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The late inspiral, merger, and ringdown of a black hole-neutron star (BHNS) system can provide

information about the neutron-star equation of state (EOS). Candidate EOSs can be approximated by a

parametrized piecewise-polytropic EOS above nuclear density, matched to a fixed low-density EOS; and

we report results from a large set of BHNS inspiral simulations that systematically vary two parameters.

To within the accuracy of the simulations, we find that, apart from the neutron-star mass, a single physical

parameter �, describing its deformability, can be extracted from the late inspiral, merger, and ringdown

waveform. This parameter is related to the radius, mass, and ‘ ¼ 2 Love number, k2, of the neutron star by

� ¼ 2k2R
5=3M5

NS, and it is the same parameter that determines the departure from point-particle

dynamics during the early inspiral. Observations of gravitational waves from BHNS inspiral thus restrict

the EOS to a surface of constant � in the parameter space, thickened by the measurement error. Using

various configurations of a single Advanced LIGO detector, we find that �1=5 or equivalently R can be

extracted to 10–50% accuracy from single events for mass ratios ofQ ¼ 2 and 3 at a distance of 100 Mpc,

while with the proposed Einstein Telescope, EOS parameters can be extracted to accuracy an order of

magnitude better.
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I. INTRODUCTION

Construction of the second-generation Advanced LIGO
(aLIGO) detectors is underway and will soon begin for
Advanced VIRGO and LCGT, making it likely that gravi-
tational waveforms from compact binaries will be ob-
served in this decade. Plans are also in development for
the third-generation Einstein Telescope (ET) detector with
an order-of-magnitude increase in sensitivity over aLIGO.
Population synthesis models predict that with a single
aLIGO detector binary- (BNS) systems will be observed
with a signal-to-noise ratio of 8, at an event rate between
0.4 and 400 times per year and with a most likely value of
40 per year [1]. Black hole-neutron star (BHNS) systems
are also expected, but with a more uncertain rate of be-
tween 0.2 and 300 events per year at the same signal-
to-noise ratio and with a most likely value of 10 events
per year for a canonical 1:4M�–10M� system [1]. The
expected mass ratios Q ¼ MBH=MNS of BHNS systems
are also highly uncertain and may range from just under 3
to more than 20 [2,3].

A major goal of the gravitational-wave (GW) program is
to extract from observed waveforms the physical character-
istics of their sources and, in particular, to use the wave-
forms of inspraling and merging BNS and BHNS systems
to constrain the uncertain equation of state (EOS) of
neutron-star matter. During inspiral the tidal interaction
between the two stars leads to a small drift in the phase
of the gravitational waveform relative to a point-particle
system. Specifically the tidal field Eij of one star will

induce a quadrupole moment Qij in the other star given

by Qij ¼ ��Eij where �1 is an EOS-dependent quantity

that describes how easily the star is distorted. A method for
determining � for relativistic stars was found by Hinderer
[4]; its effect on the waveform was calculated to
Newtonian order (with the relativistic value of �) by
Flanagan and Hinderer [5] and to first post-Newtonian
(PN) order by Vines, Flanagan, and Hinderer [6,7]. This
tidal description has also been extended to higher-order
multipoles [8,9].
The detectability of EOS effects have been examined for

both BNS and BHNS systems using this analytical descrip-
tion of the inspiral. For BNS systems, the detectability of �
with aLIGO was examined for polytropic EOS [5] as well
as a range of theoretical EOS commonly found in the NS
literature for aLIGO and ET [10]. These studies considered
only the waveform up to frequencies of 400–500 Hz
(� 30–20 GW cycles before merger for 1:4M� equal-
mass NSs). For this early part of inspiral, they find that
the tidal deformability is detectable by aLIGO only for an
unusually stiff EOS and for low neutron-star masses
(< 1:2M�). ET on the other hand would have an order-
of-magnitude improvement in estimating �, allowing ET to
distinguish between different classes of EOS. For BHNS
systems, using the recently calculated 1PN corrections,
Pannarale et al. [11] examined detectability for a range
of mass ratios, finding that aLIGO will be able to

1The tidal deformability for the ‘th multipole is often defined
in terms of the neutron star (NS) radius R and its dimensionless
‘th Love number k‘ by �‘ ¼ 2

ð2‘�1Þ!!G k‘R
2‘þ1. Here we will

discuss only the ‘ ¼ 2 term so we write � :¼ �2.
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distinguish between BHNS and binary-black hole (BBH)
systems only for low mass ratios and stiff EOS when
considering the full inspiral waveform up to the point of
tidal disruption.

In sharp contrast to these analytic post-Newtonian re-
sults, analysis of just the last few orbits of BNS inspiral
from numerical simulations has shown that the NS radius
may be extracted to a higher accuracy, of Oð10%Þ with
aLIGO [12], and this is confirmed by a study based on a set
of longer and more accurate waveforms from two different
codes [13]. In addition, comparisons between the analyti-
cal tidal description and BNS quasiequilibrium sequences
[14] as well as long BNS numerical waveforms [15,16]
suggest that corrections beyond the 1PN quadrupole de-
scription are significant and substantially increase the tidal
effect during the late inspiral.

Numerical BHNS simulations have also been done to
examine the dependence of the waveform on mass ratio,
black hole (BH) spin, NS mass, and the neutron-star EOS
[17–28]. However, an analysis of the detectability of EOS
information with GW detectors using these simulations has
not yet been done, and the present paper presents the first
results of this kind. EOS information from tidal interac-
tions is present in the inspiral waveform. For BHNS
systems, however, the stronger signal is likely to arise
from a sharp drop in the GW amplitude arising from tidal
disruption prior to merger or, when there is negligible
disruption, from the cutoff frequency at merger [29].

We find from simulations of the last few orbits, merger,
and ringdown of BHNS systems with varying EOS that, to
within numerical accuracy, the EOS parameter extracted
from the waveform is the same tidal parameter � that
determines the departure from point-particle behavior dur-
ing inspiral; here � is a dimensionless version of the tidal
parameter

� :¼ G�

�
c2

GMNS

�
5 ¼ 2

3
k2

�
c2R

GMNS

�
5
; (1)

where k2 is the quadrupole Love number. This parameter is
similar to the dimensionless parameter �T

2 introduced in
Eq. (26) of Ref. [14]. However, we have chosen to make �
independent of the mass ratio so that it depends on only the
neutron-star mass and EOS.

The constraint on the EOS imposed by gravitational-
wave observations of BHNS inspiral and merger is essen-
tially a restriction of the space of EOS p ¼ pð�Þ to a
hypersurface of constant �, thickened by the uncertainty
in the measurement (that is, a restriction to the set of EOS
for which a spherical neutron star of the mass observed in
the inspiral has tidal parameter �). We use a parametrized
EOS based on piecewise polytropes [30], to delineate this
region in the EOS space, but the result can be used to
constrain any choice of parameters for the EOS space.

In Sec. II we discuss the parametrized EOS used in the
simulations. We give in Sec. III an overview of the

numerical methods used and, in Sec. IV, a description of
the waveforms from the simulations. We then discuss the
analytical waveforms used for the early inspiral and issues
related to joining the analytical and numerical waveforms
to create hybrids in Sec. V, and we then estimate the
uncertainty in extracting EOS parameters in Sec. VI.
Finally, we discuss future work in Sec. VII. In the appen-
dices we discuss methods for numerically evaluating the
Fisher matrix, and we provide instructions for generating
effective one body (EOB) waveforms. In a second paper
we will consider the detectability of EOS parameters for
BHNS systems with spinning BHs.
Conventions: Unless otherwise stated we setG ¼ c ¼ 1.

Base 10 and base e logarithms are denoted log and ln
respectively. We define the Fourier transform ~xðfÞ of a
function xðtÞ by

~xðfÞ ¼
Z 1

�1
xðtÞe�2�iftdt; (2)

and the inverse Fourier transform by

xðtÞ ¼
Z 1

�1
~xðfÞe2�iftdf: (3)

II. PARAMETRIZED EOS

To understand the dependence of the BHNS waveform
on the EOS we systematically vary the free parameters of a
parametrized EOS and then simulate a BHNS inspiral for
each set of parameters. We choose the piecewise-
polytropic EOS introduced in Ref. [30]. Within each den-
sity interval �i�1 < �< �i, the pressure p is given in
terms of the rest mass density � by

pð�Þ ¼ Ki�
�i ; (4)

where the adiabatic index �i is constant in each interval,
and the pressure constant Ki is chosen so that the EOS is
continuous at the boundaries �i between adjacent segments
of the EOS. The energy density � is found using the first
law of thermodynamics

d
�

�
¼ �pd

1

�
: (5)

Ref. [30] uses a fixed low-density EOS for the NS crust.
The parametrized high-density EOS is then joined onto the
low-density EOS at a density �0 that depends on the values
of the high-density EOS parameters. The high-density EOS
consists of a three-piece polytrope with fixed dividing
densities �1 ¼ 1014:7 g=cm3 and �2 ¼ 1015 g=cm3 be-
tween the three polytropes. The resulting EOS has four
free parameters. The first parameter, the pressure p1 at the
first dividing density �1, is closely related to the radius of a
1:4M� NS [31]. The other three parameters are the adia-
batic indices f�1;�2;�3g for the three density intervals.
This parametrization accurately fits a wide range of
theoretical EOS and reproduces the corresponding NS
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properties such as radius, moment of inertia, and maximum
mass to a few percent [30].

Following previous work on BNS [12] and BHNS simu-
lations [25,28] we use a simplified two-parameter version
of the piecewise-polytrope parametrization and uniformly
vary each of these parameters. For our two parameters we
use the pressure p1 as well as a single fixed adiabatic index
� ¼ �1 ¼ �2 ¼ �3 for the core. The crust EOS is given by
a single polytrope with the constants K0 ¼ 3:5966� 1013

in cgs units and �0 ¼ 1:3569 so that the pressure at
1013 g=cm3 is 1:5689� 1031 dyne=cm2. (For most values
of p1, �1, and �2, the central density of a 1:4M� star is
below or just above �2, so the parameter �3 is irrelevant
anyway for BNS before merger and BHNS for all times.)

We list in Table I the 21 EOS used in the simulations
along with some of the NS properties. In addition, we plot
the EOS as points in parameter space in Fig. 1 along with
contours of constant radius, tidal deformability �, and
maximum NS mass. The 1:93M� maximum mass contour
corresponds to the recently observed pulsar with a mass of
1:97� 0:04M� measured using the Shapiro delay [32]. In
this two-parameter cross section of the full four-parameter
EOS space, parameters below this curve are ruled out
because the corresponding EOS cannot support the
observed NS with M> 1:93M�.

TABLE I. Neutron-star properties for the 21 EOS used in the simulations. The original EOS
names [12,25,28] are also listed. p1 is given in units of dyne=cm

2, maximum mass is inM�, and
neutron-star radius R is in km. R, k2, and � are given for the two masses used: f1:20; 1:35gM�.
The values listed for logp1 are rounded to three digits. The exact values used in the simulations
can be found by adding logðc=cm s�1Þ2 � 20:95 � 0:00364 (e.g. 34.3 becomes 34.30364).

EOS logp1 � Mmax R1:20 k2;1:20 �1:20 R1:35 k2;1:35 �1:35

p:3�2:4 Bss 34.3 2.4 1.566 10.66 0.0765 401 10.27 0.0585 142

p:3�2:7 Bs 34.3 2.7 1.799 10.88 0.0910 528 10.74 0.0751 228

p:3�3:0 B 34.3 3.0 2.002 10.98 0.1010 614 10.96 0.0861 288

p:3�3:3 34.3 3.3 2.181 11.04 0.1083 677 11.09 0.0941 334

p:4�2:4 HBss 34.4 2.4 1.701 11.74 0.0886 755 11.45 0.0723 301

p:4�2:7 HBs 34.4 2.7 1.925 11.67 0.1004 828 11.57 0.0855 375

p:4�3:0 HB 34.4 3.0 2.122 11.60 0.1088 872 11.61 0.0946 422

p:4�3:3 34.4 3.3 2.294 11.55 0.1151 903 11.62 0.1013 454

p:5�2:4 34.5 2.4 1.848 12.88 0.1000 1353 12.64 0.0850 582

p:5�2:7 34.5 2.7 2.061 12.49 0.1096 1271 12.42 0.0954 598

p:5�3:0 H 34.5 3.0 2.249 12.25 0.1165 1225 12.27 0.1029 607

p:5�3:3 34.5 3.3 2.413 12.08 0.1217 1196 12.17 0.1085 613

p:6�2:4 34.6 2.4 2.007 14.08 0.1108 2340 13.89 0.0970 1061

p:6�2:7 34.6 2.7 2.207 13.35 0.1184 1920 13.32 0.1051 932

p:6�3:0 34.6 3.0 2.383 12.92 0.1240 1704 12.97 0.1110 862

p:6�3:3 34.6 3.3 2.537 12.63 0.1282 1575 12.74 0.1155 819

p:7�2:4 34.7 2.4 2.180 15.35 0.1210 3941 15.20 0.1083 1860

p:7�2:7 34.7 2.7 2.362 14.26 0.1269 2859 14.25 0.1144 1423

p:7�3:0 1.5H 34.7 3.0 2.525 13.62 0.1313 2351 13.69 0.1189 1211

p:7�3:3 34.7 3.3 2.669 13.20 0.1346 2062 13.32 0.1223 1087

p:9�3:0 2H 34.9 3.0 2.834 15.12 0.1453 4382 15.22 0.1342 2324

FIG. 1 (color online). The 21 EOS used in the simulations are
represented by blue points in the parameter space. For a NS of
mass 1:35M�, contours of constant radius are solid blue and
contours of constant tidal deformability � are dashed red. Also
shown are dotted contours of maximum NS mass. The shaded
region does not allow the 1:35M� NS used in our simulations,
while the region below the 1:93M� contour is inconsistent with
high-mass NS observations.
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III. NUMERICAL METHODS

We employ BHNS binaries in quasiequilibruim states
for the initial conditions of our numerical simulations. We
compute a quasiequilibrium state of the BHNS binary as a
solution of the initial value problem of general relativity,
employing the piecewise-polytropic EOS described in
the previous section. The details of the formulation
and numerical methods are described in Refs. [25,33].
Computations of the quasiequilibrium states are performed
using the spectral-method library LORENE [34].

Numerical simulations are performed using an adaptive-
mesh refinement code SACRA [35]. SACRA solves the
Einstein evolution equations in the BSSN formalism with
the moving puncture gauge, and solves the hydrodynamic
equations with a high-resolution central scheme. The for-
mulation, the gauge conditions, and the numerical scheme
are the same as those described in Ref. [25]. For the EOS,
we decompose the pressure and energy density into cold
and thermal parts as

p ¼ pcold þ pth; � ¼ �cold þ �th; (6)

as was done in, for example, [36] and references therein.
We calculate the cold parts of both variables using the
piecewise-polytropic EOS from �, and then the thermal
part of the energy density is defined from � as �th ¼
�� �cold. Because �th vanishes in the absence of shock
heating, �th is regarded as the finite temperature part. In our
simulations, we adopt a �-law ideal gas EOS

pth ¼ ð�th � 1Þ�th; (7)

to determine the thermal part of the pressure, and choose
�th equal to the adiabatic index in the crust region, �0, for
simplicity.

In our numerical simulations, gravitational waves are
extracted by calculating the outgoing part of the Weyl
scalar �4 at finite coordinate radii �400M�, and by in-
tegrating �4 twice in time as

hþðtÞ � ih�ðtÞ ¼
Z t

�1
dt0

Z t0

�1
dt00�4ðt00Þ; (8)

where we will focus on the ð‘;mÞ ¼ ð2; 2Þ multipole eval-
uated on the orbital axis. Other multipoles measured along
the axis are 1 or 2 orders of magnitude smaller. In this
work, we perform this time integration with a ‘‘fixed
frequency integration’’ method to eliminate unphysical
drift components in the waveform [37]. In this method,
we first perform a Fourier transformation of �4 as

~� 4ðfÞ ¼
Z 1

�1
dt�4ðtÞe�2�ift: (9)

Using this, Eq. (8) is rewritten as

hþðtÞ � ih�ðtÞ ¼ � 1

ð2�Þ2
Z 1

�1
df

~�4ðfÞ
f2

e2�ift: (10)

We then replace 1=f2 of the integrand with 1=f20 for jfj<
f0, where f0 is a free parameter in this method. By appro-
priately choosing f0, this procedure suppresses unphysical,
low-frequency components of gravitational waves. As pro-
posed in Ref. [37], we choose f0 to be �0:8m�0=2�,
where �0 is the initial orbital angular velocity and
mð¼ 2Þ is the azimuthal quantum number.

IV. DESCRIPTION OF WAVEFORMS

Using the 21 EOS described in Table I, we have per-
formed 30 BHNS inspiral and merger simulations with
different mass ratios Q ¼ MBH=MNS and neutron-star
masses MNS. A complete list of these simulations is given
in Table II. For the mass ratio Q ¼ 2 and NS mass MNS ¼
1:35M�, we performed a simulation for each of the 21
EOS. In addition, we performed simulations of a smaller
NS mass (Q ¼ 2, MNS ¼ 1:20M�) and a larger mass ratio
(Q ¼ 3, MNS ¼ 1:35M�), in which we only varied the
pressure p1 over the range 34:3 � logðp1=ðdyne cm�2ÞÞ �
34:9 while holding the core adiabatic index fixed at
� ¼ 3:0.
Two of the gravitational waveforms are shown in Fig. 2

below. The waveforms are compared with EOB BBH
waveforms of the same mass ratio and NS mass which
are also shown. Specifically we use the EOB formalism
discussed in Appendix B. The most significant differences
begin just before the merger of the black hole and neutron
star. For neutron stars with a small radius, the black hole
does not significantly distort the neutron star which crosses
the event horizon intact. As a result, the merger and ring-
down of these waveforms are very similar to the BBH
waveform. However, a larger NS may be completely
tidally disrupted just before merger resulting in a sup-
pressed merger and ringdown waveform. Disruption

TABLE II. Data for the 30 BHNS simulations. NS mass is in
units of M�, and �0M is the angular velocity used in the initial
data where M ¼ MBH þMNS.

Q MNS EOS �0M Q MNS EOS �0M

2 1.35 p:3�2:4 0.028 2 1.35 p:6�3:3 0.025

2 1.35 p:3�2:7 0.028 2 1.35 p:7�2:4 0.025

2 1.35 p:3�3:0 0.028 2 1.35 p:7�2:7 0.025

2 1.35 p:3�3:3 0.025 2 1.35 p:7�3:0 0.028

2 1.35 p:4�2:4 0.028 2 1.35 p:7�3:3 0.025

2 1.35 p:4�2:7 0.028 2 1.35 p:9�3:0 0.025

2 1.35 p:4�3:0 0.028 2 1.20 p:3�3:0 0.028

2 1.35 p:4�3:3 0.025 2 1.20 p:4�3:0 0.028

2 1.35 p:5�2:4 0.025 2 1.20 p:5�3:0 0.028

2 1.35 p:5�2:7 0.025 2 1.20 p:9�3:0 0.022

2 1.35 p:5�3:0 0.028 3 1.35 p:3�3:0 0.030

2 1.35 p:5�3:3 0.025 3 1.35 p:4�3:0 0.030

2 1.35 p:6�2:4 0.025 3 1.35 p:5�3:0 0.030

2 1.35 p:6�2:7 0.025 3 1.35 p:7�3:0 0.030

2 1.35 p:6�3:0 0.025 3 1.35 p:9�3:0 0.028
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suppresses the ringdown for two reasons related to the
spreading of the matter: The ringdown is primarily a
superposition of nonaxisymmetric quasinormal modes,
dominated by the l ¼ m ¼ 2 mode (axisymmetric modes
are more than an order of magnitude smaller [38]), while
the disrupted matter is roughly axisymmetric as it accretes
onto the black hole; and the accretion time scale of the
spread-out matter is long compared to the periods of the
dominant modes decreasing the amplitude further.

The dependence of the waveform on the EOS can be
seen more clearly by decomposing each waveform into

amplitude AðtÞ and phase �ðtÞ with the relation hþðtÞ �
ih�ðtÞ ¼ AðtÞe�i�ðtÞ. In Fig. 3, the amplitude as a function
of time for each BHNS waveform is compared to a BBH
waveform of the same value of Q andMNS. At early times,
the waveform is almost identical to the BBH waveform.
However, a few ms before the maximum amplitude is
reached, the amplitude begins to depart from the BBH
case. For each Q and MNS, this departure from the BBH
waveform is approximately monotonic in � and R.
Neutron stars with large values of � merge earlier, and
as a result the waveforms reach a smaller maximum am-
plitude. The phase of each waveform is compared to that of
the EOB BBH waveform�EOB in Fig. 4. At early times the
phase oscillates about the EOB phase due to initial eccen-
tricity in the numerical waveform discussed in Sec. VB. At
later times, closer to the merger, tidal interactions lead to a

higher frequency orbit; this, together with correspondingly
stronger gravitational-wave emission, means the BHNS
phase accumulates faster than the EOB phase. This con-
tinues for 1–2 ms after the waveform reaches its maximum
amplitude (indicated by the dot on each curve). Eventually
the amplitude drops significantly, and numerical errors
dominate the phase. We truncate the curves when the
amplitude drops below 0.01.
The monotonic dependence of the waveform on � can

again be seen in its Fourier transform ~h, shown in Figs. 5
and 6, which is decomposed into amplitude and phase by
~hðfÞ ¼ AðfÞe�i�ðfÞ. The predicted EOS-dependent fre-
quency cutoff in the waveform [29] is clearly shown in
the amplitude.2 Neutron stars that are more easily disrupted
(larger �) result in an earlier and lower frequency drop in
their waveform amplitude than NS with smaller �. The
phase �ðfÞ relative to the corresponding BBH waveform
has a much smoother behavior than the phase of the time
domain waveform. This feature will be useful in evaluating

FIG. 2 (color online). hþ and jhj ¼ jhþ � ih�j for BHNS waveforms for (Q ¼ 2, MNS ¼ 1:35M�) with two different EOS are
represented by solid red and blue curves, respectively. The softest EOS p:3�2:4 is on top and the stiffest EOS p:9�3:0 is on bottom. An
EOB BBH waveform (dashed) with the same values of Q and MNS is matched to each numerical waveform within the matching
window TI < t < TF bounded by solid vertical lines. A hybrid EOB BBH-numerical BHNS waveform is generated by splicing the
waveforms together within a splicing window SI < t < SF bounded by dotted vertical lines. The matching window is 12 ms long and
ends at the numerical merger time tNRM (time when the numerical waveform reaches its maximum amplitude), while the splicing
window is 4 ms long and begins at the start of the matching window (SI ¼ TI).

2Tidal disruption occurs after the onset of mass shedding of the
neutron star. The frequency at the onset of mass shedding is
usually much lower than that of tidal disruption for BHNS
binaries [20]. In Ref. [29], mass-shedding frequency was iden-
tified as the cutoff frequency but this underestimates the true
cutoff frequency. See also Refs. [39,40] for a discussion of
dynamical mass transfer.
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the Fisher matrix in Sec. VI. The noise that is seen at
frequencies above �3000 Hz is the result of numerical
errors in the simulation and has no effect on the error
estimates below.

V. HYBRID WAVEFORM CONSTRUCTION

Since our numerical simulations typically begin �5
orbits before merger, it is necessary to join the numerical
waveforms to analytic waveforms representing the earlier

inspiral. There is a substantial literature comparing ana-
lytic and phenomenological waveforms with numerical
waveforms extracted from simulations of BBH coales-
cence. For example, it has been shown that the 3.5
post-Newtonian (TaylorT4) waveform agrees well with
equal-mass BBH waveforms up to the last orbit before
merger [41]. For unequal mass systems, the EOB formal-
ism (see Ref. [42] for a review) has proven to be a powerful
tool to generate analytic waveforms that agree with

FIG. 3 (color online). Amplitude of the complex waveform
h ¼ hþ � ih�. Solid black curves are EOB waveforms with the
same Q and MNS. Matching and splicing conventions are those
of Fig. 2. Middle panel: color indicates the value of logðp1Þ while
the line style indicates the value of �. With the exception of the
four closely spaced waveforms where logðp1=ðdyne cm�2ÞÞ ¼
35:5 and the difference in � and R between waveforms is small,
the BHNS waveforms monotonically approach the EOB wave-
form as � and R decrease.

FIG. 4 (color online). Cumulative phase difference ���EOB

between BHNS waveform and EOB BBH waveform with the
same Q and MNS. The phase is defined by breaking up each
complex waveform into amplitude and cumulative phase
hþðtÞ � ih�ðtÞ ¼ AðtÞe�i�ðtÞ. The black point on each curve
indicates the BHNS merger time tNRM defined as the time of
maximum amplitude AðtNRM Þ. The curve is truncated when the
amplitude AD=M drops below 0.01. Matching and splicing
conventions are those of Fig. 2. Ordering of waveforms are those
of Fig. 3.
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numerical simulations. Free parameters in the EOB for-
malism have been fit to numerical BBH waveforms to
provide analytic (phenomenological) waveforms that ex-
tend to the late, nonadiabatic inspiral as well as the ring-
down. These EOB waveforms appear to be in good
agreement with numerical BBH waveforms for mass ratios

at least up to Q ¼ 4 [43]. Although we have not explored
them in this context, other approaches have also been taken
for constructing phenomenological inspiral-merger-
ringdown waveforms [44–48].
For equal-mass BNS, Read et al. [12] compared the

numerical BNS waveform during inspiral to a point-
particle post-Newtonian waveform. Specifically, they
used the 3.5 post-Newtonian (TaylorT4) waveforms
matched on to the numerical waveforms to study the
measurability of EOS parameters. They found that differ-
ences between the analytic and numerical waveforms be-
come apparent 4–8 cycles before the post-Newtonian
coalescence time.
The leading and post-1-Newtonian quadrupole tidal

effects have recently been incorporated into the post-
Newtonian formalism and used to compute corrections to
the point-particle gravitational waveforms [5–7]. These
post-Newtonian contributions along with a fit to the 2PN
tidal contribution have also been incorporated into the EOB
formalism and compared to long simulations (� 20 GW
cycles), where they find agreement with the simulations to
�0:15 rad over the full simulation up to merger [16].
For the BHNS systems discussed here, we have matched

the numerical waveforms to EOB waveforms that include
inspiral, merger, and ringdown phases instead of post-
Newtonian waveforms which are often not reliable during
the last few cycles for higher mass ratios. This choice also
allows us to use longer matching windows that average
over numerical noise and the effects of eccentricity as
shown in Sec. VB. We have chosen to use the EOB
formalism to generate inspiral-merger-ringdown wave-
forms, although we note that other phenomenological
waveforms would probably work. For simplicity, and be-
cause it appears that an accurate description of the late
inspiral dynamics just before merger requires 2PN tidal
corrections [14–16] which are not yet known, we will use
the EOB waveforms without tidal corrections. Our results
will therefore be lower limits on the measurability of EOS
parameters since the EOS dependence is coming solely
from the numerical waveforms.

A. Matching procedure

We use a method similar to that described by Read et al.
[12] to join each of the numerical BHNS waveforms to a
reference EOB waveform, generating a hybrid EOB-
numerical waveform. Denote a complex numerical wave-
form by hNRðtÞ ¼ hNRþ ðtÞ � ihNR� ðtÞ and an EOB waveform
with the same Q and MNS by hEOBðtÞ ¼ hEOBþ ðtÞ �
ihEOB� ðtÞ. A constant time shift � and phase shift � can
be applied to the EOB waveform to match it to a section of
the numerical waveform by rewriting it as hEOBðt�
�Þe�i�. We hold the numerical waveform fixed because
we must specify a matching window TI < t < TF, and as
discussed below, there is only a small region of the
numerical waveforms over which a valid match can be

FIG. 5 (color online). Weighted Fourier transform 2f1=2j~hðfÞj
of numerical waveforms where ~h ¼ 1

2 ð~hþ þ ~h�Þ. Solid black

curves are EOB waveforms with the same Q and MNS. The left

axis is scaled to a distance of 100 Mpc, and the noise S1=2n ðfÞ for
broadband aLIGO and ET-D are shown for comparison. In each
plot the numerical waveform monotonically approaches the EOB
waveform as the tidal parameter � decreases. Matching and
splicing conventions are those of Fig. 2. Ordering of waveforms
are those of Fig. 3.
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performed. Once the values of � and� are determined, we
will then choose to instead hold the EOB waveform fixed
and shift the numerical waveform in the opposite direction
by rewriting it as hshiftNR ðtÞ ¼ hNRðtþ �Þeþi�. This is done
so that all of the numerical waveforms with the sameQ and
MNS are aligned relative to a single fixed reference EOB
waveform.

Over a matching window TI < t < TF (bounded by solid
vertical lines in Fig. 2), the normalized match between the
waveforms is defined as

mð�;�Þ ¼ Re½zð�Þei��
�NR�EOBð�Þ ; (11)

where

zð�Þ ¼
Z TF

TI

hNRðtÞh	EOBðt� �Þdt (12)

and the normalizations for each waveform in the denome-
nator are defined as

�2
NR ¼

Z TF

TI

jhNRðtÞj2dt (13)

and

�2
EOBð�Þ ¼

Z TF

TI

jhEOBðt� �Þj2dt: (14)

The time shift � and phase � are chosen to maximize the
matchmð�;�Þ for a fixed matching window. Explicitly, the
phase is determined analytically to be � ¼ � arg½zð�Þ�;
plugging this result back into Eq. (11), the time shift is
given by maximizing jzð�Þj=½�NR�EOBð�Þ� over �. As
stated above, once � and � are found we shift the numeri-
cal waveform in the opposite direction to generate
hshiftNR ðtÞ ¼ hNRðtþ �Þeþi�.

A hybrid waveform is generated by smoothly turning off
the EOB waveform and smoothly turning on the shifted
numerical waveform over a splicing window SI < t < SF
(bounded by dotted vertical lines in Fig. 2) which can be
chosen independently of the matching window. As in
Ref. [12], we employ Hann windows

woffðtÞ ¼ 1

2

�
1þ cos

�
�½t� SI�
SF � SI

��
(15)

wonðtÞ ¼ 1

2

�
1� cos

�
�½t� SI�
SF � SI

��
: (16)

The hybrid waveform is then written

hhybridðtÞ ¼

8>>><
>>>:
hEOBðtÞ t<SI

woffðtÞhEOBðtÞþwonðtÞhshiftNR ðtÞ SI < t<SF

hshiftNR ðtÞ t>SF

:

(17)

As shown in Fig. 2, we choose the start of the splicing
interval to be the same as the start of the matching window
SI ¼ TI and choose the end of the splicing window to be
SF ¼ TI þ 4 ms. It is also necessary to use these windows
to smoothly turn on the hybrid waveform at low frequency
when performing a discrete Fourier transform to avoid the
Gibbs phenomenon. Unlike the case for BNS waveforms, it
is not necessary to window the end of the hybrid waveform
as the amplitude rapidly decays to zero anyway during the
ringdown.

FIG. 6 (color online). Cumulative phase difference ���EOB

of the Fourier transform between BHNS waveform and EOB
BBH waveform of the same mass and mass ratio. The phase is
defined by breaking up the Fourier transform ~h ¼ 1

2 ð~hþ þ ~h�Þ of
each waveform into amplitude and cumulative phase ~hðfÞ ¼
AðfÞe�i�ðfÞ. Matching and splicing conventions are those of
Fig. 2. Ordering of waveforms are those of Fig. 3.
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For concreteness we define t ¼ 0 as the EOB BBH
merger time tEOBM when the EOB waveform reaches its
maximum amplitude. After matching to the EOB wave-
form, the time when the numerical BHNS waveform
reaches its maximum amplitude is tNRM .

B. Dependence on matching window

Because the numerical BHNS waveforms are close but
not identical to the EOB BBH waveform during the in-
spiral and because there is some noise in the BHNS wave-
forms, the time shift that maximizes the match depends on
the choice of matching window. The matching window
should exclude the first couple of cycles of the numerical
waveform during which time the simulation is settling
down from the initial conditions. It should also exclude
the merger/ringdown which are strongly dependent on the
presence of matter. The window must also be wide enough
to average over numerical noise and, as we shall see below,
the effects of eccentricity in the simulations.

The numerical merger time tNRM relative to the EOB BBH
merger time tEOBM as a function of the end of the matching
window TF � tNRM provides a useful diagnostic of the
matching procedure. Results for matching two Q ¼ 2,
MNS ¼ 1:35M� waveforms with different equations of
state to an EOB waveform are shown in Fig. 7. The
horizontal axis is the end time TF of the matching window
relative to the numerical merger time tNRM . For negative

values, the matching window contains the BHNS inspiral
only. For positive values, the matching window also con-
tains part of the BHNS ringdown. The vertical axis is the
location of the shifted numerical merger time tNRM after
finding the best match. Four different window durations
�t ¼ TF � TI are shown. The drift in the best fit merger
time tNRM most likely arises from the neglect of tidal effects
in the EOBwaveform which lead to an accumulating phase
shift in the waveform. This is consistent with the fact that
the amount of drift increases with the tidal deformability,
although some of the drift may also arise from numerical
angular momentum loss from finite resolution of the
simulations. Further work is in progress to understand
this issue [13]. We also note that the amount of offset
from the tNRM ¼ 0 line depends monotonically on the tidal
deformability, and arises from the fact that stars with a
large value of � will be tidally disrupted a few ms before
stars with small �.
When the matching window duration is approximately

one orbital period or shorter, the time shift oscillates as a
function of TF � tNRM . We attribute this effect to the eccen-
tricity in the numerical waveform that results from initial
data with no radial velocity. For larger matching-window
durations, the effect of eccentricity is averaged out.
To demonstrate concretely that the decaying oscillations

for�t ¼ 4 ms are the result of eccentricity, we matched an
EOB BBH waveform with eccentricity to the equivalent
zero-eccentricity EOB BBH waveform. EOB waveforms
can be generated with small eccentricity by starting the
EOB equations of motion with quasicircular (zero radial
velocity) initial conditions late in the inspiral. The result is
shown in Fig. 8 for an EOB waveform with the same
quasicircular initial conditions as the simulation for the
EOS p:3�2:4 shown in Fig. 7. The oscillations take exactly
the form of those shown in Fig. 7, except without the drift
and offset.
We estimate that the initial eccentricities in the simula-

tions used in this paper are e0 � 0:03. Decreasing the
initial eccentricity by about an order of magnitude, possi-
bly using an iterative method that adjusts the initial radial

FIG. 7 (color online). Dependence of time shift between nu-
merical and EOB waveform on the end time TF � tNRM and width
�t of the matching window. Q ¼ 2 andMNS ¼ 1:35M� for each
waveform. The EOS used are p:3�2:4 (top panel), and p:9�3:0
(bottom panel). The EOB waveform has zero eccentricity.

FIG. 8 (color online). Same as Fig. 7, but matching an eccen-
tric EOB BBH waveform with the quasicircular initial condition
M�0 ¼ 0:028 to a zero-eccentricity EOB BBH waveform.
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velocity [49], will remove this issue and allow one to
determine the phase shift due to tidal interactions during
the inspiral part of the simulation.

VI. PARAMETER ESTIMATION

The output of a gravitational-wave detector sðtÞ ¼
nðtÞ þ hðtÞ is the sum of detector noise nðtÞ and a possible
gravitational-wave signal hðtÞ. Stationary, Gaussian noise
is characterized by its power spectral density (PSD) SnðjfjÞ
defined by

h~nðfÞ~n	ðf0Þi ¼ 1

2
�ðf� f0ÞSnðjfjÞ: (18)

The gravitational-wave signal is given in terms of the two
polarizations of the gravitational wave by

hðtÞ ¼ FþhþðtÞ þ F�h�ðtÞ; (19)

where Fþ;� are the detector response functions and depend

on the location of the binary and the polarization angle of
the waves. We assume the binary is optimally located at the
zenith of the detector and optimally oriented with its
orbital plane parallel to that of the detector. This condition
is equivalent to averaging hþ and h� (Fþ ¼ F� ¼ 1=2).

It is well-known [50] that the optimal statistic for detec-
tion of a known signal hðtÞ in additive Gaussian noise is

� ¼ ðhjsÞffiffiffiffiffiffiffiffiffiffiffiðhjhÞp ; (20)

where the inner product between two signals h1 and h2 is
given by

ðh1jh2Þ ¼ 4Re
Z 1

0

~h1ðfÞ~h	2ðfÞ
SnðfÞ df: (21)

In searches for gravitational-wave signals from compact
binary mergers, a parametrized signal hðt; 	AÞ is known in
advance of detection, and the parameters 	A must be
estimated from the measured detector output sðtÞ. The
parameters 	A of an inspiral are estimated by maximizing
the inner product of the signal sðtÞ over the template wave-
forms hðt; 	AÞ. In the high signal-to-noise limit, the statis-

tical uncertainty in the estimated parameters 	̂A arising
from the instrumental noise can be estimated using the
Fisher matrix

�AB ¼
�
@h

@	A

�������� @h

@	B

���������	̂A
: (22)

Note that 	̂A are the parameter values that maximize the
signal-to-noise ratio. The variance �2

A ¼ �AA ¼ hð�	AÞ2i
and covariance �AB ¼ h�	A�	Bi of the parameters are
then given in terms of the Fisher matrix by

h�	A�	Bi ¼ ð��1ÞAB: (23)

For hybrid waveforms, the partial derivatives in the
Fisher matrix must be approximated with finite differences.

It is most robust to compute the derivatives of the Fourier
transforms used in the inner product. We rewrite the
Fourier transform of each waveform in terms of the am-
plitude A and phase � as exp½lnA� i�� as given in
Eq. (A9). The derivatives @ lnA=@	A and @�=@	A are
then evaluated with finite differencing. More details of
this and the other methods we tested are given in
Appendix A.
In general, errors in the parameters 	A are correlated

with each other forming an error ellipsoid in parameter
space determined by the Fisher matrix �AB. The uncorre-
lated parameters that are best extracted from the signal are
found by diagonalizing �AB. These new parameters are
linear combinations of the original parameters 	A. We
focus attention below on the two parameters logðp1Þ and
�, and fix all other parameters as follows. We use the
masses and spins determined from the numerical simula-
tions and fix the time and phase shifts as determined during
the hybrid waveform construction. We therefore construct
the error ellipses in flogðp1Þ;�g parameter space and iden-
tify the parameter with the smallest statistical errors. We
will leave an analysis of correlations due to uncertainty in
masses and BH spin to future work.

A. Broadband aLIGO and ET

For the BHNS systems discussed here, the greatest
departure from BBH behavior occurs for gravitational-
wave frequencies in the range 500–5000 Hz. As a result,
detector configurations optimized for detection of BHNS
systems with low noise in the region below 500 Hz are not
ideal for estimating EOS parameters. We therefore present
results for the broadband aLIGO noise curve [51] and the
ET-D noise curve [52] shown in Fig. 9. The broadband
aLIGO configuration uses zero detuning of the signal-
recycling mirror and a high laser power, resulting in sig-
nificantly lower noise above 500 Hz at the expense of
slightly higher noise at lower frequencies. Several noise

FIG. 9 (color online). Noise PSD for broadband aLIGO, ET-D,
and various configurations of narrowband aLIGO. The minima
of the narrowband configuration are labeled fR.
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curves have been considered for the Einstein Telescope
denoted ET-B [53], ET-C [54], and ET-D [52]. We will use
the most recent ET-D configuration, and note that in the
500–5000 Hz range all of the ET configurations have a
similar sensitivity. The published noise curves, and those
used in this paper, are for a single interferometer of 10 km
with a 90
 opening angle. The current ET proposal is to
have three individual interferometers each with a 60

opening angle. This will shift the noise curve down ap-
proximately 20% [52].

In Figs. 10 and 11, we show the resulting 1-� error
ellipses in the 2-dimensional parameter space flogðp1Þ;�g
for an optimally oriented BHNS with Q ¼ 2 and MNS ¼
1:35M� at a distance of 100 Mpc. Surfaces of constant

�1=5 and NS radius, which are almost parallel to each
other, are also shown. One can see that the error ellipses
are aligned with these surfaces. This indicates that, as

expected, �1=5 is the parameter that is best extracted
from BHNS gravitational-wave observations. Because

�1=5 and R are so closely aligned we will use these two
parameters interchangeably.

As mentioned above, there is some freedom in construc-
tion of the hybrid waveforms. The size and orientation of
the error ellipses also depend on the details of this con-
struction. We find that as long as the matching window is
longer than approximately four gravitational-wave cycles
to average out the effects of eccentricity and does not
include the first two gravitational-wave cycles, the orien-
tation of the error ellipses does not change significantly. As
expected, the size of the ellipses decreases as more of the
numerical waveform is incorporated into the hybrid wave-
form. We therefore adopt the last 12 ms before merger of

each numerical waveform as the matching window and the
first 4 ms of the matching window for splicing as shown in
Fig. 2.
We have emphasized that, to within present numerical

accuracy, the late inspiral waveform is determined by the

single parameter�1=5. This implies that, by using contours
of constant � in the EOS space, one could have obtained
the constraint on the EOS, summarized in Figs. 10 and 11
by varying only a single EOS parameter. For the simula-
tions with other mass ratios and neutron-star masses, we
have used as our single parameter logðp1Þ and not �
because contours of constant p1 more closely coincide
with contours of constant � and because � is a one to
one function of logðp1Þ throughout the parameter space.
The one-parameter Fisher matrix can then be evaluated
with finite differencing using the waveforms and values of
� at two points in EOS parameter space with different
logðp1Þ.
The uncertainties in �1=5 and R are shown in Figs. 12

and 13 for broadband aLIGO and for ET, respectively.

FIG. 10 (color online). Two 1-� error ellipses for broadband
aLIGO. Evenly spaced contours of constant�1=5 are also shown.
Each ellipse is centered on the estimated parameter 	̂A denoted
by a �. The semimajor axes are significantly longer than the
width of the figure, so each ellipse appears as a pair of parallel
lines. Matching and splicing conventions are those of Fig. 2.

FIG. 11 (color online). 1-� error ellipses for ET-D. Evenly
spaced contours of constant �1=5 (R) are also shown on top
(bottom). Matching and splicing conventions are those of Fig. 2.
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The uncertainty in these quantities is �10–50% for broad-
band aLIGO and �1–5% for ET-D. The uncertainties for
the higher mass ratio Q ¼ 3 are somewhat larger than for
Q ¼ 2, but not significantly so. It is not clear how rapidly

the uncertainty in �1=5 and R will increase as the mass
ratio is increased toward more realistic values. On the one
hand the tidal distortion is likely to be much smaller for
larger Q. On the other hand the overall signal will be
louder, and the merger and ringdown will occur at lower
frequencies where the noise is lower. Additional simula-
tions for higher Q are needed to address this question.

B. Narrowband aLIGO

The presence of a signal-recycling cavity in the aLIGO
instruments will allow them to be tuned to have improved
narrowband sensitivity at the expense of bandwith. Two
parameters control the narrowband capabilities of the in-
struments [55–57]: the signal-recycling mirror transmis-
sivity effectively sets the frequency bandwidth of the
instrument, while the length of the signal-recycling cavity
(or equivalently the signal-recycling cavity tuning phase)
controls the central frequency fR of the best sensitivity. By
tuning one or more of the aLIGO detectors to operate in

narrowband mode, it may be possible to improve estimates
of the EOS parameters.
We have examined several narrowband tunings with

central frequencies that vary between approximately fR ¼
500 Hz and 4000 Hz. These noise curves use a signal-
recycling mirror transmissivity of 0.011 and a signal-
recycling cavity tuning phase ranging from 10
 down to
1
, and were generated using the program GWINC [58].
Three of these noise curves are shown in Fig. 9. In Fig. 14
we plot the 1-� uncertainty in NS radius �R as a function
of the narrowband central frequency fR. For the wave-
forms considered in this paper the optimal narrowband
frequency is in the range 1000 Hz & fR & 2500 Hz and
depends on the mass ratio, NS mass, and EOS.
Narrowband configurations usually give smaller errors
than the broadband configuration if fR happens to be
tuned to within a few hundred Hz of the minimum for
that BHNS event. In Ref. [59], Hughes discussed a
method for determining the best frequency fR to tune a
narrowbanded detector to extract an EOS-dependent cut-
off frequency from a sequence of identical BNS inspirals.
While this technique is not directly applicable to BHNS
systems, which have different masses and spins, a similar
approach could be used to combine multiple BHNS
observations.

FIG. 13 (color online). Same as Fig. 12, but with the ET-D
noise PSD. Error estimates are an order of magnitude smaller
than for broadband aLIGO.

FIG. 12 (color online). 1-� uncertainty ��1=5 and �R as a
function of the parameters �1=5 or R for the broadband aLIGO
noise PSD. Matching and splicing conventions are those of
Fig. 2.
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VII. DISCUSSION

A. Results

Using a large set of simulations incorporating a two-
parameter EOS, we have found that the tidal deformability

�1=5, or equivalently the NS radius R, is the parameter that
will be best extracted from BHNS waveforms. These pa-
rameters can be estimated to 10–50% with broadband

aLIGO for an optimally oriented BHNS binary at
100 Mpc. The narrowband aLIGO configuration can do
slightly better if it is tuned to within a few hundred Hz of
the ideal frequency for a given BHNS event. The proposed
Einstein Telescope will have an order-of-magnitude better
sensitivity to the EOS parameters.
Although we have used a particular EOS parametriza-

tion to show that � is the parameter that is observed
during BHNS coalescence, this result can be used to
constrain any EOS model—an EOS based on fundamental
nuclear theory in addition to a parametrized phenomeno-
logical EOS. In particular, several parametrizations have
recently been developed, including a spectral representa-
tion [60], a reparametrization of the piecewise polytrope
[61], and a generalization that also includes nuclear
parameters [62].
The results presented here can be compared with recent

work to determine the mass and radius of individual NS in
Type-1 X-ray bursts. Özel et al. [63] have obtained mass
and radius measurements from several systems by simul-
taneously measuring the flux F, which is likely close to the
Eddington value, and the blackbody temperature T during
X-ray bursts of systems with accurately determined dis-
tances. During the burst, the emission area of the photo-
sphere F=ð�T4Þ expands, contracts, then reaches a
constant value, and Özel et al. have argued that the final
area corresponds to that of the NS surface. They obtain
estimates of NS mass and radii with Oð10%Þ 1-� uncer-
tainty. Steiner et al. [62] have also considered these sys-
tems, but argue that the final emission area does not
necessarily correspond to that of the NS surface, and as a
result obtain slightly smaller NS radii and larger uncer-
tainties in the mass and radius. These radius error estimates
are slightly smaller than those for the BHNS systems we
have considered at 100 Mpc. However, we note that binary
inspiral observations are subject to less systematic uncer-
tainty due to questions of composition of the photosphere
and associating it with the NS surface.
The uncertainty in NS radius for the merger and ring-

down of BHNS systems examined here is of roughly the
same size as that found for the last few orbits up to merger
of BNS systems at the same 100 Mpc distance [12,13].
BNS inspirals, however, will likely occur more frequently,
and, including a tidally corrected inspiral-numerical hy-
brid, BNS systems are likely to have uncertainties that are
smaller than BHNS systems by a factor of a few.
Considering the post-merger phase for BNS waveforms
may also provide additional information. Expected NS
masses in both BNS and BHNS systems are slightly
smaller than those measured for X-ray bursters which
have accreted matter from their companion, so BNS and
BHNS GW observations may complement X-ray burst
observations by better constraining the lower density range
of the EOS which is not well-constrained from X-ray burst
observations [61,63].

FIG. 14 (color online). 1-� uncertainty in R for different
configurations of narrowband aLIGO and for different EOS.
fR defines the frequency where Sn is a minimum as shown in
Fig. 9. Horizontal lines on the left and right indicate the corre-
sponding 1-� errors for broadband aLIGO and ET-D, respec-
tively. Matching and splicing conventions are those of Fig. 2.
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B. Future work

We have used in this paper several simplifications and
conventions which can significantly affect the accuracy to
which EOS parameters can be extracted. We list them
below and describe how changing them would effect the
parameter error estimates.

(1) Finite length of numerical waveforms
The BHNS waveforms used here include only the
last�10 GW cycles of inspiral as well as the merger
and ringdown, of which the first few cycles of
inspiral are unreliable due to inexact initial data.
Matching the numerical waveform to a tidally cor-
rected inspiral waveform instead of just the point-
particle waveform will increase the overall depar-
ture from point-particle behavior by (i) creating a
phase shift during the early inspiral, and more im-
portantly (ii) adding to the phase of the late inspiral
and merger the accumulated phase shift from the
early inspiral—a phase shift that is not already in-
cluded in the stronger signal of the late inspiral. The
tidal corrections are now known up to 1PN order
during inspiral, and using the 1PN corrections, the
distinguishability between BHNS and BBH wave-
forms during the inspiral was calculated in [11]. We
estimate that for a mass ratio of Q ¼ 3 the distin-
guishability between BHNS and BBH waveforms is
roughly (to within a factor of 2) the same when tidal
information is incorporated into only the inspiral
versus only the merger-ringdown, indicating that
uncertainty in � may be decreased by a factor of 2
or more using a full inspiral-merger-ringdown
BHNS waveform. We leave the issue of generating
these tidally corrected inspiral-merger-ringdown
waveforms to future work.

(2) Event rates
Estimates of the detectability of EOS parameters in
BNS systems are often given for an event at a dis-
tance of 100 Mpc, and we have used the same con-
vention here to state the results above. The relevant
event rate is, therefore, the expected number of de-
tected events that will have an effective distance
Deff � 100 Mpc. (The effective distance Deff de-
pends on the location of the binary and its inclination
relative to the detector. For an optimally oriented and
located binary, one finds D ¼ Deff while typically
D � Deff .) The aLIGO inspiral rates for BNS sys-
tems are highly uncertain with {low, most likely,
high} estimates of f0:01; 1; 10g Mpc�3 Myr�1 [1]
or f0:004; 0:4; 4g yr�1 with effective distanceDeff �
100 Mpc. Rates are even more uncertain for BHNS
systems with rate estimates of f0:0002; 0:01;
0:4g yr�1 with effective distance Deff � 100 Mpc
[1]. Since the uncertainty in EOS parameters scales
linearly with distance [��1=5 ¼ ��1=5;100 MpcðD=

100 MpcÞ] and the event rate scales as D3, the

estimated detection rates of systems with effective
distance Deff � 400 Mpc are f0:01; 1; 30g yr�1

with a fourfold increase in uncertainty of �1=5.
Fortunately, for Nobs identical events and Ndet iden-
tical detectors, the uncertainty also scales as
��1=5=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NobsNdet

p
.

(3) Expected NS masses and mass ratios
The simulations we used included realistic mass
neutron stars of 1.2 and 1:35M�. On the other
hand, black hole masses are expected to be many
times larger [3], with likely mass ratios closer to
Q� 7 (for the canonical 10M�–1:4M� system) than
the Q ¼ 2 and 3 systems we examined here.
Additional simulations for mass ratios of 4 and 5
are in progress.

(4) Spinning BH
In this paper we have not examined the effect of a
spinning BH. The analytic results of Ref. [11] in-
dicated that spin does not significantly improve the
sensitivity to � for the inspiral up to the point of
tidal disruption. However, numerical simulations
[22,27,28] have shown that spin can strongly affect
the dynamics near tidal disruption and the amount of
matter left over in an accretion disk. We have per-
formed several tens of simulations of nonprecessing
BHNS systems with spinning BH with various BH
spins, mass ratios, NS masses, and EOS parameters,
and an analysis of how BH spin affects the detect-
ability of EOS parameters will be the subject of the
next paper.

(5) Correlations between parameters
In our Fisher analysis we have assumed that the
mass ratio, NS mass, and BH spin will be deter-
mined to sufficient accuracy during the inspiral to
separate them from EOS effects during the merger
and ringdown. A full Fisher analysis using all of the
BHNS parameters should be done to find the extent
to which uncertainties in the other parameters alter
measurability estimates of the EOS parameters.

Because BHNS waveforms smoothly deviate from cor-
responding BBH waveforms as� increases, it is likely that
one can find a good analytical approximation for the full
inspiral, merger, and ringdown waveform by modifying
analytical BBH waveforms. Accurate waveforms for non-
spinning BBH systems using the EOB approach have been
developed [43,64], and work to find EOB waveforms for
spinning BBH systems is in progress [65,66]. Tidal inter-
actions have also been incorporated into the EOB approach
for BNS systems with good agreement with the inspiral
waveform from numerical simulations when parametrized
2PN tidal interactions are fit to the numerical waveform
[15,16]. Another approach is to use phenomenological
waveforms that fit the frequency domain post-Newtonian
inspiral waveform to a phenomenological merger and ring-
down for both spinning and nonspinning BBH systems
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[46]. Both of these approaches may work for generating
full analytic BHNS waveforms as well. A complete de-
scription of the BHNS waveform will likely include cor-
rections for the l ¼ 3 tidal field and other higher-order
corrections. However, it is not clear given the current set
of simulations that these effects would be observable with
either aLIGO or a third-generation detector such as ET.
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APPENDIX A: NUMERICALLY
EVALUATING THE FISHER MATRIX

When an analytical representation of a waveform is not
available, the partial derivatives in the Fisher matrix
Eq. (22) must be evaluated numerically. There are several
possible methods one can use, and we will examine their
accuracy below.

1. Finite differencing of hðt;�Þ
The simplest method, and that used in Ref. [12], is

straightforward finite differencing of the signal h ¼
Fþhþ þ F�h�. For example, for five waveforms with
values of an EOS parameter 	 given by f	�2; 	�1; 	0;
	1; 	2g with equal spacing �	, the three- and five-point
central differences are given by

dh

d	
¼ �2h

�	
þOðð�	Þ2Þ; where

�2h

�	
:¼ � 1

2hðt;	�1Þ þ 1
2hðt; 	1Þ

�	
(A1)

dh

d	
¼ �4h

�	
þOðð�	Þ4Þ; where

�4h

d	
:¼

1
12 hðt;	�2Þ � 2

3hðt; 	�1Þ þ 2
3 hðt; 	1Þ � 1

12 hðt; 	2Þ
�	

: (A2)

This finite differencing method is useful when waveforms
differ only slightly: at each time t, on the scale �	 the
function hðt;	Þ is well-approximated by the low-order
interpolating polynomials used to generate the finite differ-
encing formulas.

This assumption fails when the waveforms used in the
finite differencing are significantly out of phase with each
other.3 The tidal interaction leads to a monotonically ac-
cumulating phase difference relative to a BBH waveform,
implying that at a fixed time t the function hð	; tÞ is an
oscillating function of 	. Now if an oscillating function
h½�ð	Þ� ¼ cos½�ð	Þ� has wave number k ¼ �0ð	Þ that
varies slowly compared to �, then h0ð	Þ is better approxi-
mated by � sinð�Þ��=�	 than by �cos½�ð	Þ�=�	. The
assumption that k is slowly varying is k0 � k2, k00 � k3,
and the error in, for example, each of the two second-order
discretizations is given to order �	2 by

dh

d	
� �2h

�	
¼ hð	Þ

�
1

6
k3 þOðkk0; k00Þ

�
�	2;

dh

d	
þ sin½�ð	Þ��2�

�	
¼ hð	Þ 1

6
k00�	2; (A3)

with the error in the second expression much smaller than
that in the first. We consider two ways to take advantage of
this difference in accuracy.

2. Finite differencing of amplitude and phase

The first is to decompose each complex waveform into
an amplitude A and accumulated phase �

hþðt;	Þ � ih�ðt; 	Þ ¼ Aðt; 	Þe�i�ðt;	Þ; (A4)

where the accumulated phase of each waveform is a con-
tinuous function defined by � ¼ � argðhþ � ih�Þ � 2n�
for some integer n, and at the starting time ti the accumu-
lated phase of each waveform is chosen to be on the branch
n ¼ 0. The advantage of this method is that, at a fixed time,
the functions Aðt;	Þ and �ðt; 	Þ are nonoscillatory func-
tions of 	 even when the accumulated phase difference
between twowaveforms is significantly more than a radian.
With this decomposition the gravitiational wave signal is

hðt; 	Þ ¼ Aðt; 	ÞðFþ cos�ðt;	Þ þ F� sin�ðt; 	ÞÞ; (A5)

3The dephasing of numerical waveforms is even more signifi-
cant for BNS inspiral. We believe that Ref. [12] which used this
method underestimated the derivatives in some cases by a factor
of �2 or more, and thus overestimated the uncertainty in EOS
parameters by the same factor.
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and the derivative of h is approximated by

dh

d	
¼ �A

�	
ðFþ cos�þ F� sin�Þ

þ Að�Fþ sin�þ F� cos�Þ��
�	

: (A6)

If an intermediate waveform is not available to provide the
functions Aðt;	0Þ and �ðt; 	0Þ, they can be evaluated by,
e.g., Aðt; 	0Þ ¼ ðAðt;	�1Þ þ Aðt; 	1ÞÞ=2.

We have found that this method works reasonably well
for the inspiral waveform. If, however, the amplitude of
one of the numerical waveforms drops to zero, then the
phase of the waveform becomes undefined. Because the
amplitudes of the numerical BHNS waveforms fall to zero
at different times for different EOS, as shown in Fig. 3, the
finite difference ��=�	 becomes meaningless towards
the end when the average amplitude is still nonzero. It is
likely one could work around this difficulty. However, we
choose instead to use another more robust method.

3. Finite differencing of Fourier transform

Because we will need to calculate the Fourier transform
of the derivative @h=@	A to find the Fisher matrix, we first
Fourier-transform each waveform and then evaluate the
numerical derivative. Since the derivative @=@	A com-
mutes with the Fourier transform, the Fisher matrix can
be written explicitly as

�
@h

@	A

�������� @h

@	B

�
¼ 4Re

Z ff

fi

@~h
@	A

@~h	
@	B

SnðfÞ df; (A7)

where the contribution to the integral below fi and above
ff is negligible.

As in the second method we break up each Fourier
transformed waveform into amplitude Aðf; 	Þ and accu-
mulated phase �ðf; 	Þ

~hðf; 	Þ ¼ Aðf; 	Þe�i�ðf;	Þ; (A8)

where the phase of each waveform at fi is on the n ¼ 0
branch cut. As demonstrated by Figs. 5 and 6, both the
amplitude and phase are nonoscillatory functions of 	 at a
fixed frequency f, and can be well-approximated by a low-
order polynomial. In contrast to the accumulated phase of
the complex numerical waveform hþ � ih�, the accumu-

lated phase of the Fourier transform of the strain ~h is
always well-defined for numerical BHNS waveforms in
the frequency range fi to ff.

Finally, we find that one obtains better accuracy by

differentiating lnA instead of A, decomposing ~h as

~hðf; 	Þ ¼ elnAðf;	Þ�i�ðf;	Þ: (A9)

The derivative is now approximated by

d~h

d	
¼ elnA�i�

�
� lnA

�	
� i

��

�	

�
: (A10)

interpolating when needed to evaluate lnA and � at the
midpoint.
We find that methods 1-3 for calculating uncertainties in

�1=5 and R agree with each other to �10% when the EOS
parameters are closely separated by � logðp1=
ðdyne cm�2ÞÞ ¼ 0:1. However, for larger EOS spacing,
when the accumulated phase difference between twowave-
forms is as large as 2 radians (see Fig. 4), method 1 will
give a result as much as 50% larger than for the smaller
spacing while method 2 may fail completely for the rea-
sons discussed above. Method 3, however, gives the same
result to within �20% when � logðp1=ðdyne cm�2ÞÞ is
varied between 0.1 and 0.4. We also note that errors in
the quadrature in Eq. (A7) from discrete sampling are
negligible compared to the errors from the finite
differencing.

4. Parameter spacing and numerical resolution

Finally, we note that the EOS parameter spacing must be
carefully chosen. If twowaveforms are too close in parame-
ter space, the error in eachwaveformwill dominate over the
truncation error due to finite differencing. The most signifi-
cant source of this error comes from the spurious oscilla-
tions in the amplitude of the Fourier transform in the
frequency range �500–800 Hz (see Fig. 5) that result
from joining the EOB and numerical waveforms which
are not exactly the same in the matching window. We find
that the integrand of the Fisher matrix is often erratic in the
range �500–800 Hz when using the smallest parameter
spacing available. However, when the spacing is increased,
the integrand is smoother in this frequency range and its
contribution to the integral is significantly reduced. For the
mass ratio Q ¼ 2, we find that a spacing between wave-
forms of � logðp1=ðdyne cm�2ÞÞ ¼ 0:1 for the first EOS
parameter is often sufficiently large to reduce this problem,
while a spacing of�� ¼ 0:6 for the second EOS parameter
is the minimum spacing one can use. For Q ¼ 3, we have
found that a spacing of � logðp1=ðdyne cm�2ÞÞ � 0:2 is
necessary to reduce this problem.
In addition, if the EOS parameters of two waveforms lie

near the same degenerate contour where waveforms are
identical (e.g., a contour of constant� which can be nearly
identical to a line of constant �), the error in each wave-
form will again dominate the truncation error even if the
EOS parameters are widely spaced. For our two-
dimensional EOS parameter space, this problem can be
solved by transforming the parameter space such that
points that originally formed a � pattern now form a þ
pattern, and in the transformed parameter space the new
axes are not alligned with a degenerate contour. The Fisher
matrix can be calculated in the transformed parameter
space then transformed back to the original parameter
space.
We find that as long as these two requirements are met,

the uncertainties in ��1=5 and �R have only an �20%
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fractional dependence on the EOS parameter spacing.
However, the dependence of the orientation of the error
ellipses on the EOS parameter spacing does not allow one
to distinguish between � and R as the best extracted
parameter.

The resolution in the simulation also has an effect on the
Fisher matrix. For the two waveforms fQ ¼ 2;MNS ¼
1:35M�; p:4�3:0g and fQ ¼ 3;MNS ¼ 1:35M�; p:5�3:0g
we performed three different resolution runs with N ¼
f36; 42; 50g as defined in Ref. [25], where the grid size is
proportional to 1=N. All other simulations used N ¼ 50.
We find that when using the N ¼ 42 resolution simulation
instead of N ¼ 50, the uncertainties ��1=5 and �R change
by no more than �25%.

APPENDIX B: PRESCRIPTION FOR
CALCULATING EOB WAVEFORMS

In this appendix we compile the necessary ingredients
needed to produce nonspinning BBH waveforms using
the effective one body (EOB) formalism first introduced
in Ref. [67]. The version used here is exactly that of
Ref. [43], and is described in more detail in a review
[42]. The only ingredients not listed here are terms for
the resummed waveform in Ref. [68] and coefficients to
determine the ringdown waveform found in Ref. [69].

1. Hamiltonian dynamics

In the EOB formalism the two-body dynamics are re-
placed by a test particle of reduced mass 
 ¼ m1m2=M
moving in a modified Schwarzschild metric of total mass
M ¼ m1 þm2 given by4

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ r2ðd	2 þ sin2	d�2Þ:
(B1)

The metric potentials A and B can be calculated from post-
Newtonian theory. The first function is

AðuÞ ¼ P1
5

�
1� 2uþ 2�u3 þ

�
94

3
� 41�2

32

�
�u4

þ a5�u
5 þ a6�u

6

�
; (B2)

where u ¼ 1=r, � ¼ 
=M is the symmetric mass ratio,
and Pm

n ½� denotes a Padé approximant of order m in the
numerator and n in the denominator. The 4 and 5PN

coefficients, a5 and a6, are fit to numerical BBH wave-
forms. The values that give the optimal fit form a degen-
erate curve in the a5–a6 parameter space, and the specific
values chosen here are ða5; a6Þ ¼ ð0;�20Þ. The second
potential is rewritten as

DðrÞ ¼ BðrÞAðrÞ; (B3)

and has been calculated to 2PN order

DðuÞ ¼ P0
3½1� 6�u2 þ 2ð3�� 26Þ�u3�: (B4)

The motion of the EOB particle of mass
 is determined
by the Hamiltonian

Ĥ ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeff � 1Þ

q
; (B5)

where

Ĥ eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1=rÞ

�
1þp2

�

r2
þp2

r

B
þ2�ð4�3�Þp

4
r

r2

�s
(B6)

is the effective Hamiltonian. The equations of motion

given this conservative Hamiltonian Ĥ and a dissipative

radiation-reaction force F̂ i are

dr

dt
¼ @Ĥ

@pr

(B7)

d�

dt
¼ @Ĥ

@p�

¼ ! (B8)

dpr

dt
¼ �@Ĥ

@r
þ F̂ r (B9)

dp�

dt
¼ �@Ĥ

@�
þ F̂ �: (B10)

Here, @Ĥ@� ¼ 0 because the EOB Hamiltonian does not have

an explicit � dependence. In addition, for a circularized
binary inspiral the radial component of the radiation-

reaction force F̂ r is of higher post-Newtonian order than
the tangential component, so it is set to zero.
To increase resolution near the black hole, the radial

coordinate can be rewritten in terms of a tortoise coordi-
nate [70] defined by

dr	
dr

¼
�
B

A

�
1=2

: (B11)

The new radial momentum is then pr	 ¼ ðA=BÞ1=2pr.

Using this definition, the effective Hamiltonian becomes

Ĥeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r	 þAð1=rÞ

�
1þp2

�

r2
þ2�ð4�3�Þp

4
r	
r2

�s
; (B12)

where the parts that are 4PN and higher are neglected. (The
4 and 5PN terms are however accounted for in the free

4The expressions below will be written exclusively in terms of
rescaled dimensionless quantities. The coordinates ðT; R;�Þ and
conjugate momenta ðPR; P�Þ have been rescaled to dimension-
less coordinates ðt; r; �Þ and momenta ðpr; p�Þ given by: t ¼
T=M and r ¼ R=M for the coordinates, and pr ¼ PR=
, p� ¼
P�=
M for the conjugate momenta. Other quantities are then
rescaled in the following way: ! ¼ M� ¼ Md�=dT is the
angular velocity, D̂ ¼ D=M is the distance to the source, Ĥ ¼
H=
 and Ĥeff ¼ Heff=
 are the Hamiltonian and effective
Hamiltonian, and F̂ � ¼ F �=
 is the radiation reaction force.
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parameters a5 and a6 which were fit to numerical wave-
forms). The equations of motion become

dr

dt
¼ Affiffiffiffi

D
p @Ĥ

@pr	
(B13)

d�

dt
¼ @Ĥ

@p�

¼ ! (B14)

dpr	
dt

¼ � Affiffiffiffi
D

p @Ĥ

@r
(B15)

dp�

dt
¼ F̂ �: (B16)

2. Radiation reaction

For the radiation reaction term F̂ �, which is written in

terms of the PN parameter x, we will need a way to write x
in terms of the dynamical variables. The usual method is to
use the Newtonion potential 1=r and velocity squared
ð!rÞ2 as PN counting parameters and then rewrite them
in terms of the gauge invariant angular velocity! using the
Kepler law !2r3 ¼ 1 which holds in the Newtonian limit,
and for circular orbits, in the Schwarzschild (� ! 0) limit.
The Kepler relation can be extended to circular orbits in the

EOB metric by defining a new radial parameter, r! ¼
rc 1=3, where

c ðr; p�Þ ¼ 2

r2

�
dA

dr

��1
�
1þ 2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ

�
1þ p2

�

r2

�s
� 1

��
;

(B17)

for which !2r3! ¼ 1 holds for all circular orbits. In addi-
tion, for noncircular orbits (in particular for the plunge),
this relation also relaxes the quasicircular condition by not
requiring that the Kepler relation hold. The specific choice
of PN parameter used here is

x ¼ ð!r!Þ2: (B18)

See Ref. [71] for an extensive discussion.

The radiation reaction term F̂ � used in Ref. [43] takes

the form of a summation over all multipoles

F̂ � ¼ � 1

8��!

X8
‘¼2

X‘
m¼1

ðm!Þ2jD̂h‘mj2: (B19)

Instead of the standard Taylor expanded version of h‘m
which can be found in Ref. [68], [72] decomposed the
waveform into a product of terms

h22 ¼ hNewt22 ŜeffT22e
i�22f22ðxÞfNQC22 (B20)

for ‘ ¼ m ¼ 2, and

h‘m ¼ hNewt‘m ŜeffT‘me
i�‘m�‘

‘mðxÞ (B21)

for the other values of ‘ andm. The leading Newtonian part
hNewt‘m is given in the usual form as a function of x

hNewt‘m ¼ �

D̂
n‘mc‘þ�ð�Þxð‘þ�Þ=2Y‘��;�m

�
�

2
; �

�
; (B22)

where the coefficients n‘m and c‘þ�ð�Þ are defined by
Eqs. (5–7) of Ref. [68], and the parity � is 0 for ‘þm
even and 1 for ‘þm odd.
The PN terms in the resummation which had been

written as functions of x in Ref. [68] are now written in
terms of the dynamical variables. The effective source term

Ŝeff becomes [73]

Ŝ effðr; pr	 ; p�Þ ¼
�
Ĥeffðr; pr	 ; p�Þ � ¼ 0
p�

r2!!
� ¼ 1

: (B23)

The tail term is

T‘mðr; pr	 ; p�Þ ¼ �ð‘þ 1� 2i ^̂kÞ
�ð‘þ 1Þ e�

^̂ke2i
^̂k ln2kr0 ; (B24)

where
^̂k ¼ �mĤðr; pr	 ; p�Þ!ðr; pr	 ; p�Þ, k¼m!ðr;pr	 ;

p�Þ, and r0 ¼ 2. The phase of this tail term is corrected

with a term of the form ei�‘m . The first 10 �‘m are given in
Eqs. (20–29) of Ref. [68]. The first one is

�22 ¼ 7

3
y3=2 þ 428�

105
y3 � 24� �y5=2; (B25)

where y ¼ ð�Ĥðr; pr	 ; p�Þ!ðr; pr	 ; p�ÞÞ2=3 and �y, which

has several possible forms, is chosen to be �y ¼ !2=3 [73].
Finally, the remainder term of the resummation f‘m is
expanded in powers of x. For ‘ ¼ m ¼ 2 this is then
resummed with a Padé approximant

f22ðxÞ ¼ P3
2½fTaylor22 ðxÞ�; (B26)

where

f
Taylor
22 ð�;xÞ¼1þ55��86

42
xþ2047�2�6745��4288

1512
x2

þ
�
114635�3

99792
�227875�2

33264
þ41�2�

96
�34625�

3696

�856

105
Eulerln2ðxÞþ21428357

727650

�
x3

þ
�
36808

2205
Eulerln2ðxÞ�5391582359

198648450

�
x4

þ
�
458816

19845
Eulerln2ðxÞ�93684531406

893918025

�
x5; (B27)

and the EulerlnmðxÞ ¼ E þ ln2þ 1
2 lnxþ lnm terms are

treated as coefficients when calculating the Padé approx-
imant. For the other values of ‘ and m, f‘m is resummed
in the form f‘m ¼ �‘

‘m. The quantity �‘m is given in

Eqs. (C1-C35) of Ref. [68]. �21 is, for example,
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�21¼1þ
�
23�

84
�59

56

�
xþ

�
617�2

4704
�10993�

14112
�47009

56448

�
x2

þ
�
7613184941

2607897600
�107

105
Eulerln1ðxÞ

�
x3

þ
�
6313

5880
Eulerln1ðxÞ�1168617473883

911303737344

�
x4: (B28)

The final product in the resummation of h22 is a next to
quasicircular (NQC) correction term that is used to correct
the dynamics and waveform amplitude during the plunge

fNQC22 ða1; a2Þ ¼ 1þ a1p
2
r	

ðr!Þ2 þ
a2 €r

r!2
: (B29)

The free parameters a1 and a2 are determined by the
following conditions: (i) the time when the orbital fre-
quency ! is a maximum (the EOB merger time tM) co-
incides with the time when the amplitude jh22j is a
maximum, and (ii) the value of the maximum amplitude
is equal to a fitting function that was fit to several BBH
simulations, given by [43]

jh22jmaxð�Þ ¼ 1:575�ð1� 0:131ð1� 4�ÞÞ; (B30)

and is accurate to �1%.

3. Integrating the equations of motion

The equations of motion are solved by starting with
initial conditions fr0; �0; pr	0; p�0g and numerically inte-

grating the equations of motion. In this paper we are
interested in long, zero-eccentricity orbits. This can be
achieved in the EOB framework by starting the integration
with large r, where radiation reaction effects are small, and
using the quasicircular condition pr	 ¼ 0. Equation (B15)

then becomes

@H

@r
ðr; pr	 ¼ 0; p�Þ ¼ 0 (B31)

and results in the condition

p2
� ¼ �

d
du AðuÞ

d
du ðu2AðuÞÞ

(B32)

for p�. If this quasicircular initial condition is used for

smaller r, the radiation reaction term is no longer negli-
gable, and this initial condition will result in eccentric
orbits. If desired, one can use an initial condition that
more accurately approximates a zero-eccentricity inspiral
such as post-circular or post-post-circular initial conditions
with nonzero pr	 [74].

To numerically solve Eqs. (B13)–(B16), they must be
written as a system of first-order equations. However, the

term F̂ � in Eq. (B16) contains the square of €r from the

NQC term fNQC22 in h22. Since f
NQC
22 gives a small correction

of order 10% during the plunge, the easiest method, and
that used in Ref. [43], is iteration [73]: (i) First solve the

system of equations with fNQC22 set to one. (ii) Use the

solution of Eqs. (B13)–(B16) to evaluate €r and the other

quantities in fNQC22 . (iii) Re-solve the equations of motion

with the NQC coefficients no longer set to one. (iv) Repeat
steps (ii) and (iii) until the solution converges to the desired
accuracy. In practice this iteration only needs to be done
roughly 2–5 times.
A second method is to directly rewrite Eq. (B16) as a

first-order equation. This can be done by replacing €r in the
NQC term on the right-hand side with an expression con-
taining _p� and then solving for _p�. The equations of

motion (B13)–(B16) and the chain rule give

€r ¼ d

dt

�
Affiffiffiffi
D

p @Ĥ

@pr	

�
(B33)

¼ LþMþ N _p�; (B34)

where

L ¼ 1

2

@

@r

�
A2

D

�
@Ĥ

@pr	

�
2
�

(B35)

M ¼ �A2

D

@Ĥ

@r

@2Ĥ

@p2
r	

(B36)

N ¼ Affiffiffiffi
D

p @2Ĥ

@pr	@p�

: (B37)

Plugging this expression into Eq. (B16) yields an equation
quadratic in _p� which can be solved exactly if desired. To

first order in the NQC correction term, Eq. (B16) now
becomes the first-order equation

dp�

dt
¼

F̂ �;Higher þ F̂ QC
�;22

�
1þ 2

a1p
2
r	

ðr!Þ2 þ 2 a2
r!2 ðLþMÞ

�
1� 2F̂ QC

�;22
a2
r!2 N

;

(B38)

where

F̂ �;Higher ¼ � 1

8��!

X8
‘¼2
ð‘;mÞ

X‘
m¼1
�ð2;2Þ

ðm!Þ2jD̂h‘mj2 (B39)

includes just the higher-order terms ð‘;mÞ � ð2; 2Þ, and

F̂ QC
�;22 ¼ � 1

8��!
ð2!Þ2jD̂hQC22 j2: (B40)

The QC in hQC22 means that the NQC term fNQC22 has been

factored out.
The solution to the equations of motion frðtÞ; �ðtÞ;

pr	 ðtÞ; p�ðtÞg are then plugged back into Eqs. (B20) and

(B21) to give the waveform hinspiral‘m ðtÞ.
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4. Ringdown

In the EOB formalism the ringdown waveform of the
final Kerr black hole is smoothly matched onto the inspiral
waveform at the EOB merger time tM. The mass of the
black hole remnant is given by the energy of the EOB
particle at the merger time tM

MBH � 
ĤðtMÞ ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeffðtMÞ � 1Þ

q
; (B41)

and the Kerr parameter is given by the final angular mo-
mentum of the EOB particle [75]

â BH � P�ðtMÞ
M2

BH

¼ �p�ðtMÞ
1þ 2�ðĤeffðtMÞ � 1Þ : (B42)

The ringdown waveform is given by the first five posi-
tive quasinormal modes (QNM) for a black hole of mass
MBH and spin âBH

h
ringdown
22 ðtÞ ¼ 1

D̂

X4
n¼0

Cþ
22ne

��þ
22n

ðt�tMÞ; (B43)

where �þ
22n ¼ �22n þ i!22n is the nth complex ‘ ¼ m ¼ 2

QNM frequency for a Kerr BH with mass M̂BH and spin
âBH, and Cþ

22n are complex constants that determine the
magnitude and phase of each QNM. The amplitude of the
negative frequency modes is small [70]. The first three
QNMs have been tabulated in Ref. [69], and fitting

formulas are also provided. The QNM frequency !22n

can be approximated by

MBH!22n ¼ f1 þ f2ð1� âBHÞf3 ; (B44)

and the inverse damping time �22n is given in terms of the
quality factor approximated by

1

2

!22n

�22n

¼ q1 þ q2ð1� âBHÞq3 : (B45)

The coefficients for n ¼ 0–2 can be found in table VIII of
Ref. [69]. For n ¼ 3–4, �22n and !22n can be linearly
extrapolated from the values for n ¼ 1 and 2 as was
done in Ref. [74].
The constants Cþ

22n are determined by requiring that the
inspiral and ringdown waveforms be continuous on a
‘‘matching comb’’ centered on the EOB merger time tM.
Specifically, at the times ftM � 2�; tM � �; tM; tM þ
�; tM þ 2�g we require h

inspiral
22 ðtÞ ¼ h

ringdown
22 ðtÞ. In

Ref. [43], � was chosen to be equal to 2:3MBH=M. This
gives five complex equations for the five unknown complex
coefficients Cþ

22n.
The full inspiral plus ringdown waveform is then given

by

h22ðtÞ ¼
8<
: h

inspiral
22 ðtÞ t < tM

hringdown22 ðtÞ t > tM
: (B46)
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[5] É. É. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502

(2008).
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