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Results from the first fully general relativistic numerical simulations in axisymmetry of a system

formed by a black hole surrounded by a self-gravitating torus in equilibrium are presented, aiming to

assess the influence of the torus self-gravity on the onset of the runaway instability. We consider several

models with varying torus–to–black-hole mass ratio and angular momentum distribution orbiting in

equilibrium around a nonrotating black hole. The tori are perturbed to induce the mass transfer towards the

black hole. Our numerical simulations show that all models exhibit a persistent phase of axisymmetric

oscillations around their equilibria for several dynamical time scales without the appearance of the

runaway instability, indicating that the self-gravity of the torus does not play a critical role favoring the

onset of the instability, at least during the first few dynamical time scales.
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Introduction.—Self-gravitating tori orbiting black holes
(BHs) may form after the merger of a binary system
formed by a BH and a neutron star (NS) or the system
formed by two NS (see, e.g., [1] and references therein). In
addition, they may also be the result of the gravitational
collapse of the rotating core of massive stars [2,3]. State-
of-the-art numerical simulations have started to provide
quantitative estimates of the viability of such systems to
form [1,4–11]. As such BH-torus systems are thought to be
the central engine for �-ray bursts (GRBs) [12,13], under-
standing its formation, dynamics, and stability properties is
of high relevance.

In particular, the so-called runaway instability, first
found by Abramowicz, Calvani, and Nobili [14], is an
axisymmetric instability that could destroy the torus on
dynamical time scales. In a marginally stable torus, the
radial pressure gradient may drive the transfer of mass
towards the BH through the cusplike inner edge of the
torus. Because of the accretion of mass and angular mo-
mentum, both the mass of the BH and its spin increase, and
the gravitational field changes, leading to two possible
evolutions: (i) if the cusp moves inwards towards the BH,
the mass transfer slows down and the system is stable, or
(ii) if the cusp moves deeper into the torus, mass accretion
will increase, and the accretion process will be runaway
unstable.

The numerical study of the runaway instability has so far
been investigated under different approximations (see, e.g.,
[15,16]). Abramowicz et al. [14], assuming a pseudo-
Newtonian potential for the BH, constant angular momen-
tum distribution in the torus, and an approximate treatment
of the disk’s self-gravity, found that the instability occurs
for a wide range of initial models. More detailed studies
based on stationary models, either assuming a pseudo-
Newtonian potential for the BH [17] or being fully relativ-

istic calculations [18], indicated that the self-gravity of the
disk favors the instability, by arguing that, as a result of the
accretion process, the cusp would move closer to the center
of the torus than in non–self-gravitating disks. However,
there are additional parameters which have a stabilizing
effect: (i) the rotation of the BH [19], and (ii) the most
important one, the radial distribution of specific angular
momentum, increasing with the radial distance [20].
The first time-dependent, general relativistic hydrody-

namical (GRH) axisymmetric simulations of the runaway
instability were performed by Font and Daigne [15,16].
The BH evolution was assumed to follow a sequence of
stationary BH spacetimes of increasing mass and angular
momentum, controlled by the mass and angular momen-
tum transferred from the torus, whose self-gravity was
neglected. The first work [15], which focused on tori
with constant distribution of specific angular momentum
l � �u’=ut, with u’ and ut being the corresponding

components of the four-velocity u�, showed that the sys-

tem is runaway unstable on a dynamical time scale. On the
other hand, the second work [16] showed that thick disks
with nonconstant specific angular momentum distribu-
tions, increasing outwards with the radial distance accord-
ing to a power law l ¼ Kr�, are stable for very small
values of the angular momentum slope � (much smaller
than the Keplerian value � ¼ 0:5), confirming the predic-
tion of stationary studies.
Despite the progress that has been made the existing

works are still not conclusive, mainly due to the absence of
important physics in the modeling. The complexity of
handling the presence of a spacetime singularity in addi-
tion to the hydrodynamics and the self-gravity of the
accretion torus, make full GRH simulations of such sys-
tems very challenging. The simulations presented in this
Letter accomplish the goal of assembling this important
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physics to provide a conclusive answer about the like-
lihood of the instability on the first few dynamical time
scales, which cause the most concern in the context of
models of short GRB. Although we do not exclude the
onset of the instability on much longer time scales, it is
only meaningful in connection with other relevant insta-
bilities, specially the magnetorotational instability.

Numerical setup.—The numerical simulations have been
carried out with the NADA code (see [21] for details and
tests) which solves the Einstein equations (using the BSSN
approach, the ‘‘cartoon’’ method, and the moving puncture
approach) coupled to the GRH equations (solved with a
high-resolution shock-capturing scheme based on third-
order piecewise parabolic method reconstruction and the
Harten-Lax-van Leer-Einfeldt approximate Riemann
solver). In addition, we use a standard �-law equation of
state (EOS), for which the pressure is expressed as a
function of the rest-mass density and specific internal
energy as P ¼ ��ð�� 1Þ, where � is the adiabatic expo-
nent. For the vacuum region outside the torus we use a
dynamically unimportant artificial atmosphere with rest-
mass density �thr � 10�8�max. The evolution equations are
integrated by the method of lines, for which we use a
fourth-order Runge-Kutta scheme. For the simulations re-
ported here we use an equidistantly spaced (x, z) grid with
a grid spacing �x ¼ �z ¼ 0:05MBH and Nx � Nz ¼
600� 600 points to cover a computational domain, 0 �
x � L and 0 � z � L, with L ¼ 30MBH. Unless otherwise
stated we use units in which c ¼ G ¼ M� ¼ 1.

Initial data.—Compact equilibrium configurations for a
BH-torus system are obtained in the moving puncture
framework (we refer to [22] for details). We adopt a � ¼
4=3 polytropic EOS to mimic a degenerate relativistic
electron gas, and construct initial configurations using
either constant or nonconstant specific angular momentum
distributions, defined as j � hu’ (h being the specific

enthalpy). A list of the models along with their main
features is given in Table I. We consider four different
tori around a nonrotating BH (of mass MBH ¼ M�).
Following [15,16,23], the EOS polytropic constant � is
chosen such that the torus-to-BH mass ratio, Mt=MBH, is
0.1, 0.5, or 1, depending on the model. We note that
existing simulations of NS-NS and BH-NS mergers

[1,5,7,9,24] yieldMt � ð0:01–0:2ÞM�. As these configura-
tions are not overflowing the cusp, we introduce an initial
perturbation to induce a small mass transfer through the
inner edge of the tori (as in [23]). In our simulations we
simply perturb the vx component of the three-velocity of
the torus as vx � ��, which otherwise would initially be
zero. For each model the numerical simulations are
stopped at t� 2000, which corresponds to �10 ms (be-
tween 8 to 10 orbital periods depending on the model),
since at late times the growth of the Hamiltonian constraint
violation would lead to a loss of accuracy for the spacetime
evolution. Nevertheless, the time scale we are considering
in our simulations would allow us to identify the runaway
instability, if present, as it could even take place within one
orbital period for the more massive models M2 and M4
(see [15,16]).
Results.—The left panel in Fig. 1 displays the time

evolution of the total rest mass and central rest-mass
density, each of them normalized to its initial value, for
the evolution of models M1 (solid and dashed lines) and
M2 (dotted line).M1 is a model with j constant and with an
initial rest mass of Mt ¼ 0:1MBH, thus representing a
model with torus-to-BH mass ratio in agreement with
results obtained by simulations of NS-NS or BH-NS merg-
ers [1,5,7,9,24]. For this initial model, we have considered
two different initial perturbations, � ¼ 0:01 (solid line)
and � ¼ 0:025 (dashed line), to evaluate its influence on
the overall dynamics. As expected, the initial perturbation
triggers a phase of axisymmetric oscillations of the torus
around its equilibrium which are present throughout the
simulation. Such oscillations induce a small outflow of
matter through the cusp towards the BH. This, however,
does not reduce significantly the total rest mass of the
torus, plotted in the upper panel. At the end of the simu-
lation (t� 10torb) the rest mass of the torus M1 is con-
served up to about 1%. Therefore, the BHmass and spin do
not increase with time significantly, and the torus shows no
sign of the runaway instability. Further information about
the process of accretion is obtained from the right panel in
Fig. 1, which shows the time evolution of the mass accre-
tion rate. We notice that the mass accretion rate for model
M1 is larger the larger the initial perturbation is. For � ¼
0:025, there is an initial stage of very small mass transfer
through the inner edge of the torus which lasts for about
half an orbit (t� 80). This is followed by a stage in which
the oscillatory behavior of the rest-mass accretion rate,
signature of the induced oscillations, is obvious throughout
the numerical evolution. Interestingly, during the oscilla-
tion phase, the mass flux does not increase in amplitude
with time, as one would expect prior to the onset of the
runaway instability (see [15,16]). Instead, it reaches a
maximum of about _M� 0:1M�=s after the second orbital
period. Later it decreases and exhibits a series of oscilla-
tions around a lower value, never showing any signature of
exponential growth. The mass accretion rates of the per-
turbed tori are in good agreement with the maximum
expected accretion rates for hyperaccreting disks associ-

TABLE I. Main properties of the equilibrium models studied
in units of c ¼ G ¼ M� ¼ 1 (unless shown otherwise). From
left to right the columns show: the type of specific angular
momentum distribution, the torus-to-BH mass ratio, the position
of the maximum density point rmax, the position of the inner and
outer radii of the torus rin and rout, the maximum rest-mass
density, and the orbital period at the center of the torus torb.

Model j law Mt=MBH rmax rin rout �max (g=cm3) torb

M1 const 0.1 7.17 4.92 10.17 3:189� 1014 147.81

M2 const 1.0 8.87 4.02 19.97 2:202� 1014 199.54

M3 nonconst 0.1 10.47 4.92 19.97 3:902� 1013 245.37

M4 nonconst 0.5 10.02 4.07 19.97 1:538� 1014 229.91
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ated with the central engine of �-ray bursts, which could be
as high as _M� ð0:01–1ÞM�=s, depending on the formation
mechanism [25]. In the case of a disk formed by the merger
of a NS with another compact object (either a NS or a BH),
most of the material in the accretion disk would be accreted
on a time scale comparable to the viscous time scale tvisc �
0:1 s. In the collapsar scenario, such high accretion rates
could be sustained for �10 s as the disk is fed by the in-
falling stellar material.

We consider next a significantly more massive torus,
model M2, while keeping the same rotation law. The total
rest mass of this torus is Mt ¼ 1:0MBH. We use a small
initial perturbation, � ¼ 0:01, because due to the larger
coordinate dimension of the torus, a larger perturbation
would cause its outer parts to move outside the computa-
tional domain. Despite being more massive the overall
dynamics ofM2 is very similar to the one discussed above
for the less massive torus, M1. As expected, the time
evolution of the central rest-mass density, displayed in
the left panel of Fig. 1 with a dotted line, shows a series
of axisymmetric oscillations during the entire length of the
simulation. As we have observed for the low mass torus,
the amplitude in the evolution of the mass flux does not
increase with time and does not lead to the onset of the
instability.

We note that these results do not actually contradict
results obtained for non-self-gravitating tori with constant
distribution of angular momentum [15]. Notice that despite
the difference in the definition of the specific angular
momentum, the j-constant condition in our models leads
to constant l up to a difference of the order of 10�5. In
addition, models of [15] and the ones considered here
satisfy the condition jtorus > jISCO throughout the evolu-
tion, where ISCO stands for innermost stable circular orbit.
However, those previous studies considered initial models
which were overflowing the cusp in order to induce a large
stationary accretion rate, which varied between _M�
ð0:1–34:0ÞM�=s. Unstable runaway behavior in the case
of mass accretion rates of _M� 0:1M�=s were found on a
time scale of 100 torb, and only on a dynamical time scale

for the largest values of the mass flux. Similar results were
found by [23] introducing an initial perturbation on the
equilibrium tori. Since in our case _M� ð10�3–10�4ÞM�=s
throughout the simulations, the exponential growth of the
mass accretion would not manifest itself even on such time
scales. This is in agreement with the recent work of [1]
where a systematic study of the BH-torus systems pro-
duced by the merger of unequal-mass NS binaries was
presented, concluding that self-gravitating tori with mass
accretion rates as high as _M� 2:0M�=s were stable on the
dynamical time scales investigated.
Motivated by the influence of different rotation laws on

the onset of the instability [15] we have also carried out
numerical evolutions of two j-non-constant models, M3
and M4, with two different torus-to-BH mass ratios, 0.1
and 0.5, respectively. Despite the difference in the rotation
law with respect to models M1 and M2, the dynamics is
very similar, as inferred from the evolution of the mass
accretion rate displayed in Fig. 2. No exponential growth of
the mass flux is found and, therefore, no runaway insta-
bility is present.
Studies [17,18] mainly based on stationary models, ei-

ther assuming a pseudo-Newtonian potential for the BH
and a Newtonian potential for the self-gravity of the torus,
or being fully relativistic calculations indicated that the
self-gravity of the disk favors the instability. The simula-
tions presented here overcome the limitations of preceding
works. Our results indicate that in the general case in which
mass accretion rates are consistent with those expected for
hyperaccreting disks, and in which the angular momentum
distribution increases with the radial distance, the effect of
self-gravity is not sufficient to lead to unstable accretion.
Despite the simplifying assumptions of our models

(magnetic fields or detailed microphysics are not consid-
ered), our results are consistent with the expected dynam-
ics and mass accretion rates for hyperaccreting disks and
do not challenge the time scale required for producing a
GRB. Moreover, although magnetic fields have not been
considered in our simulations, it is likely that these do not
play a critical role in the context of the runaway instability.

FIG. 1 (color online). Left panel: Time evolution of the total rest-mass (top) and central rest-mass density, each of them normalized
to its initial value, for the evolution of models M1 and M2. Right panel: Mass accretion rate evolution for models M1 and M2.
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Despite the fact that numerical simulations of magnetized
NS mergers are still scarce and the results are inconclusive,
simulations by [26] indicate that the effect of the magnetic
fields during the merger and the initial phase of the BH-
torus lifetime is not dramatic (as reflected by the similar-
ities between the gravitational waves in the magnetized and
unmagnetized cases), rather these are expected to become
more important during the secular evolution of the accre-
tion torus.

Conclusions.—We have presented results from the first
fully general relativistic numerical simulations in axisym-
metry of a system formed by a BH surrounded by a
marginally stable self-gravitating torus aiming to assess
the influence of the torus self-gravity on the onset of the
runaway instability. Several models with different torus-to-
BH mass ratio and angular momentum distributions have
been considered. The tori have been perturbed to induce
mass transfer towards the BH. Our numerical simulations
show that all models exhibit a persistent phase of axisym-
metric oscillations around their equilibria for several dy-
namical time scales without the appearance of the runaway
instability. Thus, the self-gravity of the torus does not play
a critical role favoring the onset of the instability. Clearly,
to investigate additional m ¼ 1 nonaxisymmetric features
that may play a role on the dynamics of the system 3D
simulations are required. Nevertheless, the robustness of
our results in axisymmetry on the influence of self-gravity
on the runaway instability are confirmed by simulations we
have also performed with the independent 2D code of [27].
These simulations and the investigation of nonaxisymmet-
ric instabilities of self-gravitating tori around BHs will be
presented elsewhere.
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