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We study the merger of black hole-neutron star binaries with a variety of black hole spins aligned or

antialigned with the orbital angular momentum, and with the mass ratio in the range MBH=MNS ¼ 2–5,

where MBH and MNS are the mass of the black hole and neutron star, respectively. We model neutron-star

matter by systematically parametrized piecewise polytropic equations of state. The initial condition is

computed in the puncture framework adopting an isolated horizon framework to estimate the black hole

spin and assuming an irrotational velocity field for the fluid inside the neutron star. Dynamical simulations

are performed in full general relativity by an adaptive-mesh refinement code, SACRA. The treatment of

hydrodynamic equations and estimation of the disk mass are improved. We find that the neutron star is

tidally disrupted irrespective of the mass ratio when the black hole has a moderately large prograde spin,

whereas only binaries with low mass ratios, MBH=MNS & 3, or small compactnesses of the neutron stars

bring the tidal disruption when the black hole spin is zero or retrograde. The mass of the remnant disk is

accordingly large as * 0:1M�, which is required by central engines of short gamma-ray bursts, if the

black hole spin is prograde. Information of the tidal disruption is reflected in a clear relation between the

compactness of the neutron star and an appropriately defined ‘‘cutoff frequency’’ in the gravitational-wave

spectrum, above which the spectrum damps exponentially. We find that the tidal disruption of the neutron

star and excitation of the quasinormal mode of the remnant black hole occur in a compatible manner in

high mass-ratio binaries with the prograde black hole spin. The correlation between the compactness and

the cutoff frequency still holds for such cases. It is also suggested by extrapolation that the merger of an

extremely spinning black hole and an irrotational neutron star binary does not lead to the formation of an

overspinning black hole.
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I. INTRODUCTION

Coalescing binaries composed of a black hole (BH)
and/or a neutron star (NS) are among the most promising
sources of gravitational waves for ground-based laser-
interferometric gravitational-wave detectors such as
LIGO [1] and VIRGO [2]. Detections of gravitational
waves will be accomplished in a decade to come by
planned next-generation detectors such as advanced LIGO,
advanced VIRGO, and LCGT [3]. Because gravitational
waves are much more transparent to the absorption and
scattering by the material than electromagnetic waves and
even neutrinos are, gravitational-wave astronomy is ex-
pected to become a powerful and unique way to observe
strongly gravitating phenomena in our Universe. Among
such phenomena, the merger of a BH-NS binary plays an
important role to investigate properties of the NS such as
the radius and the equation of state (EOS) of a high-density
nuclear matter [4–8]. An important constraint on the EOS
is obtained from detection of a 1:97� 0:04M� NS, which
is the most massive NS currently known [9], by recent
pulsar-timing observation. However, we still do not know
the realistic EOS of the NS because there is no robust

measurement of the NS radius [10]. To constrain the NS
radius and EOS by observing gravitational waves from the
BH-NS binary, we have to prepare accurate theoretical
templates of gravitational waveforms employing a wide
variety of the NS EOSs and other physical parameters. For
this purpose, numerical relativity is the unique approach.
The merger of a BH-NS binary is also an important

target for the astrophysical study because it is a potential
candidate for the progenitor of short-hard gamma-ray
bursts (GRBs) in the so-called merger scenario (see
Refs. [11,12] and references therein for reviews). If a NS
is tidally disrupted during the merger of a BH-NS binary, a
system composed of a spinning BH and a hot, massive
accretion disk of * 0:01M� may be formed. Such an out-
come could be a central engine of the GRB because it could
radiate a large amount of energy * 1048 erg via neutrino
emission or the Blandford-Znajek mechanism [13] in a
short time scale of & 2 s and hence could launch a GRB
jet. The merger scenario of the GRB is attractive when
a short-hard GRB is associated with a galaxy of low
star-formation rate [14,15] because the collapsar model
of GRBs [16] is not preferable. Only numerical relati-
vity can answer quantitatively the question whether the
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formation of a massive accretion disk is possible in the
BH-NS binary merger.

Fully general relativistic study of BH-NS binaries has
achieved progress in recent years, both in computations of
quasiequilibrium states [17–21] and in dynamical simula-
tions of the merger [22–31]. Although these include several
simulations of spinning BH-NS binaries with a qualitative
� ¼ 2 ideal-gas EOS, to date, only limited number of sim-
ulations have been performed taking into account both the
nuclear-theory-based EOS and the BH spin [29]. In par-
ticular, we still do not understand the dependence of the
merger process and resulting gravitational waveforms on
the BH spin and the EOS of the NS in detail. One goal of
current numerical relativity is to clarify the effect of the
BH spin on the BH-NS binary merger and subsequent NS
tidal disruption adopting a wide variety of the NS EOSs.

In this paper, we report our latest results obtained by
numerical-relativity simulations with a variety of the NS
EOSs and the BH spins. We employ five piecewise poly-
tropic EOSs (see Sec. II B), all of which do not conflict
with the current observation of the 1:97� 0:04M� NS.
We systematically choose physical parameters such as
BH mass, NS mass, and BH spin in an astrophysically
realistic range. While we only consider relatively low
mass BHs in the previous work [30], we adopt a wider
range of the BHmass because a large BH spin enhances the
NS tidal disruption for high mass-ratio binaries. We clarify
the dependence on the BH spin and on the NS EOS of the
properties of the merger remnants and characteristics of
gravitational waves—in particular, the gravitational-wave
spectrum.

This paper is organized as follows. In Sec. II, we de-
scribe methods for a solution of initial conditions, piece-
wise polytropic EOSs, and models of BH-NS binaries
employed in this paper. In Sec. III, the formulation and
methods of numerical simulations are summarized.
Section IV presents the numerical results and clarifies the
effect of the BH spin and NS EOS on the tidal disruption,
merger remnants, and gravitational waves. Section V is
devoted to a summary. Throughout this paper, we adopt the

geometrical units in which G ¼ c ¼ 1, where G and c are
the gravitational constant and the speed of light, respec-
tively. Our convention of notation for physically important
quantities is summarized in Table I. The nondimensional
spin parameter of the BH, total mass of the system at
infinite separation, mass ratio, and compactness of the
NS are defined as a ¼ SBH=M

2
BH, m0 ¼ MBH þMNS,

Q ¼ MBH=MNS, and C ¼ MNS=RNS, respectively. Latin
and Greek indices denote spatial and spacetime compo-
nents, respectively.

II. INITIAL CONDITION

As in our previous works [28,30], we employ BH-NS
binaries in quasiequilibrium states for initial conditions of
our numerical simulations. In this section, we summarize
the formulation and methods for the computation of a
quasiequilibrium state, specifically our method of estimat-
ing the spin angular momentum of the BH in a binary and
of determining the position of the rotation axis. The details
of the formulation and numerical methods, except for the
issues on the BH spin, are described in Ref. [21], to which
the reader may refer. Computations of the quasiequilibrium
states are performed using the spectral-method library
LORENE [32].

A. Formulation and methods

We compute a quasiequilibrium state of the BH-NS
binary as a solution of the initial value problem of general
relativity [33]. As far as the orbital separation is large
enough, the time scale of the orbital contraction due to the
gravitational radiation reaction is much longer than the
orbital period, and, therefore, we may safely neglect
the gravitational radiation reaction in the calculation of
the quasiequilibrium state. In numerical simulations of the
binary coalescences, we have to track* 5 orbits in order to
calculate accurate gravitational waveforms during the late
inspiral and merger phases, and hence, the orbital separa-
tion of the initial condition has to be large enough. For such
initial conditions, we can neglect the gravitational radia-
tion reaction. Thus, we give a BH-NS binary in a quasicir-
cular orbit, i.e., the binary in an approximate equilibrium
state in the corotating frame. To satisfy the quasiequili-
brium requirements described above, we assume the exis-
tence of a helical Killing vector with the orbital angular
velocity �,

�� ¼ ð@tÞ� þ�ð@’Þ�: (1)

We also assume that the NS is in the hydrostatic equilib-
rium in the corotating frame and has an irrotational veloc-
ity field, which is believed to be a reliable approximation to
an astrophysically realistic configuration [34,35].
We compute the three-metric �ij, the extrinsic curvature

Kij, the lapse function �, and the shift vector �i by a mix-

ture of the extended conformal thin-sandwich approach

TABLE I. Our convention of notation for physically important
quantities.

Symbol

Mirr The irreducible mass of the BH

SBH The magnitude of the BH spin angular momentum

MBH The gravitational mass of the BH in isolation

MNS The gravitational mass of the NS in isolation

RNS The circumferential radius of the NS in isolation

M0 The Arnowitt-Deser-Misner mass of the system

m0 The total mass of the system at infinite separation

Q The mass ratio

C The compactness of the NS

a The nondimensional spin parameter of the BH
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[36,37] and the conformal transverse-traceless decompo-
sition [33] in the puncture framework [38–40]. In this
formalism, we assume the conformal flatness of the
three-metric �ij ¼ c 4�̂ij ¼ c 4fij, the stationarity of the

conformal three-metric L��̂ij ¼ 0, the maximal slicing

condition K ¼ �ijKij ¼ 0, and its preservation in time

L�K ¼ 0, where fij is the flat spatial metric. Assuming

that the puncture is located at xiP, we set the conformal
factor c and a weighted lapse function � � �c as

c ¼ 1þ MP

2rBH
þ�; � ¼ 1� M�

2rBH
þ �; (2)

where MP and M� are positive constants of mass dimen-
sion, and rBH ¼ jxi � xiPj is a coordinate distance from
the puncture. We adjustMP to obtain a desired mass of the
BH, MBH, and determine M� so as to satisfy the virial
relation, i.e., the equality of the Arnowitt-Deser-Misner
(ADM) mass and the Komar mass, which holds when the
spacetime is stationary and asymptotically flat [41,42]. �,
�i, and � are determined by solving elliptic equations
derived from the Hamiltonian constraint, momentum con-
straint, and quasiequilibrium conditions, L��̂ij ¼ 0 and

L�K ¼ 0. We note that these quasiequilibrium conditions

can be replaced by @t�̂ij ¼ 0 and @tK ¼ 0 in a conformal

flatness approximation. In the puncture framework, we also
decompose a conformally weighted extrinsic curvature

Âij ¼ c 2Kij as

Â ij ¼ r̂iWj þ r̂jWi � 2
3fijr̂kWk þ KP

ij; (3)

where Wi is an auxiliary three-vector field and r̂i is the
covariant derivative associated with fij. K

P
ij is a singular

part of the extrinsic curvature, which is associated with the
linear and spin angular momenta of the BH [43],

KP
ij ¼

3

2r2BH
½liPBH

j þ ljP
BH
i � ðfij � liljÞlkPBH

k �

þ 3

r3BH
½�kilSlPlklj þ �kjlS

l
Pl

kli�; (4)

where li ¼ xiBH=rBH is a unit radial vector, li ¼ fijl
j, and

�ijk is the Levi-Civita tensor associated with the flat metric

fij. P
BH
i and SiP are parameters associated with the linear

and spin angular momenta of the BH, respectively. Here,
we determine PBH

i by the condition in which the total linear
momentum of the binary vanishes and we adjust SiP to
obtain a desired spin angular momentum of the BH, SiBH.
The elliptic equation to determineWi is obtained by taking
the derivative of Eq. (3) and using the momentum
constraint.

The spin angular momentum of the BH, SiBH, is eval-
uated on the apparent horizon (hereafter AH), S, according
to the isolated horizon framework (see Refs. [44,45] for
reviews). Because we do not know the position of the
AH in advance in the puncture framework, we have to

determine the location of the AH numerically [46]. On
the numerically determined AH, an approximate rotational
Killing vector may be defined using the method developed
by Cook and Whiting [47] with the normalization condi-
tion proposed by Lovelace and his collaborators [48].
We focus only on the case in which the BH spin is aligned
or antialigned with the angular momentum of the binary in
this work, and hence, the axis of the BH spin is uniquely
determined. Hereafter, we set the rotational axis of the
binary, equivalently the axis of the BH spin, to be the
z axis and consider only the approximate Killing vector
�i associated with the rotation in this direction. Using
�i, we obtain the spin angular momentum of the BH

Sð�Þ
BH ¼ SzBH via the surface integral at the AH,

Sð�Þ
BH ¼ 1

8	

Z
S
Kij�

idSj: (5)

We adjust SzP to obtain a desired value of SzBH (hereafter
SBH). We note that SiP and SiBH do not agree exactly in the
BH-NS binary spacetime due to the contribution to the
extrinsic curvature from the NS, associated with Wi.
Because we adopt a conformal flatness approximation

for the induced metric, the Christodoulou mass of the BH

evaluated on the AH,MH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

irr þ ðS2BH=4M2
irrÞ

q
, and the

gravitational mass evaluated at spatial infinity,MBH, do not
agree even for a single BH system due to the presence of
so-called junk waves. This difference leads to an ambiguity
in defining the nondimensional spin parameter of the BH.
Here, we define the nondimensional spin parameter of the
BH with respect to the mass evaluated at spatial infinity,
i.e.,

a � SBH
M2

BH

: (6)

The reason for this is that the mass and nondimensional
spin parameter of the BH evaluated at the AH quickly
(in our simulations, within �1 ms) relax to MBH and a,
defined at spatial infinity, respectively, as the BH absorbs
the junk radiation in the vicinity of the BH [48,49]. We
note that these values show the damping oscillation before
the relaxation in the same manner as the ‘‘scalar-curvature
spin’’ of Ref. [48] shows, because our method of evaluating
these values in the simulation is basically the same as the
method to define the scalar-curvature spin in Ref. [48] (see
Sec. III B).
To compute the equations of hydrostatic equilibrium for

the NS matter, we assume an ideal fluid, for which the
energy-momentum tensor is described by

T�
 ¼ �hu�u
 þ Pg�
; (7)

where � is the rest-mass density, P is the pressure,
h � 1þ "þ ðP=�Þ is the specific enthalpy, " is the spe-
cific internal energy, and u� is the four-velocity of the
fluid. Basic equations for the hydrostatics are derived from
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the condition of irrotation, or the vanishing of the vorticity
two-form [50–53],

!�
 ¼ r�ðhu
Þ � r
ðhu�Þ ¼ 0; (8)

and the conservation of the specific momentum of the fluid
along the helical Killing vector field L�ðhu�Þ ¼ 0. The

specific enthalpy is determined from the first integral of
the relativistic Euler equation (relativistic Bernoulli inte-
gral), and other thermodynamical quantities are subse-
quently obtained by using the EOS, which is described in
Sec. II B. The four-velocity of the fluid is calculated using
the velocity potential �, as hui ¼ @i� in the assumption
of the irrotational velocity field. The elliptic equation for�
is derived from the equation of continuity, r�ð�u�Þ ¼ 0.

We have no definite condition to determine the location
of the center of mass of the binary in the puncture frame-
work and we use this ambiguity to reduce an unphysical
initial orbital eccentricity. We found in our previous work
[21,28] that orbits with a small eccentricity could be ob-
tained using the ‘‘3PN-J method,’’ i.e., a phenomenological
method to determine the location of the rotational axis in
which the total angular momentum of the binary for a given
value of �m0 agrees with that calculated from the third
post-Newtonian (3PN) approximation. In the present case
in which the BH has a finite amount of spin angular
momentum, we extend the previous 3PN-J method to in-
clude the contribution from the BH spin up to the 2.5PN
order [54,55]. Specifically, the location of the rotational
axis is chosen from the condition that the orbital angular
momentum of the binary agrees with a sum of nonspin
terms given by Eq. (4) of Ref. [56] and of spin terms given
by Eq. (7.10) of Ref. [55] for a given value of �m0. We
show in Sec. IVA that this extended 3PN-J method again
leads to the initial condition with a small eccentricity.

B. Piecewise polytropic equations of state

The matter inside the NS in the late inspiral phase is
believed to be well-approximated by a zero-temperature
nuclear matter because the cooling time scale of the NS in
typical BH-NS binaries is shorter than the time scale of the
gravitational radiation reaction [57]. Hence, we employ a
cold EOS, for which the rest-mass density, �, determines

all other thermodynamical quantities, for calculating the
quasiequilibrium state of the BH-NS binary. To model
nuclear-theory-based EOSs at high density with a small
number of parameters, we employ a piecewise polytropic
EOS. It is a phenomenologically parametrized EOS of the
form

Pð�Þ ¼ �i�
�i for �i�1 � � < �i ð1 � i � nÞ; (9)

where n is the number of the pieces used to parametrize an
EOS, �i is the rest-mass density at the boundary of two
neighboring ith and (iþ 1)th pieces, �i is the polytropic
constant for the ith piece, and �i is the adiabatic index for
the ith piece. Here, �0 ¼ 0, �n ! 1, and other parameters
ð�i; �i;�iÞ are freely chosen. Requiring the continuity of
the pressure at each �i, 2n free parameters—say, ð�i;�iÞ—
determine the EOS completely. The specific internal en-
ergy, ", and hence the specific enthalpy, h, are determined
by the first law of thermodynamics and continuity of each
variable at boundary densities, �i.
It was shown that piecewise polytropic EOSs with four

pieces approximately reproduce most properties of the
nuclear-theory-based EOSs at high density [58]. If we
focus on low mass NSs with relatively low central density,
the EOS at high density plays a minor role. Thus, we adopt
a simplified piecewise polytropic EOS composed of two
pieces, one of which models the crust EOS and the other of
which the core EOS. This simplification is based on the
fact that NSs in the observed binary NSs often have fairly
small masses & 1:4M� [59], and the maximum rest-mass
density in such NSs may not be so high that the EOS at
high density plays only a minor role in determining their
structure. Furthermore, the maximum rest-mass density
inside the NS should only decrease during the evolution
of the BH-NS binary due to tidal elongation of the NS by
the companion BH.
Table II lists the EOSs which we employ in this study.

Following Refs. [6,30], we always fix the EOS for the crust
region by the parameters below:

�1 ¼ 1:356 923 95; (10)

�1=c
2 ¼ 3:998 736 92� 10�8 ðg=cm3Þ1��1 : (11)

TABLE II. Key ingredients of the adopted EOSs. �2ð¼ 3:0Þ is the adiabatic index in the core region, and p is the pressure at the
fiducial density �fidu ¼ 1014:7 g=cm3, which determines the polytropic constant �2 of the core region and �1, the critical rest-mass
density separating the crust and core regions. Mmax is the maximum mass of the spherical NS for a given EOS. R135ðR12; R145Þ and
C135ðC12; C145Þ are the circumferential radius and the compactness of the NS with MNS ¼ 1:35M�ð1:2M�; 1:45M�Þ.
Model �2 log10p (g=cm3) �1ð1014 g=cm3Þ Mmax½M�� R135 (km) C135 R12 (km) C12 R145 (km) C145

2H 3.0 13.95 0.7033 2.835 15.23 0.1309 15.12 0.1172 15.28 0.1401

1.5H 3.0 13.75 0.9308 2.525 13.69 0.1456 13.63 0.1300 13.72 0.1561

H 3.0 13.55 1.232 2.249 12.27 0.1624 12.25 0.1447 12.27 0.1744

HB 3.0 13.45 1.417 2.122 11.61 0.1718 11.60 0.1527 11.59 0.1848

B 3.0 13.35 1.630 2.003 10.96 0.1819 10.98 0.1614 10.93 0.1960
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TABLE III. Key parameters and quantities for the initial conditions adopted in numerical simulations. The adopted EOS, mass ratio
(Q), NS mass in isolation (MNS), nondimensional spin parameter of the BH (a), initial angular velocity (�0) in units of c3=Gm0,
baryon rest mass (M	), compactness of the NS in isolation (C), maximum rest-mass density (�max), ADM mass of the system (M0), and
total angular momentum of the system (J0), respectively. See also [30] for models of nonspinning BH-NS binaries.

Model EOS Q MNS½M�� a G�0m0=c
3 M	½M�� C �maxð1014 g=cm3Þ M0½M�� J0½GM2�=c�

2H-Q2M135a75 2H 2 1.35 0.75 0.025 1.455 0.1309 3.740 4.014 13.83

1.5H-Q2M135a75 1.5H 2 1.35 0.75 0.028 1.468 0.1456 5.104 4.012 13.42

H-Q2M135a75 H 2 1.35 0.75 0.028 1.484 0.1624 7.019 4.012 13.42

HB-Q2M135a75 HB 2 1.35 0.75 0.028 1.493 0.1718 8.263 4.012 13.42

B-Q2M135a75 B 2 1.35 0.75 0.028 1.503 0.1819 9.762 4.012 13.42

2H-Q2M135a5 2H 2 1.35 0.5 0.025 1.455 0.1309 3.740 4.014 14.02

1.5H-Q2M135a5 1.5H 2 1.35 0.5 0.028 1.468 0.1456 5.104 4.012 13.63

H-Q2M135a5 H 2 1.35 0.5 0.028 1.484 0.1624 7.018 4.012 13.63

HB-Q2M135a5 HB 2 1.35 0.5 0.028 1.493 0.1718 8.263 4.012 13.63

B-Q2M135a5 B 2 1.35 0.5 0.028 1.503 0.1819 9.762 4.012 13.63

2H-Q2M135a-5 2H 2 1.35 �0:5 0.022 1.455 0.1309 3.740 4.019 15.15

H-Q2M135a-5 H 2 1.35 �0:5 0.025 1.484 0.1624 7.018 4.017 14.74

HB-Q2M135a-5 HB 2 1.35 �0:5 0.028 1.493 0.1718 8.262 4.015 14.41

B-Q2M135a-5 B 2 1.35 �0:5 0.028 1.503 0.1819 9.760 4.015 14.41

2H-Q2M12a75 2H 2 1.2 0.75 0.025 1.282 0.1172 3.465 3.568 10.93

H-Q2M12a75 H 2 1.2 0.75 0.028 1.303 0.1447 6.421 3.566 10.60

HB-Q2M12a75 HB 2 1.2 0.75 0.028 1.310 0.1527 7.523 3.566 10.60

B-Q2M12a75 B 2 1.2 0.75 0.028 1.317 0.1614 8.833 3.566 10.60

2H-Q2M145a75 2H 2 1.45 0.75 0.025 1.572 0.1401 3.926 4.312 15.96

H-Q2M145a75 H 2 1.45 0.75 0.028 1.607 0.1744 7.452 4.309 15.48

HB-Q2M145a75 HB 2 1.45 0.75 0.028 1.617 0.1848 8.811 4.309 15.48

B-Q2M145a75 B 2 1.45 0.75 0.028 1.629 0.1960 10.46 4.309 15.48

2H-Q3M135a75 2H 3 1.35 0.75 0.028 1.455 0.1309 3.737 5.357 20.00

1.5H-Q3M135a75 1.5H 3 1.35 0.75 0.030 1.468 0.1456 5.100 5.355 19.64

H-Q3M135a75 H 3 1.35 0.75 0.030 1.484 0.1624 7.013 5.355 19.64

HB-Q3M135a75 HB 3 1.35 0.75 0.030 1.493 0.1718 8.256 5.355 19.64

B-Q3M135a75 B 3 1.35 0.75 0.030 1.503 0.1819 9.753 5.355 19.63

2H-Q3M135a5 2H 3 1.35 0.5 0.028 1.455 0.1309 3.737 5.357 20.36

1.5H-Q3M135a5 1.5H 3 1.35 0.5 0.030 1.468 0.1456 5.100 5.356 20.02

H-Q3M135a5 H 3 1.35 0.5 0.030 1.484 0.1624 7.012 5.356 20.01

HB-Q3M135a5 HB 3 1.35 0.5 0.030 1.493 0.1718 8.255 5.356 20.01

B-Q3M135a5 B 3 1.35 0.5 0.030 1.503 0.1819 9.753 5.356 20.01

HB-Q3M135a-5 HB 3 1.35 �0:5 0.030 1.493 0.1718 8.253 5.359 21.46

2H-Q3M145a75 2H 3 1.45 0.75 0.028 1.572 0.1401 3.923 5.754 23.07

H-Q3M145a75 H 3 1.45 0.75 0.030 1.607 0.1744 7.445 5.751 22.65

HB-Q3M145a75 HB 3 1.45 0.75 0.030 1.617 0.1848 8.803 5.751 22.65

B-Q3M145a75 B 3 1.45 0.75 0.030 1.629 0.1960 10.45 5.751 22.65

2H-Q4M135a75 2H 4 1.35 0.75 0.030 1.455 0.1309 3.735 6.702 26.07

H-Q4M135a75 H 4 1.35 0.75 0.032 1.484 0.1624 7.007 6.700 25.62

HB-Q4M135a75 HB 4 1.35 0.75 0.032 1.493 0.1718 8.249 6.700 25.63

B-Q4M135a75 B 4 1.35 0.75 0.032 1.503 0.1819 9.746 6.700 25.62

2H-Q4M135a5 2H 4 1.35 0.5 0.035 1.455 0.1309 3.732 6.698 25.64

H-Q4M135a5 H 4 1.35 0.5 0.035 1.484 0.1624 7.004 6.698 25.63

HB-Q4M135a5 HB 4 1.35 0.5 0.035 1.493 0.1718 8.244 6.698 25.63

B-Q4M135a5 B 4 1.35 0.5 0.035 1.503 0.1819 9.740 6.698 25.63

2H-Q5M135a75 2H 5 1.35 0.75 0.036 1.455 0.1309 3.730 8.044 30.95

H-Q5M135a75 H 5 1.35 0.75 0.036 1.484 0.1624 7.000 8.044 30.95

HB-Q5M135a75 HB 5 1.35 0.75 0.036 1.493 0.1718 8.241 8.044 30.95

B-Q5M135a75 B 5 1.35 0.75 0.036 1.503 0.1819 9.736 8.043 30.95
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The EOS of the core region is determined by two parame-
ters. One is the adiabatic index of the core EOS, �2.
Whereas we find that properties of gravitational waves
and the merger remnants depend on �2 in our previous
study [30], we always fix �2 ¼ 3 in this work to focus
on clarifying the effect of the BH spin aside from the
difference in the adiabatic index. The other parameter
is chosen to be the pressure p at a fiducial density �fidu ¼
1014:7 g=cm3 because p is closely related to the radius and
deformability of the NS [60]. We vary the value of p
systematically to investigate the effect of the stiffness of
the EOS [61]. With the given values of �2 and p, �2 and �1

are determined as

�2 ¼ p���2

fidu ; (12)

�1 ¼ ð�1=�2Þ1=ð�2��1Þ: (13)

C. Models

Numerical simulations are performed for a wide range
of nondimensional BH spin parameters, a, as well as for a
variety of the mass ratios, Q. For nonspinning BH-NS bi-
naries, we already found that the low mass ratio ofQ&3 is
required for tidal disruption of NSs to occur sufficiently
outside the innermost stable circular orbit (ISCO) of the BH
unless the EOS is extremely stiff [30]. If the tidal disruption
occurs inside or at an orbit very close to the ISCO,we do not
see strong effects of the tidal disruption. In such cases,
gravitational waveforms are similar to those of a BH-BH
binary even in the merger phase, and the mass of the
remnant disk is negligible [62]. However, the allowed range
of the mass ratio for the tidal disruption is modified drasti-
cally for a BH-NS binary with the prograde BH spin [63,64]
because the ISCO radius [65] of theBHwith a prograde spin
becomes smaller by a factor of 1–6 [66] than that of the
nonspinning BHwith the samemass. Strong spin effects for
the tidal disruption are also found in the numerical-
relativity simulation of the spinning BH-NS binary merger
with a simplified,�-lawEOS [27]. In this paper, we perform
a more systematic study of the tidal disruption for different
EOSs, masses of each component, and BH spins.

Table III summarizes several key quantities for the
initial conditions in our numerical simulations. The label
for the model denotes the EOS name, the mass ratio, the
NS mass, and the nondimensional spin parameter of the
BH. Specifically, ‘‘a75,’’ ‘‘a5,’’ and ‘‘a-5’’ correspond to
the spin parameters a ¼ 0:75, 0.5, and �0:5, respectively.
For example, HB-Q3M135a5 means that the EOS is HB
and ðQ;MNS; aÞ ¼ ð3; 1:35M�; 0:5Þ. Although we vary the
NS mass systematically, the results of the merger remnant
are reported only for binaries with MNS ¼ 1:35M� in this
paper because the difference in the NS mass complicates
the properties of the remnant, such as the mass of the disk.
Results for MNS � 1:35M� are analyzed only for gravita-
tional waves.

For the same value of the mass ratio, we basically pre-
pare the initial conditions with the same value of the initial
angular velocity �0 normalized by the total mass of the
binary, �0m0. For 2H EOS, in which the NS radius is
the largest, we exceptionally adopt a smaller value of
�0m0 than for other EOSs to guarantee * 5 orbits
before tidal disruption occurs. The reason for this is that
the tidal disruption occurs for a large orbital separation in
2H EOS. When the BH has a prograde spin, the number of
orbits to the merger for a given value of �0m0 increases
due to spin-orbit repulsive interaction [67], compared to
the nonspinning BH case. On the other hand, when the BH
has a retrograde spin, the number of orbits decreases due to
spin-orbit attractive interaction. For a ¼ �0:5, the number
of orbits is typically by �1 orbit smaller than for a ¼ 0.
For this reason, we also prepare the initial condition with a
smaller value of �0m0 for H EOS and a ¼ �0:5.

III. METHODS OF SIMULATIONS

Numerical simulations are performed using an adaptive-
mesh refinement (AMR) code SACRA [68]. The formula-
tion, the gauge conditions, the numerical scheme, and the
methods of diagnostics are basically the same as those
described in Ref. [30], except for the correction in the
treatment of hydrodynamic equations in a far region. Thus,
we here only briefly review them and describe the present
setup of the computational domain for the AMR algorithm
and grid resolution.

A. Formulation and numerical methods

SACRA solves the Einstein evolution equations in the

BSSN formalism [69,70] with the moving-puncture gauge

[38–40]. It evolves a conformal factor W � ��1=6, the

conformal metric ~�ij � ��1=3�ij, the trace of the extrinsic

curvature K, a conformally weighted trace-free part of the

extrinsic curvature ~Aij � ��1=3ðKij � K�ijÞ, and an aux-

iliary variable ~�i � �@j ~�
ij. Introducing an auxiliary vari-

able Bi and a parameter �s, which we typically set to be
�MBH=M� in units of c ¼ G ¼ M� ¼ 1, we employ a
moving-puncture gauge in the form [71]

ð@t � �j@jÞ� ¼ �2�K; (14)

ð@t � �j@jÞ�i ¼ ð3=4ÞBi; (15)

ð@t � �j@jÞBi ¼ ð@t � �j@jÞ~�i � �sB
i: (16)

We evaluate the spatial derivative by a fourth-order central
finite difference, except for the advection terms, which are
evaluated by a fourth-order noncentered, upwind finite
difference, and employ a fourth-order Runge-Kutta
method for the time evolution.
To solve the hydrodynamic equations, we evolve

�	 � ��utW�3, ûi � hui, and e	 � h�ut � P=ð��utÞ.
The advection terms are handled with a high-resolution
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central scheme by Kurganov and Tadmor [72] with a third-
order piecewise parabolic interpolation for the cell recon-
struction. For the EOS, we decompose the pressure and
specific internal energy into cold and thermal parts as

P ¼ Pcold þ Pth; " ¼ "cold þ "th: (17)

We calculate the cold parts of both variables using the
piecewise polytropic EOS from the primitive variable �,
and then the thermal part of the specific internal energy is
defined from " as "th ¼ "� "cold. Because "th vanishes in
the absence of shock heating, "th is regarded as the finite-
temperature part. In this paper, we adopt a �-law ideal-gas
EOS for the thermal part,

Pth ¼ ð�th � 1Þ�"th; (18)

to determine the thermal part of the pressure, and choose
�th equal to the adiabatic index in the crust region, �1, for
simplicity.

Because the vacuum is not allowed in any conservative
hydrodynamic scheme, we put an artificial atmosphere of
a small density outside the NS in the same way as done in
our previous work [30]. The total rest mass of the atmo-
sphere is always less than 10�4M�, and hence, we can
safely neglect spurious effects by accretion of the atmo-
sphere onto the remnant disk as long as the disk mass is
much larger than 10�4M�.

B. Diagnostics

We extract gravitational waves by calculating the out-
going part of the Weyl scalar �4 at finite coordinate radii
r ¼ 400–800M� and by integrating �4 twice in time as

hþðtÞ � ih�ðtÞ ¼ �
Z t

dt0
Z t0

dt00�4ðt00Þ: (19)

In our previous works [28,30], we directly perform this
integration of �4ðtÞ and then subtract a quadratic function
of the form a2t

2 þ a1tþ a0 to eliminate unphysical drift

components in the waveform, using the least-square fitting
to obtain constants a0, a1, and a2. In this work, we adopt
a ‘‘fixed-frequency integration’’ method proposed by
Reisswig and Pollney [73] to obtain gravitational wave-
forms with less unphysical components. In this method, we
first perform a Fourier transformation of �4 as

~� 4ð!Þ ¼
Z

dt�4ðtÞei!t: (20)

Using this, Eq. (19) is rewritten as

hþðtÞ � ih�ðtÞ ¼ 1

2	

Z ~�4ð!Þ
!2

e�i!td!: (21)

We then replace 1=!2 of the integrand with 1=!2
0 for

j!j<!0, where !0 is a positive free parameter in this
method. By appropriately choosing !0, this procedure
suppresses unphysical, low-frequency components of
gravitational waves. As proposed in Ref. [73], we choose
!0 to be �0:8m�0 for m � 0 mode gravitational waves,
where m is the azimuthal quantum number. For the m ¼ 0
mode gravitational waves, we adopt !0 � 0:8�0 and con-
firm that our results depend only very weakly on this
choice. We also adopt this method to calculate the energy
�E and angular momentum �J radiated by gravitational
waves. Exceptionally, we adopt the previous method of
direct time integration to estimate the orbital eccentricity
in the inspiral phase because the fixed-frequency integra-
tion method may change the modulation in the gravita-
tional waveform.
For comparisons between numerically calculated gravi-

tational waveforms and those calculated in the PN approx-
imations, we use the Taylor-T4 formula for two point
masses in circular orbits [74] with an additional contribu-
tion from the BH spin angular momentum [75]. In this
formula, the time evolution of the orbital angular velocity
�ðtÞ and orbital phase �ðtÞ are computed using a non-

dimensional angular velocity XðtÞ � ½m0�ðtÞ�2=3 by

dX

dt
¼ 64
X5

5m0

�
1�

�
743

336
þ 11

4



�
X þ

�
4	� 113

12
þ 19

6

a

�
X3=2 þ

�
34 103

18 144
þ 52 þ 13 661

2016

þ 59

18

2

�
X2

�
��
4159

672
þ 189

8



�
	þ

�
31 571

1008
� 1165

24



�
þ 3

4
3 �

�
21 863

1008

� 79

6

2

�
a

�
X5=2

þ
�
16 447 322 263

139 708 800
� 1712

105
�E þ 16

3
	2 �

�
56 198 689

217 728
� 451

48
	2

�

þ 541

896

2 � 5605

2592

3 � 856

105
lnð16XÞ

� 80	

3
þ

�
64 153

1008
� 457

36



�
2 þ

�
20

3
	� 1135

36


�

a

�
X3 �

��
4415

4032
� 358 675

6048

� 91 495

1512

2

�
	

þ
�
2 529 407

27 216
� 845 827

6048

þ 41 551

864

2

�
� 12	2 þ

�
1505

24
þ 


8

�
3

�
�
1 580 239

54 432
� 451 597

6048

2 þ 2045

432

3 þ 107

6

2

�
a

�
X7=2

�
; (22)

d�

dt
¼ X3=2

m0

; (23)
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where 
 � Q=ð1þQÞ2,  ¼ aQ=ð1þQÞ, and �E 
 0:5772 is the Euler constant. After XðtÞ and �ðtÞ are obtained, we
calculate the complex gravitational-wave amplitude h22 of the ðl; mÞ ¼ ð2; 2Þ mode and the spectrum up to the 3PN order
using the formula shown in Refs. [75,76]. Here, h22 is

h22 ¼ �8

ffiffiffiffi
	

5

r

m0

D
e�2i�X

�
1�

�
107

42
� 55

42



�
X þ

�
2	� 4

3
þ 2

3

a

�
X3=2 �

�
2173

1512
þ 1069

216

� 2047

1512

2

�
X2

�
��
107

21
� 34

21



�
	þ 24i


�
X5=2 þ

�
27 027 409

646 800
� 856

105
�E þ 2

3
	2 � 428

105
lnð16XÞ �

�
278 185

33 264
� 41

96
	2

�



� 20 261

2772

2 þ 114 635

99 792

3 þ 428

105
i	

�
X3

�
; (24)

where D is the distance between the center of mass of
the binary and an observer. Hereafter, we simply refer to
this formula as the Taylor-T4 formula irrespective of the
presence of the BH spin. Another way for deriving an
approximate waveform is to employ an effective one-
body approach (see Ref. [77] and references therein for
reviews). In accompanied papers [62], comparisons be-
tween numerical waveforms and those of the effective
one-body approach are extensively performed.

To estimate the mass of the remnant disk, we calculate
the total rest mass outside the AH

Mr>rAH �
Z
r>rAH

�	d3x; (25)

where rAH ¼ rAHð�;’Þ is the radius of the AH as a function
of the angular coordinates. We note that we systematically
underestimated disk masses in our previous works per-
formed with an old version of SACRA [28,30], because we
evolved hydrodynamic variables and estimated disk masses
only in the finer domains (described in Sec. III C) of the size
�2003 km3. Such a domain size is insufficient for the
estimation of the disk mass if tidal disruption occurs at a
distant orbit, especially for the case in which the NS radius
is large (� 15 km). In this study, we correct the treatment
of hydrodynamics and the estimation of disk masses: We
follow the hydrodynamics for awide computational domain
of the size 10003–20003 km3. We still possibly underesti-
mated disk masses because some of the material escapes
fromour computational domains andwe cannot follow their
return which would occur if they are bounded.

We determine key quantities of the remnant BH, i.e., the
mass MBH;f and nondimensional spin parameter af , from
the circumferential radius of the AH, assuming that the
deviation from the Kerr spacetime is negligible in the
vicinity of a BH horizon. We estimate the remnant BH
mass, MBH;f , from the circumferential radius of the AH

along the equatorial plane Ce divided by 4	, i.e., Ce=4	,
which gives the BH mass in the stationary vacuum BH
spacetime. Similarly, the nondimensional spin parameter
of the remnant BH, af , is estimated from the ratio of the
circumferential radius of the AH along the meridional
plane Cp to Ce using the relation

Cp

Ce

¼
ffiffiffiffiffiffiffiffi
2r̂þ

p
	

E

�
a2f
2r̂þ

�
: (26)

This also holds for the stationary vacuum BH with
the nondimensional spin parameter af . Here, r̂þ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2f

q
is a normalized radius of the horizon, and

EðzÞ is an elliptic integral

EðzÞ ¼
Z 	=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zsin2�

p
d�: (27)

For comparison, the nondimensional spin parameter of the
remnant BH is also estimated from Ce and the irreducible
mass of the remnant BH Mirr;f using the relation

Mirr;f ¼ Ce

4
ffiffiffi
2

p
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� af

2
qr

; (28)

which holds for the stationary vacuum BH. The spin pa-
rameter obtained using this relation is referred to as af2,
according to Ref. [28]. Finally, we also estimate af from
the values of the remnant BH computed using approximate
conservation laws

MBH;c � M0 �Mr>rAH ��E; (29)

JBH;c � J0 � Jr>rAH ��J; (30)

where the total angular momentum of the material located
outside the AH, Jr>rAH , is approximately defined by

Jr>rAH �
Z
r>rAH

�	hu’d3x: (31)

Here, we assume that the orbital angular momentum of the
BH is negligible. The nondimensional spin parameter of
the remnant BH is defined by af1 � JBH;c=M

2
BH;c, again

according to Ref. [28].

C. Setup of AMR grids

In SACRA, anAMRalgorithm is implemented so that both
the radii of compact objects in the near zone and the charac-
teristic gravitational wavelengths in the wave zone can be
coveredwith sufficient grid resolutions simultaneously.Our
AMR grids consist of a number of computational domains,
each of which has the uniform, vertex-centered Cartesian
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grids with (2N þ 1, 2N þ 1, N þ 1) grid points for ðx; y; zÞ
with the equatorial plane symmetry at z ¼ 0. We always
choose N ¼ 50 for the best resolved runs in this work. We
also perform simulations with N ¼ 36 and 42 for several
arbitrary chosen models to check the convergence of the
results and find approximately the same level of conver-
gence as that found in the previous work (see the Appendix
of Ref. [30]). In the Appendix of this paper, we show the
convergence of gravitational waveforms and the masses of
the remnant disks. The AMR grids are classified into two
categories: one is a coarser domain, which covers a wide
region, including both the BH and NS, with its origin fixed
at the approximate center of mass throughout the simula-
tion. The other is a finer domain, two sets of which comove
with compact objects and cover the region in the vicinity of
these objects. We denote the edge length of the largest
domain, the number of the coarser domains, and the number
of the finer domains by 2L, lc, and 2lf, respectively.

Namely, the total number of the domains is lc þ 2lf.

The grid spacing for each domain is hl ¼ L=ð2lNÞ, where
l ¼ 0� ðlc þ lf � 1Þ is the depth of each domain.

Table IV summarizes the parameters of the grid structure
for our simulations. The structure of the AMR grids de-
pends primarily on the mass ratio of the binary because the
distances between two objects and the center of mass
depend strongly on the mass ratio for our initial models.
Specifically, we choose ðlc; lfÞ ¼ ð4; 4Þ for all binaries with
MNS ¼ 1:35M� and Q ¼ 2, 3, and 4. We choose ðlc; lfÞ ¼
ð3; 5Þ for binaries with Q ¼ 5. For binaries with MNS �
1:35M�, we choose ðlc; lfÞ ¼ ð3; 4Þ because we do not

evaluate disk masses for them. In all the simulations, L is
chosen to be larger than or comparable to the gravitational
wavelengths at an initial instant �0 � 	=�0. One of the
two finest regions covers the semimajor axis of the NS by
�42–45 grid points. The other covers the coordinate radius
of the AH typically by �20 grid points, depending on the
mass ratio and the BH spin. For the Q ¼ 5 runs, the total
memory required is about 11 G bytes. We perform numeri-
cal simulations with personal computers of 12 G bytes
memory and of core-i7X processors with clock speeds of
3.2 or 3.33 GHz. We use 2–6 processors to perform one
job with an OPEN-MP library. The typical computational
time required to perform one simulation (for �50 ms in
physical time of coalescence for the a ¼ 0:75 case) is
4 weeks for the 6 processor case.

IV. NUMERICAL RESULTS

We present numerical results of our simulations, focus-
ing, in particular, on their dependence on the BH spin and
NS EOS. First, we review general merger processes in
Sec. IVA. Sections IVB, IVC, and IVD are devoted to
the analysis of properties of the remnant disk and BH
formed after the merger. Gravitational waveforms are
shown in Sec. IVE, their spectra in Sec. IV F, and the

TABLE IV. Setup of the grid structure for the simulation with
our AMR algorithm. lc and lf are the number of coarser domains

and a half of finer domains, respectively. �x ¼ hl ¼ L=ð2lNÞ
(l ¼ lc þ lf � 1) is the grid spacing at the finest-resolution

domain with L being the location of the outer boundaries along
each axis. Rdiam=�x denotes the grid number assigned inside the
semimajor diameter of the NS. �0 is the gravitational wavelength
of the initial configuration. (See Ref. [30] for models with
nonspinning BHs.)

Model lc lf �x=M0 Rdiam=�x L=�0

2H-Q2M135a75 4 4 0.0471 90.8 2.386

1.5H-Q2M135a75 4 4 0.0426 87.7 2.417

H-Q2M135a75 4 4 0.0377 86.2 2.138

HB-Q2M135a75 4 4 0.0347 87.1 1.968

B-Q2M135a75 4 4 0.0324 86.7 1.837

2H-Q2M135a5 4 4 0.0471 90.8 2.378

1.5H-Q2M135a5 4 4 0.0426 87.7 2.410

H-Q2M135a5 4 4 0.0377 86.2 2.131

HB-Q2M135a5 4 4 0.0347 87.2 1.962

B-Q2M135a5 4 4 0.0324 86.7 1.831

2H-Q2M135a-5 4 4 0.0470 90.7 2.092

H-Q2M135a-5 4 4 0.0376 86.4 1.902

HB-Q2M135a-5 4 4 0.0347 87.1 1.962

B-Q2M135a-5 4 4 0.0324 86.7 1.831

2H-Q2M12a75 3 4 0.0583 84.7 1.476

H-Q2M12a75 3 4 0.0442 85.3 1.252

HB-Q2M12a75 3 4 0.0410 85.7 1.162

B-Q2M12a75 3 4 0.0389 84.2 1.102

2H-Q2M145a75 3 4 0.0461 85.2 1.166

H-Q2M145a75 3 4 0.0347 85.3 0.985

HB-Q2M145a75 3 4 0.0316 87.1 0.896

B-Q2M145a75 3 4 0.0292 87.1 0.829

2H-Q3M135a75 4 4 0.0367 85.5 2.084

1.5H-Q3M135a75 4 4 0.0326 84.0 1.986

H-Q3M135a75 4 4 0.0282 84.7 1.718

HB-Q3M135a75 4 4 0.0260 85.6 1.581

B-Q3M135a75 4 4 0.0235 87.9 1.431

2H-Q3M135a5 4 4 0.0353 88.9 1.997

1.5H-Q3M135a5 4 4 0.0326 84.0 1.980

H-Q3M135a5 4 4 0.0282 84.7 1.712

HB-Q3M135a5 4 4 0.0260 85.7 1.576

B-Q3M135a5 4 4 0.0243 85.3 1.471

HB-Q3M135a-5 4 4 0.0260 85.7 1.576

2H-Q3M145a75 3 4 0.0328 87.7 0.933

H-Q3M145a75 3 4 0.0250 87.4 0.760

HB-Q3M145a75 3 4 0.0234 86.6 0.712

B-Q3M145a75 3 4 0.0214 87.7 0.651

2H-Q4M135a75 4 4 0.0296 83.4 1.804

H-Q4M135a75 4 4 0.0223 84.5 1.450

HB-Q4M135a75 4 4 0.0203 86.5 1.319

B-Q4M135a75 4 4 0.0190 85.8 1.237

2H-Q4M135a5 4 4 0.0296 83.2 2.097

H-Q4M135a5 4 4 0.0219 85.9 1.548

HB-Q4M135a5 4 4 0.0205 85.5 1.448

B-Q4M135a5 4 4 0.0188 86.4 1.332

2H-Q5M135a75 3 5 0.0235 86.3 1.718

H-Q5M135a75 3 5 0.0180 86.2 1.314

HB-Q5M135a75 3 5 0.0167 86.3 1.224

B-Q5M135a75 3 5 0.0159 84.6 1.159
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energy and angular momentum radiated by gravitational
waves in Sec. IVG.

A. Overview of the merger process

Figure 1 plots the evolution of the coordinate separation
defined by xisep ¼ xiNS � xiBH for models HB-Q2M135a5,

HB-Q2M135, and HB-Q2M135a-5, for which�0m0 takes

the same values. Here, xiNS is the position of the maximum

rest-mass density, and xiBH is the location of the puncture,
xiP. Figure 1 shows that the number of orbits increases as the
BH spin increases from retrograde to prograde [27].
Specifically, the numbers of orbits are �7, 5.5, and 4 for
a ¼ 0:5, 0, and �0:5, respectively. This difference comes
primarily from the spin-orbit interaction between these two
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FIG. 1 (color online). Evolution of the orbital separation xisep ¼ xiNS � xiBH of binaries with ðQ;MNSÞ ¼ ð2; 1:35M�Þ and HB EOS.
The left, middle, and right panels show the results with the prograde BH spin a ¼ 0:5, zero BH spin a ¼ 0, and retrograde BH spin
a ¼ �0:5, respectively.

FIG. 2 (color online). Evolution of the rest-mass density profile in units of g=cm3 and the location of the AH on the equatorial plane
for model HB-Q3M135a75. The filled circle denotes the region inside the AH. The color (gradational) panel on the right of each plot
shows log10ð�Þ.
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angular momenta [78]; in the PN approximation, a force
proportional to the inner product of the orbital and spin
angular momenta of two objects appears at 1.5PN order.
Here, we do not have to consider the NS spin angular
momentum in the assumption of the irrotational velocity
field and, therefore, we only consider the interaction be-
tween the orbital and BH spin angular momenta throughout
this paper. When these two angular momenta are parallel
and the inner product is positive (a > 0), an additional
repulsive force works between the BH and NS. This repul-
sive force reduces the orbital angular velocity because the
centrifugal force associated with the orbital motion can be
reduced, and hence, the luminosity of gravitational radia-

tion, which is proportional to �10=3, is also reduced. This
strong dependence of the luminosity on � makes the ap-
proaching velocity smaller in the late inspiral phase, and,
therefore, the number of orbits increases. Conversely, when
these two angular momenta are antiparallel (a < 0), an
additional attractive force increases the angular velocity
and gravitational-wave luminosity in the late inspiral phase.
In this case, the orbital separation decreases faster due to a
larger approaching velocity, and the number of orbits be-
comes smaller as the retrogradeBH spin increases. All these
results agree qualitatively with those of Ref. [27].

The fate of BH-NS binaries is classified into two cate-
gories. One is the case in which the NS is disrupted by the

BH tidal field before the BH swallows the NS, and the
other is the case in which the BH swallows the NS without
tidal disruption. In this paper, we focus mainly on the
former case. We plot snapshots of the rest-mass density
profiles and the location of the AH on the equatorial plane
at selected time slices for models HB-Q3M135a75, HB-
Q3M135a5, and HB-Q3M135a-5 in Figs. 2–4, respec-
tively. The NS is disrupted outside the ISCO in the a > 0
cases (Figs. 2 and 3) and forms a one-armed spiral structure
with a large angular momentum. The material in the inner
part of the spiral arm gradually falls onto the BH due to
angular momentum transport via hydrodynamic torque in
the spiral arm. The material with a sufficiently large spe-
cific angular momentum escapes the capture by the BH
and forms an accretion disk, which survives for a time
much longer than the dynamical time scale �a few ms.
We note that the prompt infall of the one-armed spiral
structure onto the BH occurs from a relatively narrower
region for a ¼ 0:5 than for a ¼ 0:75. The reason is that the
inner edge of the spiral arm contacts the AHwell before the
arm becomes nearly axisymmetric due to a large radius of
the AH and ISCO for a ¼ 0:5. The infall of the disrupted
material from a narrow region of the BH frequently occurs
when the NS is tidally disrupted in a binary with a high
mass ratio, whereas this is rare in a binary with a non-
spinning BH because the NS is not disrupted in a high

FIG. 3 (color online). The same as Fig. 2 but for model HB-Q3M135a5.
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mass-ratio binary. This difference in the merger process is
well-reflected in gravitational waveforms (see Sec. IVE).
By contrast, the NS is swallowed by the BH without tidal
disruption, and essentially no material is left outside the
ISCO for model HB-Q3M135a-5 (Fig. 4).

Note that the feature of the NS tidal disruption appears
very weakly not only for model HB-Q3M135a-5 but also
for model HB-Q3M135 (a ¼ 0) because the mass ratio
Q ¼ 3 is so high that the tidal effect is less important
for the nonspinning BH with the typical NS radius
�11–12 km. The enhancement of the tidal effect by a
prograde BH spin results primarily from the decrease of
the BH ISCO radius [66]. In the Boyer-Lindquist coordi-
nates, a Kerr BH has an ISCO with a smaller radius than a
Schwarzschild BH by a factor of � 1=6, depending on a
for a prograde orbit: The ISCO radius approximately
halves when the BH spin increases from a ¼ 0 to 0.75.
On the other hand, the orbital separation at the onset of
mass shedding depends only weakly on the BH spin in the
Boyer-Lindquist coordinates [79–81]. This decrease of the
ISCO radius enhances the possibility for the disrupted
material to escape capture by the BH and to form a more

massive remnant disk than in the nonspinning BH case.
The retrograde BH spin plays an opposite role; the ISCO
radius of the Kerr BH increases by a factor of 1–1.5 for a
retrograde orbit, and hence, the tidal effect is less important
in the merger process.
Before closing this subsection, we estimate the degree of

(undesired) orbital eccentricity in our simulations to assess
the circularity of the orbital motion. For this purpose, we
compute the evolution of the gauge-invariant orbital angu-
lar velocity �ðtÞ, which is defined from the ðl; mÞ ¼ ð2; 2Þ
mode of �4 by

�ðtÞ ¼ 1

2

j�4ðl ¼ m ¼ 2Þj
jR�4ðl ¼ m ¼ 2Þdtj : (32)

The evolution of the orbital angular velocity in our simu-
lation agrees with that derived from the Taylor-T4 formula
in the inspiral phase within a small modulation, typically
��=� & 5%, which is equivalent to the orbital eccentric-
ity of& 3%. This amount of orbital eccentricity is as small
as that observed in the nonspinning BH case with a low
mass ratio Q ¼ 2 [30].

FIG. 4 (color online). The same as Fig. 2 but for model HB-Q3M135a-5.
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B. Global properties of the disk

The mass of the remnant disk reflects the significance of
NS tidal disruption in a clear way because the disk formation
is a result of tidal disruption.Amassive disk is formed if tidal
disruption of the NS occurs far outside the ISCO. If the mass
shedding starts in the vicinity of or inside the ISCO, only a
small portion of themass is left outside the AH. Thematerial
is not left outside the AH when the mass shedding does not

occur before the BH swallows the NS, and the merger of
a BH-NS binary may be indistinguishable from that of a
BH-BH binary except for very small tidal corrections to the
inspiral. Thus, the mass of a remnant disk is a reliable
indicator of the degree of tidal disruption.
Figure 5 plots the time evolution of the rest mass located

outside the AH, Mr>rAH , for Q ¼ 2 and 3 with different

nondimensional BH spin parameters a ¼ 0:75, 0.5, 0, and

TABLE V. Several key quantities for the merger remnants for MNS ¼ 1:35M�. All the quantities are estimated at 
 10 ms after the
approximate merger time t ¼ tmerger.Mr>rAH is the rest mass of the disk surrounding the BH; because the accretion is still ongoing due to

the hydrodynamic angularmomentum transport process, the listed values only give approximatemasses of the long-lived accretion disks,
which survive for a time longer than the dynamical time scale�a few ms. Ce and Cp are the circumferential radii of the AH along the

equatorial and meridional planes, respectively.Ce=4	 andMBH;c denote approximate masses of the remnant BH.Mirr;f is the irreducible

mass of the remnant BH, and af is the nondimensional spin parameter of the remnant BH estimated fromCp=Ce. af2 and af1 are also the

nondimensional spin parameters, estimated from the quantities on the AH and approximate conservation laws, respectively.We note that
the values associated with the remnant BH for model B-Q2M135a75 (with an asterisk) are evaluated at 
 5 ms after the onset of the
merger because the BH area decreases by * 1% at 
 10 ms after the onset of the merger and the error becomes large.

Model Mr>rAH ½M�� Ce=4	M0 MBH;c=M0 Mirr;f=M0 Cp=Ce af af2 af1

2H-Q2M135a75 0.32 0.913 0.915 0.789 0.807 0.87 0.87 0.95

1.5H-Q2M135a75 0.29 0.918 0.920 0.785 0.794 0.89 0.89 0.95

H-Q2M135a75 0.24 0.927 0.929 0.783 0.780 0.91 0.90 0.94

HB-Q2M135a75 0.21 0.933 0.934 0.783 0.772 0.91 0.91 0.94

B-Q2M135a75 0.18 0.937* 0.938 0.790* 0.778* 0.91* 0.91* 0.93

2H-Q2M135a5 0.27 0.925 0.926 0.825 0.843 0.81 0.81 0.84

1.5H-Q2M135a5 0.23 0.935 0.936 0.831 0.840 0.82 0.81 0.84

H-Q2M135a5 0.17 0.945 0.946 0.837 0.836 0.82 0.82 0.84

HB-Q2M135a5 0.14 0.951 0.952 0.840 0.832 0.83 0.83 0.84

B-Q2M135a5 0.095 0.959 0.960 0.846 0.830 0.83 0.83 0.84

2H-Q2M135a-5 0.13 0.961 0.962 0.931 0.954 0.48 0.48 0.50

H-Q2M135a-5 0.010 0.985 0.986 0.950 0.948 0.51 0.51 0.52

HB-Q2M135a-5 0.0021 0.985 0.986 0.952 0.950 0.50 0.50 0.51

B-Q2M135a-5 2� 10�4 0.983 0.984 0.952 0.952 0.49 0.49 0.50

2H-Q3M135a75 0.35 0.927 0.927 0.807 0.815 0.86 0.86 0.90

1.5H-Q3M135a75 0.30 0.931 0.934 0.811 0.815 0.86 0.86 0.90

H-Q3M135a75 0.24 0.939 0.943 0.820 0.818 0.85 0.85 0.91

HB-Q3M135a75 0.22 0.941 0.943 0.812 0.805 0.87 0.87 0.90

B-Q3M135a75 0.15 0.949 0.951 0.824 0.812 0.86 0.86 0.89

2H-Q3M135a5 0.28 0.939 0.940 0.858 0.874 0.74 0.74 0.77

1.5H-Q3M135a5 0.23 0.946 0.948 0.862 0.871 0.75 0.75 0.78

H-Q3M135a5 0.16 0.955 0.957 0.867 0.866 0.76 0.76 0.78

HB-Q3M135a5 0.11 0.961 0.963 0.871 0.864 0.77 0.77 0.78

B-Q3M135a5 0.050 0.969 0.971 0.877 0.862 0.77 0.77 0.79

HB-Q3M135a-5 <10�4 0.986 0.987 0.973 0.980 0.32 0.32 0.33

2H-Q4M135a75 0.36 0.937 0.938 0.825 0.828 0.84 0.84 0.87

H-Q4M135a75 0.23 0.948 0.951 0.831 0.823 0.84 0.84 0.88

HB-Q4M135a75 0.18 0.953 0.956 0.833 0.821 0.85 0.85 0.88

B-Q4M135a75 0.11 0.960 0.963 0.837 0.817 0.85 0.85 0.88

2H-Q4M135a5 0.28 0.950 0.951 0.879 0.891 0.70 0.70 0.72

H-Q4M135a5 0.085 0.970 0.973 0.890 0.880 0.73 0.73 0.74

HB-Q4M135a5 0.024 0.976 0.979 0.894 0.878 0.74 0.74 0.75

B-Q4M135a5 0.0034 0.978 0.980 0.896 0.878 0.74 0.74 0.75

2H-Q5M135a75 0.36 0.946 0.947 0.838 0.835 0.82 0.82 0.85

H-Q5M135a75 0.17 0.960 0.963 0.844 0.827 0.84 0.84 0.86

HB-Q5M135a75 0.095 0.966 0.970 0.848 0.824 0.84 0.84 0.86

B-Q5M135a75 0.031 0.972 0.975 0.851 0.821 0.85 0.85 0.87
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�0:5. In both plots, MNS ¼ 1:35M� and HB EOS are
adopted. We note that the results revised from the previous
work [30] are plotted for a ¼ 0. The dependence ofMr>rAH

on a for HB EOS found here is similar to those for other
EOSs. We set the time origin to be an approximate merger
time tmerger. These plots indicate that the mass of the

material left outside the AH relaxes to a quasisteady value
for t� tmerger * 3–4 ms, and the relaxed value increases

monotonically as the BH spin increases from retrograde to
prograde. This is consistent with the decrease of the BH
ISCO radius with the increase of its spin, as described in
Sec. IVA. In particular, the remnant disk mass at 
 10 ms
after the merger is* 0:1M� for all the EOSs with ðQ; aÞ ¼
ð2;� 0:5Þ and ð� 4; 0:75Þ, as shown in Table V, and
* 0:05M� for ðQ; aÞ ¼ ð3; 0:5Þ, irrespective of the EOS.
The formation of such a massive disk may be encouraging
for the BH-NS binary merger hypothesis of a short-hard
GRB. For the a ¼ �0:5 cases, by contrast, massive accre-
tion disks of * 0:01M� are not expected to be formed as
merger remnants even for Q ¼ 2 unless the EOS is ex-
tremely stiff (the NS radius is 
 15 km). This fact indi-
cates that the retrograde BH spin is unfavorable for
producing a central engine of a short-hard GRB.

The prograde BH spin enhances the disk formation
dramatically for a BH-NS binary with a high mass ratio,
for which the disk mass is very low when the BH is
nonspinning. We plot the time evolution of Mr>rAH for

Q ¼ 4 and 5 with different EOSs in Fig. 6. In both plots,
MNS ¼ 1:35M� and a ¼ 0:75 are adopted. Figure 6 clearly
shows that a massive accretion disk is formed for Q ¼ 4
and 5 if the BH has a prograde spin of a ¼ 0:75. Namely,
the formation of a massive accretion disk is universal for
the merger of a BH-NS binary with a mass ratio of Q & 5
as far as a� 0:75 and MNS ¼ 1:35M� (equivalently,
MBH & 6:75M�). Note that a heavy BH of MBH * 5M�
is predicted to be realistic as an astrophysical consequence
of the stellar evolution with solar metallicity [82] (see, e.g.,

Ref. [83] for a population synthesis study) and hence as a
possible progenitor of the short-hard GRB.
For more quantitative discussion, we plot the disk mass

estimated at 
 10 ms after the merger for all the models
with Q ¼ 2 and for models with ðQ; aÞ ¼ ð3;� 0Þ as a
function of the NS compactness, C, in Fig. 7. Numerical
values of Mr>rAH are shown in Table V, as well as other

quantities associated with the merger remnants. For any
fixed value of a, a negative correlation betweenMr>rAH and

C is found to hold in Fig. 7. This correlation indicates that
the NS with a larger compactness is less subject to tidal
deformation and disruption than the NS with a smaller
compactness for any fixed value of a. This correlation is
expected from the nature of a tidal force as a finite-size
effect, as found in the study of nonspinning BH-NS bi-
naries [30]. On the other hand, Fig. 7 again shows that the
prograde BH spin increases the disk mass for any fixed
value of C. A remarkable fact is that the disk mass does not
decrease steeply to a value of � 0:1M� as the compact-
ness increases for binaries with ðQ; aÞ ¼ ð� 3;� 0:5Þ. We
expect that the coalescence of a BH-NS binary with
ðQ; aÞ ¼ ð� 3;� 0:5Þ may always produce a remnant
disk of * 0:01M� within a plausible range of the NS
compactness, C & 0:2, although it is possible only if
C & 0:18 for ðQ; aÞ ¼ ð2; 0Þ and C & 0:16 for ðQ; aÞ ¼
ð2;�0:5Þ or (3, 0).
The dependence of the disk mass on the NS compactness

is different for different values of the mass ratio. We plot in
Fig. 8 the disk mass as a function of the NS compactness as
in Fig. 7, but for a ¼ 0:75 and 0.5. This figure shows that
the disk mass depends more strongly on C when the mass
ratio,Q, is larger. The disk mass is larger for smaller values
of Q when the EOS is soft and C * 0:16, except for HB-
Q2M135a75 and HB-Q3M135a75, for which the disk
masses depend only weakly on Q. This dependence on Q
is expected from the comparison between the mass-
shedding radius, rshed, and the ISCO radius, rISCO,
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rshed
rISCO

/ C�1Q�2=3; (33)

where we assume Newtonian gravity for simplicity. This
relation states that a larger amount of mass can escape the
capture by the BH and can form an accretion disk when Q
is small because the mass shedding sets in at a relatively
more distant orbit. However, the disk mass may be larger
for larger values ofQ when the EOS is stiff as C & 0:15 for
a � 0:5 and 2 & Q & 5. This should be ascribed to the
redistribution process of the specific angular momentum
of the NS to the disrupted material and to subsequent
behavior of the material (such as collision of the fluid
elements in spiral arms). This feature suggests that a binary
with a larger value of Q—say, Q * 6—possibly forms a
massive remnant disk of* 0:1M� and could be a progeni-
tor of a short-hard GRB if the EOS is stiff and the BH has a
large spin * 0:5.

To clarify the dependence of the disk mass on the BH
spin, we plot the disk mass as a function of a in Fig. 9.
The EOS (and, equivalently, C) is the same for each plot.
Again, we find a monotonic and steep increase of the disk
mass as the increase of a for the fixed EOS and mass ratio.
The enhancement of the disk mass by a prograde spin is
more dramatic for the compact NS (for the soft EOS). For
example, the difference in the disk mass between the cases
of a ¼ 0:75 and �0:5 is only by a factor of �3 when
Q ¼ 2 and 2H EOS is adopted. This low amplification is
natural because tidal disruption of a large NS occurs at an
orbit far enough from the ISCO for a substantial amount of
the disrupted material to escape the capture by the BH
irrespective of a and because at such a large orbital sepa-
ration the spin-orbit coupling effect is relatively weak. On
the other hand, a few-orders-of-magnitude amplification of
the disk mass is seen whenQ ¼ 2 and HB EOS is adopted.
Finally, we comment on a possible unbound outflow.

To estimate the rest mass of unbound material, we compute
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Mub �
Z
r>rAH

�	Hð�ut � 1Þd3x; (34)

where HðxÞ is a step function. Here, the material with
ut <�1 should be considered to have an unbound orbit.
We find that Mub can be larger than 0:01M� at 
 10 ms
after the merger for the stiff EOSs like 2H and H, and
a � 0. However, Mub does not approach a constant value
and rather continues to decrease. Therefore, it is unclear
whetherMub estimated at 10 ms after the merger can really
become unbound or not, and we do not show the precise
values ofMub. When the EOS is not stiff,Mub is negligible
within the accuracy of our simulations.

C. Structure of the remnant disk

The structure of the remnant disk and its time evolution
process depend on the mass ratio of the binary. We plot the
rest-mass density profile at
 5 and 10 ms after the onset of
the merger for binaries with a ¼ 0:75, HB EOS, and differ-
ent values of Q in Fig. 10. The left column of Fig. 10 is
plotted for
 5 ms after the onset of the merger and shows
that the dense material of � * 109 g=cm3 always extends
to* 400 km. The spiral arm always spreads to a far region
irrespective of EOSs, as far as the tidal disruption results in
a massive disk. These plots also suggest that the accretion
disk for a large value of Q—say, Q ¼ 5—keeps a non-
axisymmetric structure in the vicinity of the remnant BH at
this time. This feature is qualitatively the same for binaries
with other EOSs. When Q is small as �2, the accretion
disk becomes nearly axisymmetric in 
 5 ms after tidal
disruption because the dynamical time scale of the system
(which is proportional to the BH mass) is shorter for a
smaller value of Q. Also, because the ISCO radius of
the BH is smaller, the maximum rest-mass density, �max,
of the disk (which should be approximately proportional

to the inverse square of the BH mass) reaches a higher
value on average in time for a smaller value ofQ. It should
be noted that the difference in �max comes primarily from
the difference in the radius and not from the difference in
the disk mass, which do not vary by an order of magnitude
for a ¼ 0:75 and Q ¼ 2–5. This difference in the non-
axisymmetric structure results in different features of
gravitational waves (see Sec. IVE).
The middle and right columns of Fig. 10 plot snapshots

at 
 10 ms after the onset of the merger. At this time,
nonaxisymmetric structures are not as significant as those
at 
 5 ms after the onset of the merger because the accre-
tion disk settles toward an approximately stationary state in
the vicinity of the BH. The maximum values of the rest-
mass density, �max, in the accretion disk are still higher
for a smaller value of Q. Indeed, the right column of
Fig. 10 shows that smaller values of Q result in producing
a wider region with � > 1012 g=cm3. By contrast, the disk
for Q ¼ 5 does not have such a high-density region. The
smaller density may be unfavorable to be the short-hard
GRB model.
The size of a region where � > 1010 g=cm3 coincides

approximately among four models with different values of
Q and is always �100 km. Furthermore, the middle col-
umn suggests that the region of � > 108 g=cm3 extends to
larger distances when Q is larger. We plot the radial
distribution of � along the x and y axes for these models
in Fig. 11. Note that low-density regions near the origin
are inside the BH. These plots show that �max is system-
atically higher for the binary with a smaller value of Q.
These also show that the location of the isodensity surface
of � ¼ 1010 g=cm3 approximately coincides among differ-
ent values of Q. Taking these facts into account, we
conclude that a typical profile of �ðrÞ is steeper for smaller
values of Q in the vicinity of the BH. A region of
* 100 km away from the BH, where the profile �ðrÞ shows
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FIG. 10 (color online). The same as Fig. 2 with contour curves for � ¼ 1010 and 1012 g=cm3 plotted. In all the plots, HB EOS and
a ¼ 0:75 are adopted. The first, second, third, and fourth rows are for Q ¼ 2, 3, 4, and 5, respectively. The left column plots the
snapshots at 5 ms after the onset of the merger. The middle column plots the snapshots at 10 ms after the onset of the merger, and the
right column plots close-ups of the middle column.
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relatively shallow decrease and & 1010 g=cm3, corre-
sponds to the tail component, as is seen in the middle
column of Fig. 10.

D. Properties of the remnant BH

Table V shows that masses and nondimensional spin
parameters of the remnant BHs depend weakly on the
adopted EOSs. The mass of the remnant BH tends to
become large as the EOS softens for fixed values of
ðQ;MNS; aÞ for the case in which tidal disruption of
the NS occurs. The reason for this is that the tidal disruption
occurs near the ISCO, and then the BH swallows a large
amount of theNSmasswhen the EOS is soft. Exceptionally,
the mass of the BH becomes slightly larger for H and HB
EOSs than for B EOS for binaries with ðQ; aÞ ¼ ð2;�0:5Þ.
The reason for this is that the remnant diskmasses are small
as & 0:01M� for these cases and the amount of the energy
radiated by gravitational waves primarily determines the
final state (for more compact NSs, the radiated energy is
larger because a closer inspiral orbit is achieved). The spin
angular momentum of the remnant BH SBH;f shows similar

behavior to that of the BH mass. The situation becomes
complicated for a spin parameter of the remnant BH defined
by af ¼ SBH;f=M

2
BH;f; the competition between the mass

and angular momentum losses from the system makes the
dependence of the nondimensional spin parameter of the
remnantBHon theEOSveryweak. For comparison,af1 and
af2, defined in Sec. III B, are also shown in Table V. As is
found in our previous work [30], af and af2 agree with each
other within the error of�a ¼ 0:003. By contrast, af1 does
not agree well with the other two estimates, as is found in
another previous work of ours [28], particularly when
the massive remnant disk is formed and/or the mass of the
BH is small: the maximum error is �a 
 0:08. Taking into
account the fact that the agreement between Ce=4	 and
MBH;f is always better than 0:5%, a possible reason for this

discrepancy is that Eq. (31) systematically underestimates
the angular momentum of the disk. Hereafter, we only refer
to af as the nondimensional spin parameter of the remnant
BH.
The nondimensional spin parameter of the remnant BH

depends strongly on the initial spin parameter, a, and the
mass ratio, Q. Approximate values of the nondimensional
spin parameter of the remnant BH, af , are shown in Fig. 12
as a function of the initial BH spin parameter, a. We also
plot lines obtained by a linear fitting of data for Q ¼ 2 and
3 of the following form,

af ¼ 0:32aþ 0:66ðQ ¼ 2Þ; (35)

af ¼ 0:43aþ 0:54ðQ ¼ 3Þ: (36)

The relation for Q ¼ 3 agrees approximately with the
results reported in Refs. [27,84] within an error of & 5%,
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The left and right panels show the distribution along the x and y axes, respectively. In both plots, ðMNS; aÞ ¼ ð1:35M�; 0:75Þ and HB
EOS are adopted.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

a f

a

Q=2
Q=3
Q=4
Q=5
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and the agreement becomes better for a larger value of a.
Figure 12 and these relations show that af is an approxi-
mately linear function of a. In a zeroth approximation, the
slope and intercept of the linear relation denote the con-
tribution from the initial BH spin angular momentum, SBH,
and the orbital angular momentum of the binary, J0, re-
spectively. The larger slope for a larger value of Q is
explained by a larger contribution from the spin of the
initial BH of massMBH ¼ QMNS to the spin of the remnant
BH of mass MBH;f � ð1þQÞMNS. These predict the value

of the slope to be Q2=ð1þQÞ2. However, the slope
obtained by numerical simulations is smaller by
�25–30% than this predicted slope, because the amount
of angular momenta redistributed to the remnant disk and
extracted by gravitational waves becomes larger for a
larger value of a. The fitting function also suggests that
the merger of an extremely spinning BH of a ¼ 1 and a NS
with an irrotational velocity field results in a remnant BH
with af 
 0:98 for BH-NS binaries with Q ¼ 2 and 3 and
hence never forms an overspinning BH, i.e., a BH with
af > 1. Furthermore, the results for Q ¼ 4 shown in
Table V also suggest af 
 0:97 for the merger of an ex-
tremely spinning BH and an irrotational NS. These results
give a circumstantial support for cosmic censorship con-
jecture [85]. Whether af & 0:98ð<1Þ is a universal conse-
quence of a general BH-NS binary merger or not should be
confirmed by simulations of higher mass-ratio binary
mergers, in particular, with (nearly) extremal BH spin.

From these typical values of af and MBH;f , we can esti-

mate typical frequencies of quasinormal modes (hereafter
QNM) fQNM of the remnant BH by a fitting formula [86]

fQNMMBH;f 
 1

2	
½1:5251� 1:1568ð1� aÞ0:1292�: (37)

We plot these values in Fig. 13. They are in good agreement
with those of the ringdown waveforms, if the QNM is
excited after the merger.

E. Gravitational waveforms

In this section, we show ðl; mÞ ¼ ð2; 2Þ, plus-mode
gravitational waveforms hþ for selected models obtained
in this study, as well as the waveform for models obtained
in our previous simulations [30]. We plot all the waveforms
for an observer along the z axis as a function of the
approximate retarded time

tret ¼ t�D� 2M0 lnðD=M0Þ: (38)

The amplitude of the waveforms is normalized asDhþ=m0

or we show physical amplitude observed at a hypothetical
distance D ¼ 100 Mpc along the z axis. Gravitational
waveforms calculated in the Taylor-T4 formula are plotted
together in the figures to validate the waveforms obtained
in our numerical simulations during the inspiral phase.
Numerical waveforms during 2–3 initial cycles deviate
from ones obtained from the Taylor-T4 formula in all the
cases due to the lack of an approaching velocity in the
initial data. This deficit is ascribed to insufficient modeling
of the quasiequilibrium state, and improvement in the
future is important to obtain more accurate gravitational-
wave templates [87,88]. Our waveforms also deviate from
the Taylor-T4 waveforms in the late inspiral phase due to a
physical reason, which we describe below. Comparisons
between waveforms obtained from simulations with differ-
ent grid resolutions are shown in the Appendix.
Figure 14 shows the gravitational waveforms for bi-

naries with HB EOS, ðQ;MNSÞ ¼ ð3; 1:35M�Þ, but with
different BH spin parameters, a ¼ 0:75, 0.5, 0, and �0:5.
This figure shows that the time to the merger, to which
we refer approximately as the time at which the maxi-
mum gravitational-wave amplitude is achieved, for
�0m0 ¼ 0:030 becomes longer by 
 10 ms as the in-
crease of the BH spin within the range concerned here.
This difference in the merger time owes primarily to the
spin-orbit interaction described in Sec. IVA, and this be-
havior is qualitatively the same for binaries with any EOS.
The numerical and Taylor-T4 waveforms agree well with
each other during an inspiral phase for all the cases.
For the prograde BH spin cases, the Taylor-T4 for-

mula does not track the evolution for �0:5 inspiral
orbit just before the merger. The Taylor-T4 amplitude
departs from that of numerical relativity and even
diverges. Accordingly, the number of gravitational-wave
cycles differs by as much as unity between the numerical
and Taylor-T4 waveforms. The difference in the num-
ber of cycles is larger for higher mass-ratio binaries
with prograde BH spins. We show the waveforms for
binaries with ðQ;MNS; aÞ ¼ ð4; 1:35M�; 0:75Þ and with
ðQ;MNS; aÞ ¼ ð5; 1:35M�; 0:75Þ for 2H, H, HB, and
B EOSs in Figs. 15 and 16, respectively. The deviation is
clear for H, HB, and B EOSs in both figures. This difference
indicates that the phase evolution predicted by the Taylor-
T4 formula is not sufficient to model the last inspiral phase
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of a coalescing binarywith the highmass ratio ofQ * 3 and
the prograde BH spin of a * 0:5.

For the retrograde BH spin case (the bottom right panel
of Fig. 14), the phase evolution deviates between the
numerical and Taylor-T4 waveforms in the last orbit before
the merger. This deviation may be partly ascribed to the
small number of orbits in our simulation but appears to be
primarily ascribed to a larger angular velocity, or equiv-
alently a larger PN parameter, �m0, at the last orbit for a
retrograde BH spin. Thus, the Taylor-T4 formula seems to
be again insufficient for modeling the retrograde BH spin
cases.

Figure 14 also shows that the gravitational waveform in
the merger stage depends strongly on the BH spin. For a
binary with ðQ; aÞ ¼ ð3; 0:75Þ, gravitational waves show a
sudden decrease in the amplitude at tret 
 27 ms, which is
a clear signature of tidal disruption. Gravitational waves
associated with the ringdown of a remnant BH are absent
due to the phase cancellation by nearly axisymmetric
accretion of the disrupted material. This feature is consis-
tent with the formation of a massive remnant disk, which
is described in Sec. IVB, for the prograde BH spin.

For binaries with ðQ; aÞ ¼ ð3;� 0Þ, on the other hand,
gravitational waves end up with ringdown waveforms as-
sociated with the remnant BHs because the tidal effect is
very weak throughout the merger. In these circumstances,
gravitational waves do not show strong signatures of tidal
deformation and disruption of the NS.
Gravitational waves for a binary with ðQ; aÞ ¼ ð3; 0:5Þ

show a qualitatively new feature (the top right panel of
Fig. 14). In this case, a ringdown waveform of the remnant
BH is seen in the final stage, although the NS is tidally
disrupted and the disk mass is larger than 0:1M�. Namely,
both tidal disruption of the NS and excitation of a QNM of
the remnant BH occur in a compatible manner. The same
feature is also found for a binary with a high mass ratio and
a prograde BH spin, i.e., ðQ; aÞ ¼ ð� 4; 0:75Þ, shown in
Figs. 15 and 16 except for 2H EOS, with which the NS is
disrupted at a fairly distant orbit. These waveforms are
often seen for BH-NS binaries with a heavy BH (or a high
mass ratio) with the prograde BH spin, which results in the
NS tidal disruption, and is never seen for BH-NS binaries
with Q ¼ 2 or high mass-ratio binaries with nonspinning
BHs.
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FIG. 14 (color online). ðl; mÞ ¼ ð2; 2Þ, plus-mode gravitational waves for models HB-Q3M135a75, HB-Q3M135a5, HB-Q3M135,
and HB-Q3M135a-5. All the waveforms are shown for an observer located along the z axis (the axis of rotation) and plotted as a
function of a retarded time. The left axis denotes the amplitude normalized by the distance from the binary D and the total mass m0.
The right axis denotes the physical amplitude of gravitational waves observed at a hypothetical distance 100 Mpc. The dotted curves
denote the waveform calculated by the Taylor-T4 formula.
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The ratio of the areal radius of the remnant BH to the NS
radius, RNS, is intimately related to the different excitation
degree of the QNM between low and high mass-ratio
binaries in the presence of NS tidal disruption [89,90].
Schematic pictures of merger processes are depicted in
Fig. 17. If tidal disruption does not occur, the NS is simply
swallowed by the BH and excites a QNM, as shown in the
middle panel of Fig. 17. If tidal disruption occurs in a
binary with a low mass ratio, the disrupted material spreads
around the BH to soon form a nearly axisymmetric disk.
Approximately speaking, this occurs if the BH areal radius
is smaller than the NS radius, as is shown in the left panel
of Fig. 17. Thus, the NS tidal disruption has a strong effect
to suppress the excitation of a QNM through the phase
cancellation in the low mass-ratio binary. However, the
situation is different in a high mass-ratio binary. Whereas
the disrupted material forms an axisymmetric accretion
disk around the BH in a sufficiently long time duration,
the accretion just after the merger does not proceed in an
axisymmetric way in high mass-ratio binaries, such as
Q ¼ 4, except for the extremely stiff EOS. This is because
the BH radius for Q ¼ 4 approximately doubles that for
Q ¼ 2, and hence, the disrupted material takes longer time
to spread around the BH. In other words, the NS material
accretes onto the BH coherently even after the tidal dis-

ruption, as is shown in the right panel of Fig. 17, because
the BH radius is so large that the disrupted material cannot
fully cover the BH surface before the BH swallows a large
portion of the material. In the exceptional 2H EOS case,
tidal disruption occurs sufficiently far outside the BH due
to the large radius of the NS, and hence, the disrupted
material is able to spread around the BH to form a nearly
axisymmetric accretion disk before the prompt infall.
Therefore, the QNM of a remnant BH is not excited for
2H EOS.

F. Gravitational-wave spectrum

Key features of gravitational waves are reflected in the
Fourier spectrum. In this paper, we define the Fourier
spectrum as a sum of each Fourier component of two
independent polarizations of the ðl; jmjÞ ¼ ð2; 2Þ mode as

~hðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~hþðfÞj2 þ j~h�ðfÞj2

2

s
; (39)

~h AðfÞ ¼
Z

e2	ifthAðtÞdt; (40)

where A denotes two polarization modes, þ or �. We

show a nondimensional spectrum, f~hðfÞ, observed at a
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FIG. 15 (color online). The same as Fig. 14 but for models 2H-Q4M135a75, H-Q4M135a75, HB-Q4M135a75, and B-Q4M135a75.
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FIG. 16 (color online). The same as Fig. 14 but for models 2H-Q5M135a75, H-Q5M135a75, HB-Q5M135a75, and B-Q5M135a75.

FIG. 17 (color online). Schematic pictures for three types of the merger process. The solid filled circle denotes the BH, the distorted
ellipsoid denotes the NS, the solid circle is the location of the ISCO, and the dashed circle is the location of the radius at which the tidal
disruption occurs. Left: the NS is tidally disrupted, and the spatial extent of the disrupted material is larger than or as large as that of the
BH. Middle: the NS is not tidally disrupted. Right: the NS is tidally disrupted, and the spatial extent of the disrupted material is smaller
than that of the BH.
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hypothetical distance of 100 Mpc as a function of the
gravitational-wave frequency, f (Hz), or a normalized

amplitude, f~hðfÞD=m0, as a function of a nondimensional
frequency, fm0. The amplitude of gravitational waves, hA,
is given as the amplitude observed along the z axis, which
is the most optimistic direction for the gravitational-wave
detection. We note that the actual amplitude of gravita-
tional waves depends on an angle locating the source in the
sky and on an angle specifying the orientation of the orbital
plane of the binary. The angular average of the effective

amplitude is 
 0:4f~hðfÞ. We always exclude spurious
radiation components for tret & 0 ms, using a step function
of the retarded time as a window function.

To show the dependence of the gravitational-wave
spectra on the BH spin parameter, we plot the spectra for
models HB-Q2M135a75, HB-Q2M135a5, HB-Q2M135,
and HB-Q2M135a-5 in the left panel of Fig. 18 and for
models HB-Q3M135a75, HB-Q3M135a5, HB-Q3M135,
and HB-Q3M135a-5 in the right panel of Fig. 18. In
the early inspiral phase of f & 1 kHz, where the point-
particle approximation works well, the amplitude of the
gravitational-wave spectrum for a given frequency in-
creases monotonically as a increases. This is a feature
expected from the PN calculation and is explained by the
spin-orbit interaction as follows: The power spectrum of
gravitational radiation is written as

dE

df
/ ½f~hðfÞ�2: (41)

On the other hand, retaining only 1.5PN, the lowest-order
spin-orbit interaction terms, Eqs. (4.10) and (4.14) of
Ref. [78], derive the expression for this quantity as

dE

df
¼ Q

3ð1þQÞ2
X5=2

	f2

�
1þ aX3=2

�
5ð4Qþ 3Þ
3ð1þQÞ2

��
: (42)

Thus, the effective amplitude, f~hðfÞ, for a given frequency
f increases monotonically as the BH spin parameter, a,
increases in the inspiral phase.
Figure 19 plots the spectra for models 2H-Q2M135a75,

H-Q2M135a75, HB-Q2M135a75, and B-Q2M135a75, for
which only the EOS is different, and indicates that the
amplitude in the early inspiral phase does not depend
strongly on C. This is because the finite-size effect of the
NS does not play an important role in the early inspiral
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The spectrum derived by the Taylor-T4 formula is also included.
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FIG. 18 (color online). Gravitational-wave spectra for BH-NS binaries with HB EOS, MNS ¼ 1:35M�, and a ¼ 0:75, 0.5, 0, and
�0:5. The left and right panels show the spectra for Q ¼ 2 and 3, respectively. The upper axis denotes the normalized frequency, fm0,
and the right axis denotes the normalized amplitude, f~hðfÞD=m0. The bottom axis denotes the frequency, f, in Hz, and the left axis
denotes the nondimensional amplitude of gravitational waves, f~hðfÞ, observed at a hypothetical distance 100 Mpc from the binary
along the z axis. The dashed curves are planned noise curves of the LCGT (‘‘LCGT’’), the Advanced LIGO optimized for 1:4M�
NS-NS detection (‘‘Standard’’), the Advanced LIGO optimized for the burst detection (‘‘Broadband’’), and the Einstein Telescope
(‘‘ET’’) [100].
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phase (but, see Refs. [91,92]), as already found for non-
spinning BH-NS binaries [30].

In the late inspiral phase of 1 kHz & f & fcut, where
fcut is a characteristic frequency at which the spec-
trum starts damping exponentially (see below), the ampli-
tude is significantly larger than the Taylor-T4 formula
for the cases in which the NS is not disrupted. This is
because the binaries in the inspiral and plunge after the NS
enters the BH’s ISCO emit gravitational waves in reality,
whereas the Taylor-T4 formula does not take into account
the motion inside the ISCO. In contrast to the spectrum
calculated by the Taylor-T4 formula, which decreases
steeply after the last inspiral phase, the amplitude obtained
from the simulation depends only weakly on the
gravitational-wave frequency in that phase, as far as the
tidal disruption does not occur.

The most fruitful information of the NS comes from
the gravitational-wave spectrum in the merger phase
through the ‘‘cutoff frequency,’’ fcut, which depends
on the BH spin as well as the NS compactness [28,30]. If
the NS tidal disruption occurs, the spectrum damps at
f ¼ ftidal � 2–4 kHz, which denotes the frequency at the
tidal disruption and depends sensitively on physical pa-
rameters of the binary. In that case, gravitational waves for
a higher frequency, f * fcut 
 ftidal, are not emitted by the
binary in the inspiral motion but only weakly by disrupted
material. Because the disrupted material gradually spreads
around the BH to form a nearly axisymmetric disk, the
emission of gravitational waves is suppressed at the high
frequency. Thus, the spectrum shows a relatively moderate
damping around f 
 fcut, which is closely related to the
NS compactness through the tidal disruption. The spectra
for binaries with ðQ; aÞ ¼ ð2;� 0Þ and ð3;� 0:5Þ in the left
panel of Fig. 18 correspond to these cases. We see that
the cutoff frequency, fcut, for these models decreases as
the BH spin parameter increases. This is ascribed to the

decrease of the orbital frequency at the tidal disruption for
a binary with the prograde BH spin. The enhancement of
the effective centrifugal force by the spin-orbit interaction
reduces the orbital frequency at the tidal disruption, ftidal,
although the orbital separation at the tidal disruption itself
does not vary much even in the presence of the BH spin.
If the tidal disruption does not occur during the merger,
however, inspiral-like motion continues at higher frequen-
cies near and even inside the ISCO until the BH swallows
the NS. In this case, the spectrum amplitude depends only
weakly on f in the frequency range f & fcut and damps for
f * fcut, which is closely related to the QNM frequency of
the remnant BH, fQNM. The spectra for ðQ; aÞ ¼ ð2;�0:5Þ
and ð3;� 0Þ in Fig. 18 show this feature. Note that the
amplitude for model HB-Q3M135a-5 is smaller than for
model HB-Q3M135 for the frequency range shown in
Fig. 18 because tidal disruption does not play an important
role, and Eq. (42) applies throughout the merger in both
cases.
It is noteworthy that a prograde BH spin is favorable

for the gravitational-wave detection in the inspiral phase
and the estimation of fcut in the merger phase because
the prograde spin enhances the amplitude for a given
frequency in the inspiral phase and decreases the cutoff
frequency in the merger phase. Note that the most sen-
sitive frequency range for ground-based detectors is
f�10Hz–1 kHz, which is usually lower than fcut. Thus,
the features found here are encouraging for the
gravitational-wave astronomy to become an important
tool for investigating the NS radius and EOS.
The gravitational-wave spectra of binaries with high

mass ratios show qualitatively different behavior for a
high frequency. Figure 20 plots the gravitational-wave
spectra obtained for models with ðQ;MNS; aÞ ¼
ð4; 1:35M�; 0:75Þ and ð5; 1:35M�; 0:75Þ. For these binaries
(except for the model with 2H EOS), both the NS tidal
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FIG. 20 (color online). The same as Fig. 18 but with the left panel for ðQ;MNS; aÞ ¼ ð4; 1:35M�; 0:75Þ and the right panel for
ð5; 1:35M�; 0:75Þ with 2H, H, HB, and B EOSs. The spectrum derived by the Taylor-T4 formula is also included.
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disruption and the excitation of a QNM of the remnant
BH occur as is described in Sec. IVE. Hence, the gravita-
tional spectrum has two characteristic frequencies, i.e.,
ftidal and fQNM, simultaneously. The spectra plotted in

Fig. 20 indeed show such features. After the NS is tidally
disrupted, the amplitude of the gravitational-wave spec-
trum shows a slow damp for f * ftidal 
 2 kHz. Then, the
spectrum damps steeply above the frequency of the QNM,
f * fQNM 
 3 kHz. A schematic figure of different spec-

tra is depicted in Fig. 21, and the spectrum described in this
paragraph corresponds to spectrum (iii) in this figure. This
suggests that the cutoff frequency, fcut, of a high mass-ratio
binary is not determined by a unique physical process like
NS tidal disruption or a ringdown of a remnant BH, as far
as both of them occur.

To estimate the cutoff frequency quantitatively, we fit
the gravitational-wave spectra by a function with seven
free parameters of the form

f~hfitðfÞD
m0

¼ f~h3PNðfÞD
m0

e�ðf=finsÞ�ins

þ Ae�ðf=fdamÞ�dam ½1� e�ðf=fins2Þ�ins2 �; (43)

where ~h3PNðfÞ is the Fourier spectrum calculated by the
Taylor-T4 formula. The first term in Eq. (43) models the
inspiral spectrum, and the second term models the merger
and ringdown spectra. We determine seven free parameters
fins, fins2, fdam, �ins, �ins2, �dam, and A by the condition
that the following weighted norm is minimized:X

i

f½fi ~hiðfiÞ � fi ~hfitðfiÞ�f1=3i g2: (44)

Here, i denotes the data point for the spectrum. In the
previous works [28,30], we identify fdam in Eq. (43) with
fcut, which is most strongly correlated with the NS

compactness for nonspinning BH-NS binaries [93]. In the
present work, however, we obtain no strong correlation
between fdam (and the other parameters) and any parameter
of physical importance, such as a or C. The reason may be
ascribed to the inadequacy of the functional form of
Eq. (43), where the set of free parameters is degenerate
to some extent. In particular, such a degeneracy is severe
for a high mass-ratio binary due to two reasons. First,
modeling an inspiral spectrum by the Taylor-T4 formula
is inadequate for the late inspiral phase of a high mass-ratio
binary due to the lack of information from the Taylor-T4
formula, as is described in Sec. IVE. Second, there is no
unique, physically motivated identification of fcut when
both the NS tidal disruption and the QNM excitation occur.
(Fortunately, these degeneracies did not cause problems in
the case of the nonspinning BH-NS binary with a low mass
ratio [30]). To overcome these problems with the fitting
procedure, we redefine fcut as the higher one of two
frequencies at which the second term in Eq. (43) takes a
half value of its maximum. An example of this fitting
procedure is shown in Fig. 22. In this figure, Hmax corre-
sponds to the maximum value of the second term in
Eq. (43). We find that this definition of fcut works well to
read off the NS compactness from the gravitational-wave
spectrum.
Figure 23 shows fcutm0 for spectra obtained for all

binaries with Q ¼ 2 as a function of the NS compactness,
C, in logarithmic scales. We also plot the typical QNM
frequency of the remnant BH, fQNM, which depends pri-

marily on a of the initial BH for a fixed value of Q.
For each value of a, we find that fcutm0 increases mono-
tonically as C increases, and an approximate power law
holds as

lnðfcutm0Þ 
 pðaÞ lnCþ qðaÞ ðQ ¼ 2Þ; (45)
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FIG. 22 (color online). The fitting for model HB-Q2M135a75.
The long-dashed and middle-dashed curves show the first and
second terms of Eq. (43), respectively. The short-dashed curve is
the sum of these two terms.
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FIG. 21 (color online). A schematic figure of three types
of gravitational-wave spectra. Spectrum (i) is for the case in
which tidal disruption occurs far outside the ISCO, and
spectrum (ii) is for the case in which tidal disruption does not
occur. Spectrum (iii) is for the case in which tidal disruption
occurs and the QNM is also excited. The filled and open circles
denote ftidal and fQNM, respectively.
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where pðaÞð>0Þ and qðaÞ depend only on a, for any value
of a when Q ¼ 2. This monotonic relation between fcutm0

and C suggests us a possibility to extract the compactness,
C, of a NS from the gravitational-wave observation. It is
noteworthy that this relation includes only C but neither
MNS norRNS independently. It should also be noted that the
simple relation found here is a consequence of our choice
for a common value of the adiabatic index of the core EOS,
�2 ¼ 3 [30]. The increase of fcutm0 with the increase of C
indicates that a more compact NS is less subject to the BH
tidal effect and disrupted at a closer orbit to the BH than a
less compact NS is. The difference in fcutm0 due to the
difference in a becomes clearer for larger values of C, and
conversely, fcutm0 depends only weakly on a if the com-
pactness is as small as
 0:12. The weak dependence on a
for the small values of C is due to the fact that the effect of

the BH spin at a distant orbit, at which the NS with a large
radius is disrupted, is weak.
Figure 23 also shows that pðaÞ is a decreasing function

of a. More specifically, we obtain the relations

lnðfcutm0Þ ¼ ð2:92� 0:06Þ lnCþ ð2:32� 0:12Þ (46)

for a ¼ 0 [94] and

lnðfcutm0Þ ¼ ð2:39� 0:06Þ lnCþ ð1:11� 0:11Þ (47)

for a ¼ 0:75 by a linear fitting. The decreasing nature of
pðaÞ is explained by the fact that the spin-orbit repulsive
force for the prograde BH spin, which reduces the orbital
frequency at the NS tidal disruption, works efficiently for
a close orbit and hence for the NS with a large value of C.
It is important that pðaÞ is always larger than 1.5, which is
expected from the analysis of the condition for the mass
shedding,

�m0 / C3=2ð1þQÞ3=2ffiffiffiffi
Q

p : (48)

The large value of pðaÞ is favorable for determining the NS
compactness from the gravitational-wave observation
because the dependence of fcut on C becomes stronger.
Note that fcut is always lower than the QNM frequency of
the remnant BH for a realistic range of the compactness
C & 0:2 for ðQ; aÞ ¼ ð2;* 0Þ. If a is negative, on the other
hand, fcut for the binary with a compact NS of C * 0:18
may be determined by the QNM frequency, fQNM, and it

will be difficult to determine the NS compactness from the
cutoff frequency.
Figure 24 shows the fcutm0 � C relation of gravitational-

wave spectra obtained for all binaries with a ¼ 0:75 and
a ¼ 0:5. This figure, combined with Fig. 23, clearly in-
dicates that the approximate power law of the form

lnðfcutm0Þ ¼ pðQ; aÞ lnCþ qðQ; aÞ (49)

 0.01

 0.02

 0.03
 0.04
 0.05
 0.06
 0.08

 0.1

 0.1  0.12  0.14  0.16  0.18  0.2

f c
ut

 m
0

Compactness

a=0.75

Q=2
Q=3
Q=4
Q=5  0.01

 0.02

 0.03

 0.04
 0.05
 0.06

 0.08
 0.1

 0.1  0.12  0.14  0.16  0.18  0.2

f c
ut

 m
0

Compactness

a=0.5

Q=2
Q=3
Q=4

FIG. 24 (color online). The same as Fig. 23 but for a ¼ 0:75 (left) and 0.5 (right). In both panels, fQNM > fcut for Q ¼ 2.

 0.01

 0.02

 0.03

 0.04
 0.05
 0.06

 0.08
 0.1

 0.1  0.12  0.14  0.16  0.18  0.2

f c
ut

 m
0

Compactness

Q=2

a=0.75
a=0.5

a=0
a=-0.5

FIG. 23 (color online). The cutoff frequency times the total
mass fcutm0 as a function of the NS compactness C for Q ¼ 2
binaries in logarithmic scales. The solid and dashed lines are
obtained by linear fittings of data for a ¼ 0:75 and a ¼ 0,
respectively. Horizontal lines denote the typical QNM frequen-
cies of the remnant BHs. We note that fQNM > fcut for a ¼ 0:75,

as long as C � 0:2.

KYUTOKU et al. PHYSICAL REVIEW D 84, 064018 (2011)

064018-26



holds for binaries of C & 0:2withQ ¼ 5 as far as a� 0:75
and with Q � 4 as far as a� 0:5. The striking feature is
that the cutoff frequency is lower than the QNM frequency
of the remnant BH, fQNM, for ðQ; aÞ ¼ ð� 4; 0:75Þ and

for ðQ; aÞ ¼ ð� 3; 0:5Þ, even if a QNM is excited. Ac-
cordingly, fcut shows a strong correlation with C. For
ðQ; aÞ ¼ ð5; 0:75Þ and (4, 0.5), fcut is lower than fQNM as

far as C & 0:18 and 0.17, respectively, and, therefore, the
strong correlation between fcut and C is found within this
range. Although fcut for the binary with a high mass ratio
should not be considered as ftidal due to the QNM excita-
tion, monotonic relations between fcutm0 and C give us an
opportunity to explore the NS radius and EOS. It should be
noted that gravitational waves from a higher mass-ratio
binary are more subject to the gravitational-wave detection
due to the larger amplitude in the inspiral phase and the
lower cutoff frequency. We again note that a massive BH
ofMBH * 5M� is an astrophysically realistic consequence
of the stellar evolution [82,83]. Taking these facts into
account, we conclude that gravitational waves from the
BH-NS binary are a promising tool to investigate the NS
radius and EOS in the next decade.

G. Energy and angular momentum radiated
by gravitational waves

Table VI lists the total energy �E=M0 and angular
momentum �J=J0 radiated by gravitational waves. We
estimate systematic errors in the estimation of �E and
�J to be �10%, which are ascribed mainly to the finite
grid resolution and partly to the finite extraction radius for
�4. Because �E and �J depend on the choice of �0m0,
we do not compare directly the results obtained for models
with different values of�0m0 and accordingly models with
different values of Q (see Table III).

Contributions from all the l ¼ 2–4 modes of gravita-
tional waves are taken into account. The ðl; jmjÞ ¼ ð2; 2Þ
mode always contributes by* 85% to�E and�J.�E and
�J taken away by higher-mode gravitational waves are
substantial for high mass-ratio binaries. For example, the
(3, 3) mode contributes by�2, 5, 7.5, and 10% for binaries
with Q ¼ 2, 3, 4, and 5, respectively. The (4, 4) mode
gravitational waves contribute by 1� 2% for binaries with
Q ¼ 3–5. These values depend only weakly on a and the
EOS, and contributions of modes with l � m are negligible
compared to those of l ¼ m modes.

Table VI shows that �E=M0 and �J=J0 increase mono-
tonically as the NS compactness, C, increases for binaries
with fixed values of ðQ; aÞ. This is the same result as
that obtained for nonspinning BH-NS binaries [30] and
is explained by a longer inspiral phase for a softer
EOS due to the later onset of mass shedding and the later
tidal disruption. The ratio between these two values,
ð�J=J0Þ=ð�E=M0Þ, decreases as C increases. This agrees
again with the result for the nonspinning BH cases and
is explained by a relation �J=�E 
 m=� for a given

TABLE VI. Total radiated energy �E and angular momentum
�J carried awaybygravitationalwaves.�E and�J are normalized
with respect to the initial ADM mass M0 and angular momentum
J0, respectively. We also show the ratio between �J and �E.

Model �E=M0 (%) �J=J0 (%)

ð�J=J0Þ=
ð�E=M0Þ

2H-Q2M135a75 0.58 16 27

1.5H-Q2M135a75 0.79 19 24

H-Q2M135a75 1.1 24 21

HB-Q2M135a75 1.4 26 19

B-Q2M135a75 1.7 29 17

2H-Q2M135a5 0.60 17 26

1.5H-Q2M135a5 0.79 19 24

H-Q2M135a5 1.2 24 20

HB-Q2M135a5 1.4 26 19

B-Q2M135a5 1.7 28 17

2H-Q2M135a-5 0.57 15 26

H-Q2M135a-5 1.1 19 16

HB-Q2M135a-5 1.4 19 14

B-Q2M135a-5 1.6 21 13

2H-Q2M12a75 0.40 12 30

H-Q2M12a75 0.79 19 24

HB-Q2M12a75 0.95 21 22

B-Q2M12a75 1.2 24 21

2H-Q2M145a75 0.73 19 25

H-Q2M145a75 1.5 27 19

HB-Q2M145a75 1.7 30 17

B-Q2M145a75 2.1 32 15

2H-Q3M135a75 0.72 20 28

1.5H-Q3M135a75 0.97 23 24

H-Q3M135a75 1.3 27 20

HB-Q3M135a75 1.6 30 19

B-Q3M135a75 2.0 34 17

2H-Q3M135a5 0.70 19 27

1.5H-Q3M135a5 0.94 22 23

H-Q3M135a5 1.4 26 19

HB-Q3M135a5 1.7 29 17

B-Q3M135a5 2.0 31 15

HB-Q3M135a-5 1.3 19 14

2H-Q3M145a75 0.88 22 25

H-Q3M145a75 1.7 31 18

HB-Q3M145a75 2.1 34 16

B-Q3M145a75 2.5 37 15

2H-Q4M135a75 0.81 23 28

H-Q4M135a75 1.5 31 21

HB-Q4M135a75 1.8 33 19

B-Q4M135a75 2.1 36 17

2H-Q4M135a5 0.72 19 27

H-Q4M135a5 1.5 27 19

HB-Q4M135a5 1.7 29 17

B-Q4M135a5 1.9 31 16

2H-Q5M135a75 0.83 24 29

H-Q5M135a75 1.6 33 20

HB-Q5M135a75 1.9 35 19

B-Q5M135a75 2.1 36 17
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angular harmonic of m and by the fact that more radiation
is emitted from the orbit of a larger value of � for a softer
EOS. Note that these arguments are based on little depen-
dence of gravitational-wave luminosity in the inspiral
phase on C for a fixed value of a; tidal correction to the
luminosity in the inspiral phase is not important.

Table VI shows that �E=M0 does not depend strongly
on a, while �J=J0 increases as a increases in many cases
for a fixed value of C. Remember that dE=df in the inspiral
phase increases for a large value of a, as is given by
Eq. (42). However, the orbital frequency, �, at the tidal
disruption decreases for a large value of a due to the spin-
orbit interaction. Because of these two competing effects,
the binding energy at the tidal disruption depends only
weakly on a, and hence, �E=M0 does not change very
much among different values of a. The increase of �J=J0
for a large value of a is due to the large value of dE=df in
the inspiral phase, during which � is relatively low, and
to the approximate relation �J 
 m�E=�, which enhan-
ces the contribution of low-frequency gravitational waves.

Finally, we comment on the linear momentum �P radi-
ated by gravitational waves and an associated kick velocity
vkick � �P=M0 of the remnant BH. Because of the mass
and spin asymmetries, the remnant BH achieves the kick
velocity of �100–250 km=s when the effect of tidal
disruption is weak, e.g., for models HB-Q3M135a-5 and
B-Q3M135. Although our results for �P do not converge
as well as those for �E and �J due to the slow conver-
gence of ðl; mÞ � ð2; 2Þ mode gravitational waves, the
values of vkick are in reasonable agreement with the fitting
formula derived using the results of simulations for the
binary BH merger [95,96]. By contrast, vkick is suppressed
to& 100 km=swhen tidal disruption occurs far outside the
ISCO. The reason for this is that the tidal disruption
suppresses significantly the gravitational radiation from
the last inspiral and merger phases, during which the linear
momentum is emitted most efficiently. This trend is con-
sistent with the result found in our previous work [28].

V. SUMMARY

We performed numerical simulations for the merger of
BH-NS binaries with various BH spins aligned or antia-
ligned with the orbital angular momentum, using an AMR
code SACRA with systematically chosen five piecewise
polytropic EOSs. We investigated the dependence of the
merger process, properties and structures of the remnant
disk, properties of the remnant BH, gravitational wave-
forms, and their spectra on the spin of the BH and the EOS
of the NS. In particular, we focused on the case in which
the BH has a prograde spin, and the tidal disruption of
the NS by a companion BH plays an important role.
We adopted a number of parameters for the mass ratio,
NS mass, and BH spin. By preparing the initial condition
with a distant orbit and a small eccentricity, we always
tracked * 5 quasicircular orbits in the inspiral phase and

studied the merger phase in a realistic setting. The treat-
ment of hydrodynamic equations and the estimation
method of the disk mass are improved in this work. In
the following, we summarize the conclusions in this paper:
(1) It is shown that a prograde BH spin enhances the

effect of NS tidal disruption by the spin-orbit inter-
action. The mass of the remnant disk increases as
the BH spin increases because the ISCO radius
of the BH becomes small. A remarkable point is
that the BH-NS binary with a high mass ratio of
even Q ¼ 5 can form a sufficiently massive disk of
* 0:1M� for a wide range of the NS compactness if
the BH has a prograde spin of a ¼ 0:75. This
amount of the disk mass for a high mass-ratio binary
is hardly expected if the BH is nonspinning. This
fact suggests that the formation of a BH-massive
accretion disk system is a frequent outcome of the
BH-NS binary merger with a prograde BH spin and
may be encouraging for the merger scenario of a
short-hard GRB. By contrast, the disk mass becomes
very small if the BH has a retrograde spin.

(2) It is shown that some portion of the disrupted ma-
terial can extend to * 400 km from the BH if the
massive disk is formed. The maximum rest-mass
density in the disk is larger for binaries with smaller
values of Q because the ISCO radius is smaller for
them. The extent of the disk could be large for a
large value of Q. For such a remnant disk, the life-
time should be longer.

(3) The spin parameter of the remnant BH depends
primarily on the spin parameter of the initial BH,
a, and the mass ratio, Q. In particular, extrapolation
of our results suggests that the merger of an ex-
tremely spinning BH and an irrotational NS does
not form an overspinning BH.

(4) The gravitational waveform also depends strongly
on the BH spin. The number of gravitational-
wave cycles becomes larger for a prograde BH
spin than that for a zero BH spin in the inspiral
phase because an additional repulsive force due to
the spin-orbit interaction reduces gravitational-wave
luminosity and an approaching velocity of the bi-
nary. We found that the Taylor-T4 formula does not
reproduce the phase evolution in the late inspiral
phases accurately, especially when the mass ratio is
large.

(5) In our previous work for nonspinning BH-NS bi-
naries, the waveforms are classified simply into two
categories: when tidal disruption of the NS occurs,
the waveform is composed of an inspiral waveform
and a prompt shutdown at the tidal disruption. When
tidal disruption does not occur, the waveform is
composed of inspiral and QNM waveforms. How-
ever, we find that the NS tidal disruption and the
excitation of a QNM can occur simultaneously for
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binaries with a high mass ratio and a prograde BH
spin. This is because the disrupted material cannot
become axisymmetric before the prompt infall due
to a larger BH areal radius for a larger value of Q.
As a result, the material accretes onto the remnant
BH coherently, and, therefore, the QNM of the
remnant BH is excited, except for the case in which
the extremely stiff EOS is adopted.

(6) The cutoff frequency of the gravitational-wave spec-
trum is correlated with the NS compactness in a
clear manner when the NS is disrupted, and the
BH spin modifies this correlation. The prograde
BH spin decreases the cutoff frequency for fixed
values of C and Q because the angular velocity at
the tidal disruption becomes smaller than that for
a ¼ 0. The cutoff frequency is lower for a smaller
value of C for fixed values of Q and a, as in the case
of nonspinning BH-NS binaries, because the tidal
effect is stronger and the disruption occurs at a more
distant orbit. The BH spin also modifies the spec-
trum for the inspiral phase. Specifically, the spec-
trum amplitude for a given frequency in the inspiral
phase becomes large when the BH has a prograde

spin, and this is consistent with the PN estimation.
Both the low cutoff frequency and large spectrum
amplitude in the inspiral phase for a prograde BH
spin are encouraging for gravitational-wave astron-
omy to become a tool to investigate the NS com-
pactness and EOS. It is noteworthy that the BH-NS
binary with a high mass ratio of Q * 5 is a more
promising target for ground-based gravitational-
wave detectors if the BH has a prograde spin and
the NS tidal disruption occurs.

Finally, we list several issues to be explored in the
future. Piecewise polytropic EOSs with two pieces em-
ployed in this paper are not accurate enough to model high-
mass NSs with large central density of �max * 1015 g=cm3

[58]. More detailed (piecewise polytropic) EOSs are nec-
essary to calculate gravitational waves from a BH-
relatively massive NS binary merger for which the tidal
deformation and disruption of the NS plays an important
role, i.e., BH-NS binaries with moderately large BH spins
of a * 0:75. The implementation of detailed microphysics,
such as a finite-temperature effect and a neutrino transport
process, is essential even qualitatively to explore the
evolution of the remnant BH-accretion disk system and
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FIG. 25 (color online). Comparisons of evolution of the orbital angular velocity and gravitational waveforms for models HB-
Q4M135a75 (top) and 2H-Q5M135a75 (bottom) with appropriate time shifts.
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to discuss the jet launch such that short-hard GRBs require.
Recently, Sekiguchi developed a code to perform fully
general relativistic simulation with the finite-temperature
EOS and an approximate neutrino emission (the so-called
leakage scheme) and succeed in simulating the stellar core
collapse [97,98] and the merger of binary NSs [99]. We
plan to work on BH-NS binary mergers along these lines.
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APPENDIX: CONVERGENCE OF
GRAVITATIONALWAVES AND
THE REMNANT DISK MASS

This Appendix demonstrates that the convergence is
approximately achieved for gravitational waves and
masses of the remnant disks shown in Sec. IV. Figure 25
shows the evolution of the orbital angular velocity deter-
mined by Eq. (32) and gravitational waveforms obtained
with different grid resolutions for models HB-Q4M135a75
and 2H-Q5M135a75. We perform an appropriate time shift
in order to align the curves in the inspiral phase and
perform the rotation of þ and � polarization modes of
gravitational waveforms for N ¼ 42 and 36. We note that
the time to the merger, tmerger, is systematically longer

for finer grid resolutions because numerical dissipation
of the angular momentum is smaller [28,30]. In both

cases, the evolution of the orbital angular velocity, �ðtÞ,
approximately agrees up to the merger, except for initial
bursts associated with the junk radiation. The gravitational
waveforms agree very well in the final �4 orbits of the
inspiral phase (t * 15 ms), the merger phase, and the
ringdown phase if the QNM is excited. By contrast,
gravitational waveforms in the initial �2 orbits depend
strongly on the grid resolutions because the early inspiral
phase is strongly affected by the dissipation of the junk
radiation. We conclude that the convergence is approxi-
mately achieved for gravitational waves in the late inspiral,
merger, and ringdown phases.
Figure 26 shows the evolution of the rest mass located

outside the AH, Mr>rAH , with different grid resolutions

for models HB-Q4M135a75 and 2H-Q5M135a75. This
figure shows that the convergence is also approximately
achieved for the mass of the remnant disk. Quantita-
tively, differences in Mr>rAH at 
 10 ms after the merger

are 
 2:9% and 
 2:6% for models HB-Q4M135a75
and 2H-Q5M135a75, respectively. If we assume the
first-order convergence for Mr>rAH , the errors in the

values obtained for N ¼ 50 runs are 
 7:5% and 
 6:8%
for models HB-Q4M135a75 and 2H-Q5M135a75,
respectively.
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