein equations, in particular of the so-
called Hamiltonian and momentum constraints, dictated by
the choice of the Arnowitt-Deser-Misner (ADM) formal-
ism as a basis for numerical simulations (see Eqs. (10) and
(11) and, e.g., Refs. [1–3]). Another way to increase the
probability of having computer codes free from
implementation-errors and unaffected by possibly wrong
and maybe hidden assumptions is the comparison of the
results of codes independently developed by separate indi-
viduals or groups.

Since 2005, the year of the breakthrough in numerical
relativity [4–6] that made it possible to calculate the late
inspiral, merger, and ringdown of a black-hole binary
system in full general relativity, and to calculate the gravi-
tational waves produced in the process, various works [7–
9] compared the gravitational waveforms computed in
vacuum simulations by several codes. Their general con-
clusion is that the available codes give consistent results
(the difference among codes is smaller than the estimated
error within each code) and results that are good enough for
being of use in the quest for the detection of gravitational
waves through presently operating laser interferometers
[10–12] or planned detectors [13,14].

In the present work, with in mind the goals delineated
above, we perform and publish for the first time a com-
parison between the results of two independent finite-
difference codes solving the general-relativistic hydrody-
namics equations and the Einstein equations: the WHISKY

code [15–17] and the SACRA code [3]. We include in the
comparison also important quantities not directly related to
the gravitational waveforms, but, while giving a first
glimpse of the comparison of the wave properties, we
postpone to a future article [18], which may involve a
larger number of codes, the detailed analysis of the useful-
ness of the computed waveforms for current gravitational-
wave detectors.
We also restrict our attention to the modeling of a single

physical system, the orbital inspiral of two neutron stars
(NSs) in irrotational configuration. This system is however
one of the most promising candidates for early detection of
gravitational radiation and it is seen as the most likely
scenario leading to the formation of a black hole sur-
rounded by a massive torus with properties suitable for
being the engine powering short-hard gamma-ray bursts
[19].
We use a spacelike signature ð�;þ;þ;þÞ and a system

of units in which c ¼ G ¼ M� ¼ 1 (unless explicitly
shown otherwise for convenience). Greek indices are taken
to run from 0 to 3, Latin indices from 1 to 3, and we adopt
the standard convention for the summation over repeated
indices.

II. MATHEMATICAL AND NUMERICAL SETUP

All the details on the mathematical and numerical setup
used by the two codes have been discussed in depth in
previous works [2,3,20]. In what follows, we limit our-
selves to a brief overview, while spelling out the differ-
ences between the two codes.
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The differences in the implementation of the Einstein
and hydrodynamics equations between WHISKY and SACRA

are summarized in Table I.

A. Evolution system for the fields

We evolve the Einstein equations in the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formalism [21–24].

For the WHISKY simulations, all the equations discussed
in this section and in the next are solved using the CCATIE

code, a three-dimensional finite-differencing code based
on the CACTUS COMPUTATIONAL TOOLKIT [25]. A detailed
presentation of the code and of its convergence properties
has been presented in [20]. For tests and details on SACRA,
see instead [3].

In the BSSN formalism, the spacetime is first decom-
posed into three-dimensional spacelike slices, described by
a metric �ij, an extrinsic curvature Kij, and the gauge

functions � (lapse) and �i (shift) (see Sec. II B for details
on how we treat gauges and [26] for a general description
of the 3þ 1 split). The standard 3þ 1 formulation is then
modified by introducing different variables as follows. The
three-metric �ij is conformally transformed via

� ¼ 1
12 ln det�ij; ~�ij ¼ e�4��ij; (1)

and the conformal factor � (in WHISKY/CCATIE) or a func-
tion of it (� � e�2�, in SACRA) is evolved as an indepen-
dent variable, while ~�ij is subject to the constraint

det~�ij ¼ 1. The extrinsic curvature is subjected to the

same conformal transformation and its trace K is evolved
as an independent variable. That is, in place of Kij we

evolve:

K � trKij ¼ �ijKij; ~Aij ¼ e�4�ðKij � 1
3�ijKÞ; (2)

with tr ~Aij ¼ 0. Finally, new evolution variables

~� i ¼ ~�jk~�i
jk ¼ �~�ij

;j (3)

are introduced, defined in terms of the Christoffel symbols
of the conformal three-metric.

The Einstein equations specify a well-known set of
evolution equations for the listed variables. They are:

ð@t �L�Þ~�ij ¼ �2� ~Aij; (4)

ð@t �L�Þ� ¼ �1
6�K; or ð@t �L�Þ� ¼ 1

3��K; (5)

ð@t �L�Þ ~Aij ¼ e�4�½�DiDj�þ �ðRij � 8�SijÞ�TF
þ �ðK ~Aij � 2 ~Aik

~Ak
jÞ; (6)

ð@t �L�ÞK ¼ �DiDi�

þ �½ ~Aij
~Aij þ 1

3K
2 þ 4�ð�ADM þ SÞ�; (7)

@t~�
i ¼ ~�jk@j@k�

i þ 1
3
~�ij@j@k�

k þ �j@j~�
i � �j@j�

i

þ 2
3
~�i@j�

j � 2 ~Aij@j�

þ 2�ð~�i
jk
~Ajk þ 6 ~Aij@j�� 2

3
~�ij@jK � 8�~�ijSjÞ;

(8)

where Rij is the three-dimensional Ricci tensor, Di the

covariant derivative associated with the three metric �ij,

‘‘TF’’ indicates the trace-free part of tensor objects, S �
�ijSij, and �ADM, Sj, and Sij are the matter source terms

defined as

�ADM � n�n�T
��; Si � ��i�n�T

��;

Sij � �i��j�T
��;

(9)

where n� � ð��; 0; 0; 0Þ is the future-pointing four-vector
orthonormal to the spacelike hypersurface and T�� is the
stress-energy tensor for a perfect fluid [cf. Eqs. (27)]. The
Einstein equations also lead to a set of physical constraint
equations that are satisfied within each spacelike slice,

H � Rð3Þ þ K2 � KijK
ij � 16��ADM ¼ 0; (10)

M i � DjðKij � �ijKÞ � 8�Si ¼ 0; (11)

which are usually referred to as Hamiltonian and momen-

tum constraints, respectively. Here Rð3Þ ¼ Rij�
ij is the

Ricci scalar on a three-dimensional time slice. Our specific
choice of evolution variables introduces five additional
constraints,

det~�ij ¼ 1; (12)

tr ~Aij ¼ 0; (13)

TABLE I. Differences between WHISKY and SACRA in the schemes for the evolution of the spacetime and of the hydrodynamics. See
text for definitions and further explanations.

WHISKY SACRA

conformal factor � evolve � evolve � � e�2�

primitive matter variables �, vi, " �, ui, "
evolved matter variables D, Si, � D, Si, E
reconstructed matter variables primitive variables: �, vi, " D, ~ui � Si=D, "
local Riemann solver Marquina flux formula central scheme (Kurganov and Tadmor)

atmosphere treatment constant rest-mass density exponentially decreasing rest-mass density
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~� i ¼ ~�jk~�i
jk: (14)

Our codes actively enforce the algebraic constraints (12)
and (13). Specifically, after every time evolution, we per-
form a reset as follows:

~� ij ! ½detð~�ijÞ��1=3 ~�ij; (15)

~A ij ! ½detð~�ijÞ��1=3 ~Aij � 1
3
~�ijTrð ~AijÞ; (16)

K ! K þ Trð ~AijÞ: (17)

In SACRA, the additional resetting

e�2� ! ½detð~�ijÞ��1=6e�2� (18)

is performed. We note that in these adjustments �ij and Kij

are unchanged.
The remaining constraints, H , Mi, and (14), are not

actively enforced and can be used as monitors of the
accuracy of our numerical solution. See [27] for a more
comprehensive discussion of these points.

B. Gauges

We specify the gauge in terms of the standard ADM
lapse function, �, and shift vector, �i [28]. We evolve the
lapse according to the ‘‘1þ log’’ slicing condition [29]:

@t�� �i@i� ¼ �2�K: (19)

The shift is evolved using the hyperbolic ~�-driver condi-
tion [27]

@t�
i � �j@j�

i ¼ 3
4B

i; (20)

@tB
i � �j@jB

i ¼ @t~�
i � �j@j~�

i � 	Bi; (21)

where 	 is a parameter which acts as a damping coeffi-
cient. We set it to be constant and� 3=Mb, whereMb is the
baryon mass of one of the stars (for the simulations made
with WHISKY in the present work, the results do not change
appreciably if 	 is changed at least within a factor 2 of the
above value). The advection terms on the right-hand sides
of these equations have been suggested in [30–32].

C. Apparent horizons and gravitational waves

After the merger, the apparent horizon (AH) formed
during the simulation is located every few timesteps during
the evolution. In WHISKY this computation is performed
both with the AHFINDERDIRECT code of [33,34] and in the
isolated and dynamical-horizon frameworks [35–39]. In
SACRA the AH is located as reported in [3].

For the results reported in the present work, both codes
extract the gravitational waves using the Newman-Penrose
formalism, which provides a convenient representation for
a number of radiation-related quantities as spin-weighted
scalars. In particular, the curvature scalar

�4 � �C���
n
� �m�n� �m
 (22)

is defined as a particular component of the Weyl curvature
tensor C���
 projected onto a given null frame fl;n;m; �mg
and can be identified with the gravitational radiation if a
suitable frame is chosen at the extraction radius. In prac-
tice, we define an orthonormal basis in the three-space

ðr̂; �̂; �̂Þ, centered on the Cartesian origin and oriented
with poles along ẑ. The normal to the slice defines a
timelike vector t̂, from which we construct the null frame

l ¼ 1ffiffiffi
2

p ðt̂� r̂Þ; n ¼ 1ffiffiffi
2

p ðt̂þ r̂Þ;

m ¼ 1ffiffiffi
2

p ð�̂ � i�̂Þ:
(23)

We then calculate �4 via a reformulation of (22) in terms
of ADM variables on the slice [40]:

�4 ¼ Cij �m
i �mj; (24)

where

Cij � Rij � KKij þ Ki
kKkj � i�i

klrlKjk (25)

and �ijk is the Levi-Civita symbol. The gravitational-wave

polarization amplitudes hþ and h� are then related to �4

by time integrals [41]:

€hþ � i €h� ¼ �4; (26)

where the double overdot stands for the second-order time
derivative. Caution should be taken when performing such
integrals [42].
For the extraction of the gravitational-wave signal, both

codes also implement an independent method, which is
based on the measurements of the nonspherical gauge-
invariant metric perturbations of a background spacetime
[43]. The wave data obtained in this way give results
compatible with the ones obtained with the Newman-
Penrose formalism and are not reported here.

D. Evolution system for the matter

Both codes adopt a flux-conservative formulation of the
hydrodynamics equations [44–46], in which the set of
conservation equations for the stress-energy tensor T�
 ¼
�hu�u
 þ pg�
 and for the matter current density J� ¼
�u� (see below for definitions), namely

r�T
�
 ¼ 0; r�J

� ¼ 0; (27)

is written in a hyperbolic, first-order, flux-conservative
form of the type

@tqþ @if
ðiÞðqÞ ¼ sðqÞ; (28)

where fðiÞðqÞ and sðqÞ are the flux vectors and source terms,
respectively [47]. Note that the right-hand side (the source
terms) does not depend on derivatives of the stress-energy
tensor. Furthermore, while the system (28) is not strictly
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hyperbolic, strong hyperbolicity is recovered in a flat
spacetime, where sðqÞ ¼ 0.

The primitive hydrodynamical variables are the rest-
mass density �, the specific internal energy " measured
in the rest-frame of the fluid, and the fluid three-velocity
(defined as vi ¼ ui=W þ �i=� (contravariant compo-
nents) in WHISKY and as ui (covariant components) in
SACRA, where u� is the four-velocity measured by a local

zero–angular-momentum observer; SACRA defines contra-
variant components of the three-velocity as Vi ¼ ui=u0).
The Lorentz factor is defined as

W � �u0 ¼ ð1þ �ijuiujÞ1=2 ¼ ð1� �ijv
ivjÞ�1=2: (29)

There is then an equation of state (EoS) relating pressure,
rest-mass density and internal-energy density.

Following [45], in order to write system (27) in the form
of system (28), the primitive variables are mapped to a set
of conserved variables q � ðD; Si; EÞ via the relations

D � ffiffiffiffi
�

p
W� ¼ e6�W�;

Si � D~ui ¼ ffiffiffiffi
�

p
�hW2vi

E � ffiffiffiffi
�

p ð�hW2 � pÞ � �þD � D~e;

(30)

where h � 1þ "þ p=� is the specific enthalpy, ~ui � hui
is the specific momentum, and ~e � hW � p=ð�WÞ is the
specific energy.

In this approach, all variables q are represented on the
numerical grid by cell-integral averages. The functions that
the variables q represent are then reconstructed within
each cell, usually by piecewise polynomials, in a way
that preserves conservation of the variables q [48]. This
operation produces two values at each cell boundary, which
are then used as initial data for the local Riemann prob-
lems, whose (approximate) solution gives the fluxes
through the cell boundaries. A method-of-lines approach
[48], which reduces the partial differential equations (28)
to a set of ordinary differential equations that can be
evolved using standard numerical methods, such as
Runge-Kutta or the iterative Cranck-Nicholson schemes
[49,50], is used to update the equations in time (see [15] for
further details). Here, we employ the 4th-order Runge-
Kutta method (see below).

Various reconstruction methods are implemented in
WHISKY and SACRA, but here we always use the piecewise

parabolic method (PPM) [51]. Both codes implement the
scheme of Kurganov-Tadmor [52] (which is a variation of
the HLLE approximate Riemann solver [53]), but WHISKY

gets better results employing the Marquina flux formula
[54] (see [15,16] for a more detailed discussion). A com-
parison among different numerical methods in binary-
evolution simulations was reported in [2,55].

There are differences between WHISKY and SACRA in
several implementation choices. In WHISKY, the variables
whose evolution is computed are D, Si, and � � E�D.
SACRA adopts as evolution variables D, Si, and E.

Furthermore, the PPM reconstruction is performed by
SACRA on the variables �, ~ui ¼ Si=D, and ", while

WHISKY reconstructs the primitive variables �, vi, and ".
Other differences are present in the conversion from the

evolved conservative variables back to the primitive vari-
ables, which are used to calculate the fluxes and the source
terms of the equations. Such a conversion cannot be given
in an analytical closed form (except in certain special
circumstances).

WHISKY implements the following procedure to do the

conversion. One writes an equation for the pressure

p� �p½�ðq; pÞ; "ðq; pÞ� ¼ 0; (31)

where p is the value of the pressure to be found and
�p½�ðq; pÞ; "ðq; pÞ� is the pressure as obtained through the
EoS in terms of the updated conserved variables q and of p
itself. This is done by inverting (30) to express � and " in
terms of the conserved variables and of the pressure only:

� ¼ D

�þ pþD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ pþDÞ2 � S2

q
; (32)

" ¼ D�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ pþDÞ2 � S2

q
� p �W �D

�
; (33)

where

�W ¼ �þ pþDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þ pþDÞ2 � S2
p (34)

is the Lorentz factor, expressed in terms of the conserved
variables, and

S2 � �ijSiSj: (35)

Then (31) is solved numerically. In WHISKY we use a
Newton-Raphson root finder, for which we need the de-
rivative of the function with respect to the dependent
variable, i.e. the pressure. This is given by

d

dp
fp� �p½�ðq; pÞ; "ðq; pÞ�g

¼ 1� @ �pð�; "Þ
@�

@�

@p
� @ �pð�; "Þ

@"

@"

@p
; (36)

where

@�

@p
¼ DS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þ pþDÞ2 � S2

p ð�þ pþDÞ2
; (37)

@"

@p
¼ pS2

�½ð�þ pþDÞ2 � S2�ð�þ pþDÞ ; (38)

and where @ �p=@� and @ �p=@" are given by the EoS. Once
the pressure is found, the other variables follow simply.
In SACRA, the conversion is performed in the following

way. From the normalization relation u�u� ¼ �1, W is

expressed in terms of h and of the evolved values of
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~uið¼ Si=DÞ and �ij:

W2 ¼ 1þ �ij~ui~uj

h2
: (39)

For the EoSs chosen in the present work, h is regarded as a
function of W for the evolved values of D, ~e, and �
because of the relation ~e ¼ hW � pe6�=D and of the
fact that p is written as a function of h, �ð¼ De�6�=WÞ,
and W as p ¼ pðh; �Þ ¼ pðh;WÞ. Substituting the result-
ing relation for h ¼ hðWÞ into Eq. (39), we obtain a one-
dimensional algebraic equation for W both for the �-law
EoS and the piecewise-polytropic EoS (see Sec. II D 2). We
solve this derived equation using the Newton-Raphson
method, for which we need to take a derivative of the
equation FðWÞ ¼ 0 with respect to W. This is rather
straightforward, and straightforward is also the determina-
tion of the variables h, ", and P, once the equation forW is
solved.

1. Treatment of the atmosphere

At least mathematically, the region outside our initial
stellar models is assumed to be perfect vacuum.
Independently of whether this represents a physically real-
istic description of a compact star, the vacuum represents a
singular limit of any conservative scheme for hydrodynam-
ical evolution and must be treated artificially. Both codes
follow a standard approach in computational fluid-
dynamics, that is the addition of a tenuous ‘‘atmosphere’’
filling the computational domain outside the star.

Of course, the density of the atmosphere should be as
small as possible, in order to avoid spurious effects. The
evolution of the hydrodynamical equations in grid zones
where the atmosphere is present is the same as the one used
in the bulk of the flow. When the rest-mass density in a grid
zone falls below the threshold set for the atmosphere, that
grid zone is not updated in time and the values of its rest-
mass density, internal-energy density, and velocity are set
to those of the atmosphere.

Both codes treat the atmosphere as a zero–coordinate-
velocity perfect fluid governed by a polytropic EoS with
the same adiabatic index used for the bulk matter, or, in
case of the piecewise-polytropic EoS (see Sec. II D 2), the
same adiabatic index as the one used in the outer parts of
the star.1 However, the values of the rest-mass density
assigned to the atmosphere are different. In WHISKY, the
rest-mass density is set to be constant and several (10 in the
present simulations) orders of magnitude smaller than the
initial maximum rest-mass density �max [2,15,16].

In SACRA the rest-mass density is assigned as

� ¼
�
�atmo r � r0;
�atmoe

1�r=r0 r > r0;
(40)

where �atmo ¼ �max � 10�9 is chosen. r0 is a coordinate
radius of about 10–20MADM, where MADM is the ADM
mass of the system. In both codes, also the internal-energy
density " is then recomputed from � according to the
polytropic EoS.
For both codes, with such a choice of parameters, the

rest mass of the atmosphere is at least a factor 10�5 smaller
than the rest mass of the NSs. Thus, spurious effects due to
the presence of the atmosphere, such as accretion of the
atmosphere onto the NSs and the black hole, the resulting
dragging effect against orbital motion, gravitational ef-
fects, and effects on the formation and dynamics of the
disk around the merged object play a negligible role in the
present context.

2. Equations of state

In this work we present results obtained with two EoSs:
a simple ‘‘�-law’’ or ‘‘ideal-fluid’’ EoS and a piecewise-
polytropic EoS [56]. For the ideal-fluid EoS, the pressure is
given as

p ¼ ð�� 1Þ�"; (41)

where � is the adiabatic index. When using the ideal-fluid
EoS (41), nonisentropic changes can take place in the fluid
and, in particular, shocks (which are always present in the
mergers and which may play important roles) are allowed
to transfer kinetic energy to internal energy. On the other
hand, a carefully chosen piecewise-polytropic EoS may
mimic more closely a realistic EoS. The parametrized
EoS we consider consists of two polytropes interfacing at
a density �0. The relations between the hydrodynamical
quantities are (i ¼ 0, 1) [56]

p ¼ Ki�
�i ; (42)

" ¼ ð1þ aiÞ�þ Ki

�i � 1
��i ; (43)

where Ki are the polytropic coefficients and �i are the
polytropic exponents in the different intervals of rest-
mass density. Furthermore, the constants ai, which guar-
antee continuity, are

a0 ¼ 0; (44)

a1 ¼ "ð�0Þ
�0

� 1� K1

�1 � 1
��1�1
0 : (45)

In our simulations we used the parameters of model B of
[57], namely:

�0 ¼ 1:630 497 500 125 504� 1014 g cm�3; (46)
1In this case, also the polytropic constant K for the atmosphere

is chosen to be the same as the one in the outer parts of the star.
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0< �< �0: �0 ¼ 1:356 923 95;

K0 ¼ 0:359 382 66� 1014 cgs units;

� > �0: �1 ¼ 3:0;

K1 ¼ 0:159 821 16� 10�9 cgs units;

a1 ¼ 0:010 881 587 374 308 45:

In the presence of shock heating, part of the kinetic
energy is converted into thermal energy. To model this
property, the original piecewise-polytropic EoS is modified
by adding a thermal contribution to the pressure

Pth ¼ ð�th � 1Þ�ð"� "0Þ; (47)

where �th is the adiabatic index for this correction and "0 is
given by Eq. (43). In the absence of shocks, " is equal to "0
and thus Pth ¼ 0. In the simulations of this work SACRA has
adopted �th ¼ �0 while in WHISKY the thermal correction
was not applied (Pth ¼ 0). As the figures of this work
show, at least in the inspiral phase the difference in the
adopted EoS does not have an influence.

E. Adaptive mesh refinement

There are similarities and differences in the implemen-
tation of the adaptive mesh refinement (AMR) in the two
codes. In the following we spell them out in detail.

Both codes employ a vertex-centered Berger–Oliger
[58] mesh-refinement scheme adopting nested grids with
a 2:1 refinement factor for successive grid levels. In the
simulations made for the present work both codes used a
set of coarser fixed grids and finer moving grids, centered
around each star. WHISKY makes use of the CARPET mesh-
refinement driver [59]. The higher-resolution moving grids
are centered around the local maximum in the rest-mass
density � of each star. In SACRA, instead, the grids are
centered around the local maximum of the conserved
variable D.

Both codes employ centered 4th-order finite-
differencing in space for evaluating spatial derivatives of
the geometric quantities, except for the shift advection
terms that are calculated with upwinding derivatives to
improve accuracy. For the time integration, the 4th-order
Runge-Kutta scheme is adopted. To evolve quantities near
the refinement boundaries of a refined grid, both codes
introduce buffer zones, where the variables are computed
(‘‘prolonged’’ and ‘‘restricted’’) in a special way and not
with the time-update scheme used for all other non-refine-
ment-boundary points.

In WHISKY/CARPET, we use 12 buffer points, 3 for each
substep of the adopted time-integration scheme. The values
of the needed quantities at the buffer points are computed
from the coarser grid through interpolation as follows: For
the spacetime variables, 5th-order Lagrangian interpola-
tion in space and 2nd-order Lagrangian interpolation in
time are used; For the hydrodynamical variables, 3rd-order

ENO [60] interpolation in space and 2nd-order ENO inter-
polation in time are used. The prolonged and restricted
variables are the conserved evolved ones:D, Si, and �. The
interpolation is done whenever the first Runge-Kutta time
integration is being carried out.
In SACRA both prolongation and restriction are carried

out on D, ~uið¼ Si=DÞ, and h. Following [61], 6 buffer
points are introduced. The quantities at the buffer zones
are provided from the corresponding coarser domain by the
following procedure. For space interpolation, 5th-order
centered Lagrangian interpolation in space is carried out
using the nearby 6 points of the coarser grid. This is done
both for spacetime and hydrodynamics variables. For the
latter, this interpolation scheme could fail, in particular in
the vicinity of the surface of the stars, whereD is small and
varies steeply. The reason for this possible failure is that
the interpolation may give a negative, and so unphysical,
value of D or h� 1. If the 5th-order Lagrange interpola-
tion produces D<Dmin or h < 1, 1st-order (i.e., linear)
interpolation is adopted. Dmin is chosen to be Dmax=10

9,
where Dmax is the initial maximum value of D. Linear
interpolation cannot be used in general for all points be-
cause it is too dissipative. As in WHISKY the interpolation is
also done whenever the first Runge-Kutta time integration
is being carried out.
For the update of the buffer zones SACRA implements,

instead, the following: (i) For the inner three buffer points
all the quantities are evolved using the 4th-order finite-
differencing scheme. Since there is a sufficient number of
buffer points to solve the evolution equations in the inner
three buffer points, no interpolation is necessary; (ii) For
the fourth buffer point, all the quantities are evolved using
a 4th-order finite-differencing scheme with no interpola-
tion, except for the transport terms for the geometry such as
�k@k ~�ij, for which 2nd-order finite differencing is em-

ployed when �k has an unfavorable sign; (iii) For the
two outer buffer points, 2nd-order Lagrangian interpola-
tion in time of the coarser-grid quantities is carried out.
This time-integration procedure is applied to both space-
time and hydrodynamical variables, but for the latter there
is an additional check.
The interpolated value at a finer-grid time step is ob-

tained from the values at the three time levels of the coarser
grid, say, n� 1, n, and nþ 1 (note that n does not denote
the Runge-Kutta time step). The interpolation is necessary
for determining the values at a time t that satisfies tn < t <
tnþ1. Defining Q as D, ~ui, or h, and Qn as the value of the
variable Q at time tn, SACRA checks whether (Qnþ1 �
QnÞðQn �Qn�1Þ< 0 and if so adopts 1st-order interpola-
tion, using only Qnþ1 and Qn. Namely, a limiter procedure
is introduced. This robust prescription provides numerical
stability [3].
The two domains in the finer levels often overlap. In

such cases, the values of all quantities should agree with
each other, but, since in SACRA the evolution equations for
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the two domains are solved independently, the values do
not always agree exactly. Let us denote withQ1 andQ2 the
values on the two domains of an individual refinement
level. In order to guarantee that they are the same, in
SACRA the average of the two values is used: Q1 ¼ Q2 !
ðQ1 þQ2Þ=2. When a buffer point of one of the two
domains overlaps with a point in the main region of the
other domain, the values at the point of the main region are
copied to those at the buffer point. When two buffer zones
overlap at some points, the simple averaging described
above is again used.

In WHISKY, when domains of the same refinement level
would overlap, the whole level is automatically resplit in
(smaller and more numerous) nonoverlapping domains, so
in practice they continue to be evolved as a single grid,
without requiring averaging. For more details on the
CARPET code see [59].

For both codes, at the outer boundaries of the coarsest
refinement level, an outgoing boundary condition is im-
posed for all the geometric variables. The outgoing bound-
ary condition is the same as that suggested by Shibata and
Nakamura [22]. Flat boundary conditions are applied to the
matter variables.

Both codes can add artificial dissipation to the source
terms of the Einstein equations. In particular, for the
schemes presented in this work, they could use 5th-order

Kreiss-Oliger-type dissipation [62] as Ql ! Ql � �h6l Q
ð6Þ
l

where Ql is a quantity in the lth level, hl is the spacing of

the l-th level, Qð6Þ
l is the sum of the sixth derivatives along

the x, y, and z axis directions, and � is a constant of order
0.1. The results of the present work were obtained without
artificial dissipation for SACRA and with artificial dissipa-
tion for WHISKY.

Standard SACRA simulations for NS-NS binaries are
performed with 7 or 8 refinement levels, in particular 3
or 4 coarser levels composed of one domain and 4 finer
levels composed of two domains. The time step for each
refinement level, dtl, is determined as follows:

dtl ¼
�
h2=2 for 0 � l � 2
hl=2 for 2< l � L� 1:

(48)

Namely, the Courant number (expressed in terms of the

speed of light) is 1=2 for the finer refinement levels with
l � 2, whereas for the coarser levels, it is smaller than 1=2.
The reason why a smaller Courant number is chosen for the
coarser levels is that with a Courant number as high as 1=2,
numerical instabilities occur near the outer boundary. This

is an inherent problem of the adopted ~�-driver gauge
condition [63] and it does not appear in the WHISKY simu-
lations of the present work only because the resolution in
the coarsest grids is still high enough.
In standard WHISKY simulations for binary systems 6

refinement levels are used, the two finest of which move
following the stars. In addition to the moving grids, a set of
refined but fixed grids is set up at the center of the computa-
tional domain so as to capture the details of the Kelvin-
Helmholtz instability (see [2]). The Courant factor is 0.35
for all levels.
In the WHISKY simulations for the present work, a re-

flection symmetry condition across the z ¼ 0 plane and a
�-symmetry condition2 across the x ¼ 0 plane are used,
while SACRA adopts only the reflection symmetry across
the z plane.
The differences in the implementation of AMR between

SACRA and WHISKY are summarized in Table II.

F. Initial data

The initial configurations for our relativistic-star binary
simulations are produced using the multidomain spectral-
method code, LORENE, which was originally written by the
group working at the Observatoire de Paris-Meudon
[64,65] and which is publicly available [66]. Specific rou-
tines are used to transform the solution from spherical
coordinates to a Cartesian grid of the desired dimensions
and shape.
These initial data, which we refer to also as the ‘‘Meudon

data,’’ are obtained under the assumptions of quasiequili-
brium and of conformally-flat spatial metric. The initial
data used in the simulations shown here were produced
with the additional assumption of irrotationality of the fluid

TABLE II. Differences in the implementation of the AMR of SACRA and WHISKY. See text for definitions and further explanations.

WHISKY SACRA

prolonged and restricted variables conserved variables: D, Si, � D, ~uið¼ Si=DÞ, h
interpolation for the prolongation

of the hydrodynamical variables

ENO: 3rd order in space,

2nd order in time

Lagrangian: 5th order in space (reduced

to 1st order in case of failure),

2nd order in time (reduced to 1st order at extrema)

buffer zones 12 6

overlapping same-level grids are evolved as a single grid evolved independently (but using

the average of the values

of the two grids at overlapping points)

2Stated differently, we evolve only the region fx � 0; z � 0g
applying a 180	 rotational-symmetry boundary condition across
the plane at x ¼ 0.
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flow, i.e. the condition in which the spins of the stars and
the orbital motion are not locked; instead, they are defined
so as to have vanishing vorticity. Initial data obtained with
the alternative assumption of rigid rotation were not used
because, differently from what happens for binaries con-
sisting of ordinary stars, relativistic-star binaries are not
thought to achieve synchronization (or corotation) in the
time scale of the coalescence [67].

The initial models for the binaries have been chosen so
as to allow significant possibilities of comparison between
the codes and at the same time to limit the required
computational time. In particular, after performing several
orbits and merging, prompt collapse to a Kerr black hole
occurs. As said above, we chose two EoSs, the ideal-fluid
EoS (41)3 and a piecewise-polytropic EoS (43). For the
latter, the initial data have been kindly provided by K.
Taniguchi. Note that the model with the ideal-fluid EoS
has been often used in previous work (e.g. [1,3]).

Some of the physical quantities of the initial configura-
tions are reported in Table III. In brief, they are equal-mass
configurations with an initial proper distance between
stellar centers of about 60 km (initial orbital frequency
0.303 kHz and 0.265 kHz, respectively for the ideal-fluid
model and for the piecewise-polytropic model). The
chosen rest masses of MIF

0 ¼ 1:779M� and MPP
0 ¼

1:502M�, respectively for the two models, lead—as de-
sired—to prompt collapse to black hole.

G. Specific grid setup for the reported simulations

For the higher-resolution run with WHISKY, the spacing
of the finest of the six grid levels is h ¼ 0:120M� ’
0:1773 km and the spacing in the wave zone (the coarsest
grid) is h ¼ 3:84M� ’ 5:67 km. For the lower-resolution
run the spacing is h ¼ 0:150M� ’ 0:2216 km on the finest
grid and h ¼ 4:80M� ’ 7:09 km on the coarsest grid. The
finest grid always covers the whole stars. For the simula-
tions with the ideal-fluid model the outer boundary is

located at about 380 km while in the case of the
piecewise-polytropic model, for both resolutions, the outer
boundary is at about 760 km. Except for the outer boundary
location and the grid spacing, the AMR grid structure was
the same for all the runs.
For the runs with SACRA, for the ideal-fluid model, the

grid structure is essentially the same as in [3]; the finest of
the eight grid levels has h ¼ 0:0938M� ’ 0:1387 km. For
the simulations with the piecewise polytrope, the computa-
tional domain is composed of seven grid levels with the
finest grid resolution being h ¼ 0:1182M� ’ 0:1746 km at
the high resolution, h ¼ 0:1370M� ’ 0:2025 km at the
medium resolution, and h ¼ 0:1631M� ’ 0:2411 km at
the lower resolution. The resolution in the wave zone (for
the coarsest grid level) is h ’ 11:17 km for the high-
resolution run and h ’ 12:96 km for the others. The
boundary of the finest grid is at 60% of the stellar radius
(along a coordinate axis, at t ¼ 0) while the second finest
grid covers all the stars for the run with the ideal-fluid EoS,
whereas for the run with the piecewise-polytropic EoS, the
finest grid covers the stellar radius completely (the bound-
ary of the finest grid is at 115% of the stellar radius). The
outer boundary is at about 852 km for the simulations
performed with the ideal-fluid EoS and at about 603 km
or about 648 km for those performed with the piecewise-
polytropic EoS, for the high-resolution run and the other
runs, respectively.
As already noted in Sec. II E, another difference between

the grid setups of the two codes is the adopted symmetry.
Both codes compute only the z � 0 portion of the fx; y; zg
Cartesian coordinate numerical domain, but, while SACRA

calculates all the z � 0 portion, WHISKY calculates only the
x � 0 part of the remaining domain, taking advantage of
the 180	 rotation symmetry characterizing equal-mass
binaries.
The properties of the grids adopted in the simulations

with the two codes are summarized in Table IV.
For the setup of the piecewise-polytrope high-resolution

run, WHISKY, which heavily exploits large parallel facili-
ties, uses approximately 22� 106 grid points and the total
required memory for the high-resolution run is about

TABLE III. Properties of the initial data: proper separation between the centers of the stars d=MADM; baryon massMb of each star in
units of solar mass; total ADM massMADM in units of solar mass, as measured on the finite-difference grid; total ADM mass ~MADM in
units of solar mass, as provided by the Meudon initial data; angular momentum J, as measured on the finite-difference grid; angular
momentum ~J, as provided by the Meudon initial data; initial orbital angular velocity�0; mean coordinate equatorial radius of each star
re along the line connecting the two stars; maximum rest-mass density of a star �max. The columns for MADM and J contain the value
for WHISKY (left) and the one for SACRA (right). Note that the values of MADM and J are computed through a volume integral in
WHISKY, while in SACRA they are computed through the extrapolation to r ! 1 of the ADM masses and angular momenta calculated

as surface integrals at finite radii r.

EoS for the model d=MADM

Mb

ðM�Þ
MADM

ðM�Þ
~MADM

ðM�Þ
J

ð�1049g cm2=sÞ
~J

ð�1049g cm2=sÞ
�0

ðrad=msÞ
re

(km)

�max

ðg=cm3Þ
Ideal fluid (� ¼ 2) 12.6 1.779 3.251,3.256 3.233 8.921,8.930 8.922 1.906 12.23 7:58� 1014

Piecewise polytropic 15.4 1.502 2.676,2.680 2.668 6.492,6.506 6.491 1.664 8.48 9:77� 1014

3The initial data for the simulations adopting the ideal-fluid
EoS are set up as a simple polytropic EoS with polytropic
constant K ¼ 123:6 (in units of c ¼ G ¼ M� ¼ 1).
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640 GBytes. SACRA, instead, which has been specifically
developed for being able to perform production simula-
tions even on a laptop computer, uses about 7� 106 grid
points and about 11.6 GBytes of memory. For WHISKY, the
total CPU time for the high-resolution piecewise-polytrope
run was about 450 CPU hours on 320 processors of the
Ranger cluster (at the Texas Advanced Computing Center;
the processors are AMD Opteron Quad-Core 64-bit, with
clock frequency 2.3 GHz) and for SACRA it was about 2000
CPU hours on a Quad-Core machine of Core-i7X process-
ors with clock frequency 3.33 GHz.

III. COMPARISON OF THE RESULTS

As also described in [2,3], the chosen initial data for the
present study are such that the stars orbit about 3 times and
7 times, respectively, for the two models with different
EoSs, before merging. As can be seen in Fig. 1, the rest-
mass density at the stellar centers remains approximately
constant for the first 6 ms (in the case of the simulation
with the ideal-fluid EoS) or 15 ms (for the piecewise-
polytropic case) and then decreases, indicating an expan-
sion of the stars due to the tidal force, just before the
merger. As expected from the (high) mass of the chosen
models, the merged object then immediately collapses to a
black hole and the AH is measured for the first time at
about 8 and 18 milliseconds, respectively, for the two
models with different EoSs (cf. the highest resolutions).
The massMBH and the angular-momentum parameter a �
JBH=ðMBHÞ2 of the resulting black hole are measured by
both codes. The values after the ringdown for the
piecewise-polytropic EoS are MWHISKY

BH ¼ 2:633M�,
MSACRA

BH ¼ 2:637M� (a relative difference of 0.15%), and
aWHISKY ¼ 0:79, aSACRA ¼ 0:80 (a relative difference of
1.2%). For the ideal-fluid EoS the values of the black hole
are MWHISKY

BH ¼ 3:22M�, MSACRA
BH ¼ 3:21M�, and a ¼

0:84 for both codes.
Having briefly summarized the dynamics of the system,

we present now first a comparison between some quantities
produced in evolutions performed with SACRA and with

WHISKY, each in what is thought to be a good configuration

in terms of accuracy, violation of the ADM constraints, and
cleanness of gravitational waves. Furthermore, for the
piecewise-polytropic EoS we present for each code results
obtained at two or three resolutions.
From Fig. 1 one can see immediately that the time of the

merger depends considerably on the grid resolution, for
both codes, but in a stronger fashion for WHISKY. As is well
known, the conservation of the angular momentum in
numerical simulations of binary compact objects is a deli-
cate issue, which can have very visible effects like the ones
in Fig. 1. Even if the merger and post-merger dynamics
may not be sensible to the exact timing of the inspiral, the

TABLE IV. Properties of the initial grids: number of refinement levels (including the coarsest grid); number of finer levels that are
moved to follow the stars; spacing of the finest level; length of the side of the finest level; spacing of the coarsest level; outer-boundary
location. All lengths are expressed in km. HR, MR, and LR denote the high, medium, and low resolutions, respectively. For WHISKY

the two resolutions are in a ratio of 5=4, while for SACRA the ratio between LR and MR is 50=42 and the ratio between MR and HR is
1.16.

Model

no of

levels

no of

moving levels

finest

spacing

extent of

finest grid

coarsest

spacing

outer-boundary

location

WHISKY ideal fluid 6 2 0.1773 44.33 5.67 380

WHISKY piecewise, HR 6 2 0.1773 44.33 5.67 760

WHISKY piecewise, LR 6 2 0.2216 44.33 7.09 760

SACRA ideal fluid 8 4 0.1387 6.656 17.75 852

SACRA piecewise, HR 7 4 0.1746 9.428 11.17 603

SACRA piecewise, MR 7 4 0.2025 10.13 12.96 648

SACRA piecewise, LR 7 4 0.2411 10.13 12.96 648

FIG. 1 (color online). Comparison of the time evolution of the
maximum of the rest-mass density for the two models (with
different EoSs) described in Sec. II D 2. For ease of interpreta-
tion, we remind the reader that in our units � ¼ 1� 10�3

corresponds approximately to 6:18� 1014 g=cm3.
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phase of gravitational waves is affected and so this effect
must be carefully taken into account when producing
templates for gravitational-wave data analysis. For ex-
ample, [3] attempted to do so by estimating, given a
specific initial-data configuration, the ‘‘real’’ merger time
at infinite resolution through an extrapolation based on the
results of simulations of the same model at different reso-
lutions. Anyway, we are here interested in the comparison
of the codes and note that, when the differences due to the
resolution are subtracted by time-shifting the curves, the
evolutions of the rest-mass density in the two codes are
very similar. As said, a proper analysis of the phase differ-
ence of the gravitational waves from the various codes and
resolutions will be reported in a future work [18].

We continue the discussion of the results in a more
quantitative manner by comparing the time evolution of
the rest mass, which should be a conserved quantity as no
matter is seen leaving the numerical domain through the
outer boundary during the simulation. One can see in the
left panel of Fig. 2 that both codes conserve the rest mass at
very high accuracy, but in SACRA the violation is of the
order of 10�3 while in WHISKY it is of the order of 10�8.
More in detail, the dot-dashed black line refers to the high-
resolution SACRA run, which of course shows an improve-
ment over the medium (continuous red line) and lower-
resolution ones (dotted green line). The convergence is
achieved approximately at second order. The curves refer-

ring to WHISKY look constant on the main panel, but in the
subpanel one can notice the minute increase in the rest
mass even in the high-resolution results (short-dashed blue
line). The curve referring to the low resolution (long-
dashed magenta) drops at the time of AH formation be-
cause the matter inside the horizon is not included in the
computation of the rest mass.
The reason of the relatively worse conservation in

SACRA (as said, the conservation is very good in absolute

terms also for SACRA) is to be found in the presence of a
refinement boundary very close to the stellar surface. In the
orbital phase, oscillations due to the tidal deformation of
the NS cause the matter to cross the finest refinement level
and the small errors due to the interpolation in the buffer
zones are larger where the density is larger. Also in
WHISKY, if a refinement boundary is placed inside the stars,

the violation of the conservation of the rest mass is larger
(
 10�4).
The right panel of Fig. 2, which—as the left one—refers

to the piecewise-polytropic EoS, shows then the conserva-
tion of the energy, namely, the sum of the ADM mass
computed on the numerical domain and of the energy
carried by gravitational waves outside the numerical do-
main. Such a quantity, normalised to its initial value (the
initial ADMmass) should be constant and the figure shows
the deviation of the results from constancy. The colors and
line types are the same as in the left panel. At the highest

FIG. 2 (color online). Left: Comparison of the time evolution of the rest mass (normalized to the initial value). The inset is a
magnification of the higher-resolution WHISKY curve, in the form M=M0 � 1. These data refer to the piecewise-polytropic EoS. As
explained in the text, the larger variations in the SACRA data are due to the choice of grid structure. Right: Comparison of the time
evolution of the sum (normalized to the initial value) of the ADM mass measured on the numerical grid and the energy carried away
from the grid by gravitational waves. This quantity should be conserved. These data refer to the piecewise-polytropic EoS. Note that
the data for the low resolution of WHISKY are not reliable after the formation of the AH (t ’ 13:4 ms for this simulation), because the
volume integral with which the ADM mass is computed contained also the points inside the horizon. See text for more details.
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resolutions, both WHISKYand SACRA conserve this quantity
very well, at the order of 1 per 1000 during the inspiral and
at better than 1% overall.

Some of the differences in the curves referring to the two
codes (in particular the ‘‘smoothness’’) are due to the
different way of computing the ADM mass. WHISKY per-
forms a volume integral with the formula

MADM;Vol ¼
Z
V
@i½� ffiffiffiffi

�
p

�jk�lið@k�jl � @l�jkÞ�d3x (49)

and in the simulations of this work it does not exclude the
points inside the AH from the computation, so the values of
the ADM mass given by WHISKY after the appearance of
the AH are affected by gross errors. SACRA, instead, uses a
surface integral on a spherical surface far from the central
objects. This method gives consistent results after the
formation of the AH, but is more sensitive to small metric
oscillations in the vicinity of the chosen surfaces, which lie
in the coarse resolution region; the ‘‘roughness’’ of the
curves follows from this.

Figure 3, which refers to the piecewise-polytropic EoS,
shows then the conservation of the angular momentum,
defined here as the sum of the angular momentum com-
puted on the numerical domain and of the angular momen-

tum carried by gravitational waves outside the numerical
domain. Such a quantity, normalized to its initial value (the
initial angular momentum) should be constant and the
figure shows the deviation of the results from constancy.
The colors and line types are the same as in the previous
figures. At the highest resolution, WHISKY conserves this
quantity very well, at better than 1%, and also for SACRA

deviations from constancy are of the same order, even if
larger oscillations are visible. The difference in the com-
putation of the angular momentum, analogous the one for
the ADMmass, is also here at the origin of the difference in
the smoothness of the curves. Namely, WHISKY performs a
volume integral with the formula [68]

Jivol ¼ "ijk
Z
V

�
1

8�
~Ajk þ xjSk þ 1

12�
xjK;k

� 1

16�
xj ~�

lm
;k
~Alm

�
e6�d3x (50)

and excludes from the integral the points inside the AH.
However, if the angular momentum of the black hole is
added to the one computed above, the correct time evolu-
tion of the quantity in Fig. 3 is recovered, except for an
interval just after the AH formation, when the AH is small
and covers only a few grid points, and so the measurement
of its angular momentum is inaccurate. SACRA, instead,
uses also here a surface integral.
As previously noted, also from the time evolutions in

Fig. 3 one sees that the conservation of the angular mo-
mentum at these resolutions depends in a stronger way on
resolution for the WHISKY code with respect to SACRA. In
addition, one can see that, while also the SACRA data show
convergence almost everywhere, in some time intervals the
behavior at different resolutions is not convergent, for
example, at the spike around 2.5 ms. The reason is not
completely clear at the moment, but we think that this is
probably related to the low resolution of the coarsest grid,
where the surface on which the angular momentum is
computed is located [note that accurate extraction of an-
gular momentum requires an accurate computation of parts
of the extrinsic curvature that are Oðr�3Þ and these are
much smaller than the leading-order wave part of Oðr�1Þ].
If the angular momentum is computed on surfaces that lie
on the finer levels, the differences in the wrong direction
caused by resolution are much smaller (but the value of the
angular momentum is less accurate).
We now proceed to analyze gravitational waves ex-

tracted from the simulations. The data presented here are
extracted from the numerical simulations at distances from
the origin of the axes in the interval 300
 600 km. For
building templates to be used in the analysis of the data
taken by the gravitational-wave detectors, the accurate
knowledge of the frequency of the waves is of special
importance. Thus we first show in the left panel of
Fig. 4, which refers to the ideal-fluid EoS, the comparison
of the orbital frequency. The agreement of the results of the

FIG. 3 (color online). Comparison of the time evolution of the
angular momentum, computed as the sum of the angular mo-
mentum measured on the numerical grid and the angular mo-
mentum carried away from the grid by gravitational waves.
These data refer to the piecewise-polytropic EoS. As already
noted for Fig. 2, also here the data for the low resolution of
WHISKY are not reliable after the formation of the AH (t ’
13:4 ms for this simulation), because the volume integral with
which the angular momentum is computed excludes the contri-
bution of the black hole. See text for more details.
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two codes is excellent, if one ignores the initial spurious
signal (related to the spurious gravitational-wave content
of the initial data, which is rapidly propagated away). The
orbital frequency � is computed in postprocessing from
the time derivatives of the real and imaginary part of c 4:

� ¼ � d

dt

�
atan

=ðc 4Þ
<ðc 4Þ

�

¼ �
d=ðc 4Þ

dt <ðc 4Þ � =ðc 4Þ d<ðc 4Þ
dt

½<ðc 4Þ�2 þ ½=ðc 4Þ�2
: (51)

The biggest real (i.e. not related to the noise) difference
between the two curves is during the merger, at around
7:5 ms and it is of about 10%, which is consistent with the
results of [7].

In the right panel of Fig. 4 we plot the amplitude of
waves as a function of the frequency. The inset shows that
the error on the amplitude is always at most 10%, which is
of the same order of magnitude of the one found in the
comparison of numerical codes in binary–black-hole simu-
lations [7] and provides here an important consistency
check on the numerical accuracy and validity of the wave-
forms of both WHISKY and SACRA. The discussion of
whether, as in [7], also for binary-NS–merger waveforms
this discrepancy is relevant or not for data analysis (namely
whether current detectors can or cannot distinguish be-
tween the waveforms of the two codes) is left to a future
work, now in preparation [18].

Finally, in order to give also a strong visual support to
the goodness of the consistence of gravitational waves

computed from the two codes, in Fig. 5, which refers to
the piecewise-polytropic EoS, we show the ðhþÞ22 wave-
forms, together with the curve predicted by the Taylor-T4

FIG. 4 (color online). Left: Comparison of the time evolution of the orbital frequency, computed from c 4. These data refer to the
ideal-fluid EoS. The inset shows the percent difference of the two curves. The curve labeled T4 is the Taylor-T4 post-Newtonian
approximation [18,69,70]. Right: Comparison of the amplitude of the wave as a function of the frequency M�. The inset shows the
percent difference between the two curves. These data refer to the ideal-fluid EoS.

FIG. 5 (color online). Comparison of the waveform ðhþÞ22.
These data refer to the piecewise-polytropic EoS. The upper
panel refers to the ‘‘higher resolution’’ and the lower panel to the
‘‘lower resolution’’ (see text for details). As in Fig. 4, the curve
labeled T4 is the Taylor-T4 post-Newtonian approximation
[18,69,70].
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post-Newtonian approximation [18,69,70]. These are the
raw data, in the sense that no phase shift is performed to
achieve the best alignment of gravitational waves. The
latter procedure is often successfully performed in data-
analysis related work and will be included in our future
work. Nevertheless, the similarity of the numerical wave-
forms (both between themselves and with respect to the
post-Newtonian prediction) in the inspiral part is astonish-
ingly good at the highest resolutions adopted here (see
upper panel of Fig. 5). On the contrary, the lower resolu-
tions (lower panel) are clearly not good enough.

The situation is somewhat different after the merger. The
ringdown part shows agreement between the two codes,
but the waves show some differences both in amplitude and
frequency in the interval after the merger and before the
ring-down. This is due to the differences in the EoSs, as
explained in Sec. II D 2. Namely, in the present simulations
SACRA added a thermal part to the piecewise-polytropic

EoS, while WHISKY did not. As shown by the figures, the
difference in the EoS are irrelevant to the inspiral phase,
but not so after the merger, as expected.

IV. CONCLUSIONS

In this work we have presented the first, detailed com-
parison of two general-relativistic hydrodynamics codes,
the WHISKY code and the SACRA code.

We have compared numerical-relativity waveforms and
other quantities for the last orbits, merger, and collapse of
equal-mass irrotational binary NS systems, as produced by
the two independent computer codes. We focused on two
analytic EoSs, namely, the simple ideal-fluid EoS and a
piecewise-polytropic EoS, for which we additionally pre-
sented more resolutions. The purpose was to perform a
stringent consistency check of the results from these codes.
We found that the waveform frequency and amplitude
computed with the two codes are in agreement with a
discrepancy of at most 10% (this estimate refers to the
merger time; the discrepancy is much less during the
inspiral), which is comparable to the intrinsic error of
each individual code at the adopted resolutions. We stress
the fact that this estimated error should be considered here
an upper limit and that the discrepancy between the waves
computed in the two codes will be smaller when we will
consider an optimized overlap of the waveforms, in our
future work [18].

The comparison of purely hydrodynamical quantities,
like the rest-mass density, shows better results, with a
difference between the two codes of at most about 1%.
This number refers however only to global quantities (like
maxima and norms), but not to point-to-point comparisons,
mainly because the small phase difference in the evolution
makes pointwise comparisons meaningless. In fact, even
after compensating for the phase difference, errors larger
than 1% are seen at some points, noticeably those near the
surface of the stars. Such errors are related to different
implementations of, e.g., the atmosphere treatment and do
not influence the global dynamics in a noticeable way.
Finally, by comparing other time-dependent spacetime

and matter quantities, we showed that both codes conserve
at high accuracy rest mass, energy, and angular momen-
tum, when taking into account the emission of gravitational
waves. The small differences that are present have been
related to details in the different implementations and grid
setups.
In conclusion, encouraging results have been shown and

more work is now necessary to assess how the remaining
differences in the results may affect the construction of
templates for gravitational-wave data analysis. This will be
the subject of a future work [18], which may include also
more codes in the comparison.
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