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We present our first numerical results of axisymmetric magnetohydrodynamic simula-
tions for neutrino-cooled accretion tori around rotating black holes in general relativity. We
consider tori of mass ∼ 0.1–0.4M� around a black hole of mass M = 4M� and spin a = 0–
0.9M ; such systems are candidates for the central engines of gamma-ray bursts (GRBs)
formed after the collapse of massive rotating stellar cores and the merger of a black hole
and a neutron star. In this paper, we consider the short-term evolution of a torus for a
duration of ≈ 60 ms, focusing on short-hard GRBs. Simulations were performed with a
plausible microphysical equation of state that takes into account neutronization, the nuclear
statistical equilibrium of a gas of free nucleons and α-particles, black body radiation, and
a relativistic Fermi gas (neutrinos, electrons, and positrons). Neutrino-emission processes,
such as e± capture onto free nucleons, e± pair annihilation, plasmon decay, and nucleon-
nucleon bremsstrahlung are taken into account as cooling processes. Magnetic braking and
the magnetorotational instability in the accretion tori play a role in angular momentum
redistribution, which causes turbulent motion, resultant shock heating, and mass accretion
onto the black hole. The mass accretion rate is found to be Ṁ∗ ∼ 1–10M�/s, and the shock
heating increases the temperature to ∼ 1011 K. This results in a maximum neutrino emission
rate of Lν = several ×1053 ergs/s and a conversion efficiency Lν/Ṁ∗c2 on the order of a few
percent for tori with mass Mt ≈ 0.1–0.4M� and for moderately high black hole spins. These
results are similar to previous results in which the phenomenological α-viscosity prescription
with the α-parameter of αv = 0.01–0.1 is used. It is also found that the neutrino luminosity
can be enhanced by the black hole spin, in particular for large spins, i.e., a & 0.75M ; if the
accretion flow is optically thin with respect to neutrinos, the conversion efficiency may be
& 10% for a & 0.9M . Angular momentum transport, and the resulting shock heating caused
by magnetic stress induce time-varying neutrino luminosity, which is a favorable property
for explaining the variability of the luminosity curve of GRBs.

§1. Introduction

There is growing evidence that gamma-ray bursts (GRBs) occur at cosmological
distances. Assuming the isotropic emission of gamma-rays, the estimated absolute
luminosity of many events is � 1051 ergs/s.1) If the effect of anisotropy, such as
the collimation of emission, is taken into account, the luminosity is estimated to be
∼ 1050 ergs/s. Furthermore, the duration of the emission is very short, ∼ 0.01–
1000 s, indicating that the source is composed of a compact object of stellar-mass
size.1) Thus, the high luminosity can be explained by considering the conversion of
energy from gravitational energy to thermal energy during accretion processes onto
the compact object. Because a rotating black hole is the most efficient generator, it
is now widely believed that the central engines of GRBs are composed of stellar-mass
rotating black holes and massive, compact, and hot accretion disks (or tori).

Over the past decade, many groups have studied the properties of dense, hot
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accretion disks (or tori) around a black hole [e.g., Refs. 2)–9)]. An often employed
method of study is to derive a stationary solution of accretion flow around a black
hole, taking into account the detailed microphysics, but neglecting the effects of
the thickness of the disks.2)–7) Such studies have clarified qualitative and semi-
quantitative features of the accretion disks, which are found to be dense, hot, and
geometrically thick with maximum density ∼ 1012 g/cm3, maximum temperature
∼ 1011 K, and geometrical thickness ∼ 100 km for a black hole of mass ∼ 3–10M�.
Because of the high density and the high temperature, neutrino emission plays a
crucial role in the dissipation of thermal energy in such accretion flows, resulting in
a high neutrino luminosity of � 1053 erg/s. One important property of this dense,
hot accretion flow is that the density is so high that a large fraction of the neutrinos
may be trapped by the flow and fail to escape before being swallowed by the black
hole; i.e., the accretion flow is neutrino-dominated accretion flow (NDAF).2)–4)

Although the stationary solutions reveal qualitative properties, these studies are
not suitable for understanding the time variability of accretion flows. In the last three
years, numerical simulations of viscous and neutrino-cooled accretion tori have also
been carried out with detailed microphysics by two groups.8),9) Setiawan, Ruffert,
and Janka have performed three-dimensional (3D) pseudo-Newtonian simulations
with a tabulated equation of state (EOS) derived by Lattimer and Swesty10) and
with a neutrino cooling employing a leakage scheme. As a transport mechanism of
angular momentum in the flow, they incorporated a phenomenological viscosity using
the so-called α-prescription.11) A general relativistic gravitational field is mimicked
using a pseudo-Newtonian potential. They find that the efficiency of the conversion
to neutrinos (defined by the ratio of the neutrino luminosity to the rest-mass-energy
accretion rate) reaches typically to a few percent with a maximum value of ∼ 10%.
Lee, Ramirez-Ruiz, and Page performed simulations similar to that of Setiawan et al.,
but with the assumption of axial symmetry, with slightly simplified microphysics,
and for a longer time scale of ≈ 0.5 s. They reported results similar to those of
Setiawan et al.

These simulations have provided a variety of nonstationary properties which
cannot be found from the study of stationary accretion disks. They have found that
the mass accretion rate and neutrino luminosity exhibit a mild time variability. Lee
et al. found that the neutrino luminosity decreases on a time scale of 10–1000 ms,
depending on the viscous parameter. They also reported that the inhomogeneity of
the lepton number induces turbulent motion through a convective instability. These
properties can be found only by numerical simulation. This implies that numerical
simulation is a better approach for the study of GRB accretion flows.

Despite their success, there are still many issues that have not yet been clarified
by simulations. First, the simulations carried out to this time take into account gen-
eral relativistic effects very crudely, using a pseudo-potential prescription. Although
this method may partly capture the nature of general relativistic gravity around black
holes, there is no guarantee that this potential can provide quantitatively accurate
values concerning properties of black holes. Moreover, special relativistic effects are
not incorporated in this method. The speed of matter around black holes is often
a significantly large fraction of the speed of light, reaching a high Lorentz factor of
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∼ 10, and hence it is reasonable to expect that the matter motion in the vicinity
of a black hole cannot be followed accurately with the pseudo-potential approach.
Second, they add a so-called α-viscosity in their equations of motion to take into ac-
count effects of angular momentum transport and resultant viscous heating. In the
α-viscosity prescription, one has to a priori determine a value for the α-parameter
(which is hereafter denoted by αv). This parameter essentially fixes the mass ac-
cretion rate, the viscous heating rate, and the resulting neutrino luminosity. This
implies that one never find these important quantities correctly, due to the unknown
value of the α-parameter. Most people in the astrophysics currently believe that the
magnitude of the viscosity in accretion flows is effectively determined by the turbu-
lent motion of fluid induced by magnetic stress. If this is indeed the case, it implies
that the actual effective viscosity varies in time. To capture the nature of a realistic
accretion flow, a magnetohydrodynamics (MHD) simulation is needed, instead of
adding an α-viscosity.

With the motivation described above, we have performed a general relativistic
magnetohydrodynamics (GRMHD) simulation using a code recently developed,12)

which has already been applied to study the evolution of magnetized differentially
rotating neutron stars13),14) and magnetized stellar core collapse.15) In the present
work, this code is used for a fixed black hole geometry but with detailed microphysics;
a realistic EOS and neutrino cooling. The assumption of the fixed geometry is valid
because we consider systems for which the mass of the torus is much smaller than the
mass of the black hole. In such systems, the self-gravity of the torus does not play
an important role. In the present context, magnetic stress naturally induces time-
varying angular momentum transport and shock heating. The rest-mass accretion
rate and shock heating rate are computed in a first-principles manner. Furthermore,
general relativistic effects are taken into account in a strict manner. Thus, it is
possible to clarify the dependence of the neutrino luminosity in the GRB accretion
torus on the spin parameter of black holes for the first time in dynamical simulations.
In addition, we show that the magnetic effects induce a large time variability of
the mass accretion rate and neutrino luminosity, which is not found in simulations
employing the α-viscosity.

This paper is organized as follows. In §2, we describe the basic equations, EOS,
and neutrino processes that we take into account. In §3, the initial conditions and set-
up for the simulation are described. In §4, numerical results are presented, focusing
particularly on accretion rates of the rest-mass, energy, and angular momentum
onto the black hole horizon and on the neutrino luminosity. Varying the masses of
the torus and the black hole spin systematically, we clarify the dependence of the
accretion rates and neutrino luminosity on these parameters. Section 5 is devoted to
a summary and discussion. Throughout this paper, we adopt the geometrical units in
which G = c = 1 where G and c are the gravitational constant and the speed of light.
k and –h are the Boltzmann and Planck constants. Latin and Greek indices denote
spatial components and spacetime components, respectively. ηµν and δij(= δij) are
the flat spacetime metric (in the cylindrical coordinates) and the Kronecker delta,
respectively.
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§2. Procedures for the numerical simulation

We numerically solved GRMHD equations in the fixed geometry of a rotating
black hole, assuming that the ideal MHD relation holds; the conductivity is assumed
to be infinite. The basic equations and numerical methods are the same as those
used in our first paper,12) except for the EOS and microphysics that we employ. In
this section, after we concisely review our basic equations for GRMHD, a detailed
description of the EOS and microphysics is given.

2.1. Definition of variables

The fundamental fluid variables are ρ, the rest-mass density, ε, the specific
internal energy, P , the pressure, and uµ, the four velocity. For convenience, we also
define the weighted rest-mass density ρ∗, three-vector vi, specific enthalpy h, and a
Lorentz factor w as

ρ∗ ≡ ρut
√

−g/η, (2.1)

vi ≡ dxi

dt
=

ui

ut
, (2.2)

h ≡ 1 + ε +
P

ρ
, (2.3)

w ≡ αut, (2.4)

where g is the determinant of the spacetime metric gµν , η is the determinant of ηµν ,
and α is the lapse function equal to (−gtt)−1/2 (see §2.2).

In addition, we need to define the electron fraction Ye and the temperature T
because these are used as arguments for tabulated EOSs (see §2.4 for details). Here,
Ye is defined by

Ye ≡ mune

ρ
, (2.5)

where ne is the number density of electrons (n−) minus that of positrons (n+), and
mu is the atomic mass unit.

The only fundamental variable in the ideal MHD is bµ, a four-vector of magnetic
field, that is perpendicular to uµ, i.e., bµuµ = 0. bµ is regarded as the magnetic field
observed in a frame comoving with the fluid. In the ideal MHD, the electric field Eµ

in the comoving frame is zero and thus, the electric current jµ is not necessary to
determine the evolution of the field variables. Using bµ, the electromagnetic tensor
Fµν is defined by21)

Fµν = εµναβuαbβ, (2.6)

where εµναβ is the Levi-Civita tensor.
From bµ, we define the three-magnetic field as

Bi ≡ α
√

γ̂(utbi − btui), (2.7)

where γ̂ = γ/η and γ is the determinant of the three-metric γij . Bi is regarded as
the magnetic field observed in an inertial frame. We note that Bt = 0, Bi = γijBj ,
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and

bt =
Bµuµ√−g/η

and bi =
1

w
√

γ̂

(
Bi + Bjujui

)
. (2.8)

Using the hydrodynamic and electromagnetic variables, the energy-momentum
tensor is written as

Tµν = (ρh + b2)uµuν +
(
P +

1
2
b2
)
gµν − bµbν , (2.9)

where

b2 = bµbµ =
B2 + (Biui)2

w2(−g/η)
. (2.10)

Then, the projection of the energy-momentum tensor is defined by

ρH ≡ Tµνn
µnν = (ρh + b2)w2 − Ptot − (αbt)2, (2.11)

Ji ≡ −Tµνnµγν
i = (ρh + b2)wui − αbtbi, (2.12)

Sij ≡ Tµνγµ
iγ

ν
j = (ρh + b2)uiuj + Ptotγij − bibj , (2.13)

where nµ is the unit timelike vector normal to a spatial hypersurface, i.e., γµνnν = 0.
Also we define the total pressure Ptot ≡ P +Pmag, where Pmag = b2/2 is the magnetic
pressure.

Using ρH, Ji, and Sij , the energy-momentum tensor is rewritten in the form

Tµν = ρHnµnν + Jiγ
i
µnν + Jiγ

i
νnµ + Sijγ

i
µγj

ν . (2.14)

This form of the energy-momentum tensor is useful for deriving the basic equations
for GRMHD presented in §2.3. For the following treatment, we define

S0 ≡
√

γ̂ρH and Si ≡
√

γ̂Ji. (2.15)

We determined the evolution of these variables together with ρ∗, Ye, and Bi in the
numerical simulation (see §2.3).

2.2. Gravitational field

The GRMHD equations are solved in a fixed stationary gravitational field of a
Kerr black hole. Following Refs. 16) and 17), we choose the Kerr-Schild coordinates
of the Kerr black hole, because they have no coordinate singularity on the event
horizon, and hence, regular solutions can be obtained even on the event horizon and
slightly inside it.

In cylindrical coordinates (�, z, ϕ), the line element of the Kerr-Schild solution
is22)

ds2 = −dt2 + d�2 + �2dϕ2 + dz2

+
2Mr3

r4 + a2z2

(
r�d� − a�2dϕ

r2 + a2
+

zdz

r
+ dt

)2

, (2.16)
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where r is the radial coordinate in the Boyer-Lindquist coordinates, which is the
positive solution of the equation

r4 − (�2 + z2 − a2)r2 − a2z2 = 0. (2.17)

Here, M and a are the mass and the spin parameter of the Kerr black hole. A physical
singularity of ring shape is located at � = a and z = 0, and the event horizon is at
r = M +

√
M2 − a2 ≡ rH. We note that the determinant of the spacetime metric

gµν has the simple form
g = −�2. (2.18)

For the Kerr-Schild solution, the lapse function α, the shift vector βi, and the
three-metric γij are

α =

√
f

f + 2Mr3
, (2.19)

β� =
2Mr4�

σ(f + 2Mr3)
, βz =

2Mr2z�

f + 2Mr3
, βϕ = − 2Mar3

σ(f + 2Mr3)
, (2.20)

γ�� = 1 +
2Mr5�2

fσ2
, γ�ϕ = −2Mar4�3

fσ2
, γ�z =

2Mr3�z

fσ
,

γϕϕ = �2
(
1 +

2Ma2r3�2

fσ2

)
, γϕz = −2Mar2z�2

fσ
, γzz = 1 +

2Mrz2

f
, (2.21)

where f ≡ r4 + a2z2 and σ ≡ r2 + a2. The determinant of γij is

γ = − g

α2
= �2

(
1 +

2Mr3

f

)
. (2.22)

2.3. GRMHD equations

Hydrodynamic equations to be solved are∗)

∇µ(ρuµ) = 0, (2.23)
γ ν

i ∇µTµ
ν = −Qµγ µ

i , (2.24)
nν∇µTµ

ν = −Qµnµ. (2.25)

The first, second, and third equations are the continuity, Euler, and energy equations,
respectively. Here, Qµ denotes a four-dimensional vector associated with neutrino
cooling which is defined below, and ∇µ is the covariant derivative with respect to gµν .
In the following, the equations are described in the cylindrical coordinates (�, z, ϕ)
with the assumption of axial symmetry, and we define Sy ≡ Sϕ/�, uy = uϕ/�, and
By ≡ Bϕ�.

∗) The equation ∇µT µ
ν = −Qν is derived from the conservation equation of the total energy-

momentum tensor TT
µν , which is defined by the sum of energy momenta of all the matter fields. The

derivation and assumption for the derivation is described in Appendix A.
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With the quantities defined above, Eqs. (2.23)–(2.25) are written

∂tρ∗ +
1
�

∂�(ρ∗v��) + ∂z(ρ∗vz) = 0, (2.26)

∂tSA +
1
�

∂�

[
�
{
SAv� + Ptotδ

�
A − 1

(ut)2
B�
(
BA + uABiui

)}]
+ ∂z

[
SAvz + Ptotδ

z
A − 1

(ut)2
Bz(BA + uABiui)

]

= −S0∂Aα + Sk∂Aβk − 1
2
Sik∂Aγik +

Ptot

�
δ �
A − QA, (2.27)

∂tSy +
1

�2
∂�

[
�2
{
Syv

� − 1
(ut)2

B�
(
By + uyBiui

)}]
+ ∂z

[
Syv

z − 1
(ut)2

Bz
(
By + uyBiui

)]
= −Qy, (2.28)

∂tS0 +
1
�

∂�

[
�
{
S0v

� +
√

γ̂Ptot(v� + β�) − 1
ut
√

γ̂
BiuiB�

}]
+ ∂z

[
S0v

z +
√

γ̂Ptot(vz + βz) − 1
ut
√

γ̂
BiuiBz

]
= SijK

ij − SkD
kα + Qµnµ, (2.29)

where we use g = −�2. The subscript A denotes � or z, and i, j, k, · · · are �, z or
ϕ. Also, Kij is the extrinsic curvature, which is calculated in the stationary space
from

Kij =
1
2α

(
Diβj + Djβi

)
, (2.30)

where Di is the covariant derivative with respect to γij . Equations (2.26)–(2.29)
are solved in the method described in Ref. 12); we employ a high-resolution scheme
consisting of the central scheme proposed by Kurganov and Tadmor19) with third-
order cell-reconstruction.20)

In addition to the hydrodynamic equations, we solve the evolution equation for
Ye,

dYe

dt
= −γe, (2.31)

where γe is the capture rate of the electron whose definition is given in §2.4. Using
the continuity equation, Eq. (2.31) can be rewritten as

∇µ(ρYeu
µ) = −ρutγe, (2.32)

or, more explicitly,

∂t(ρ∗Ye) +
1
�

∂�(ρ∗Yev
��) + ∂z(ρ∗Yev

z) = −ρ∗γe. (2.33)

We numerically solved Eq. (2.33) in the same manner as Eq. (2.26).
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When the ideal MHD relation holds, the Maxwell equations for the axisymmetric
system are

1
�

∂�(�B�) + ∂zBz = 0, (2.34)

∂tB� = −∂z(B�vz − Bzv�), (2.35)

∂tBz =
1
�

∂�

[
�(B�vz − Bzv�)

]
, (2.36)

∂tBy = ∂�(B�vy − Byv�) + ∂z(Bzvy − Byvz). (2.37)

Equation (2.34) is the no-monopoles constraint, and Eqs. (2.35)–(2.37) are induction
equations, which are solved to obtain the evolution of the magnetic field in the same
manner as in Ref. 12), using the constraint transport scheme26) with a second-order
accurate interpolation.

The validity of the numerical code for the GRMHD equations was verified with
several test simulations. The numerical results for standard test problems in rel-
ativistic MHD, including special relativistic magnetized shocks, general relativistic
magnetized Bondi flow in stationary spacetime, and a long-term evolution for a
magnetized disk in full general relativity are presented in Ref. 12).

After solving for the evolution of ρ∗, Si, S0, and Ye together with Bi, we have
to determine the primitive variables, such as ρ, ε, ui, and ut (or w = αut). The first
step in this procedure is to derive the following equation from the definition of Si:

s2 ≡ ρ−2
∗ γijSiSj = (B2 + hw)2(1 − w−2) − D2(hw)−2(B2 + 2hw). (2.38)

Here, B2 and D2 are determined from the variables (ρ∗, Si,Bi) as

B2 =
B2

ρ∗
√

γ̂
and D2 =

(BiSi)2

ρ3∗
√

γ̂
, (2.39)

and to obtain Eq. (2.38), we use the relation SiBi = ρ∗hBiui. Equation (2.38) is
regarded as a function of hw and w−2 for given data set of s2, B2, and D2. The
definition of S0 can also be regarded as a function of hw and w−2:

S0

ρ∗
= hw − P

√
γ̂

ρ∗
+ B2 − 1

2

[
B2w−2 + D2(hw)−2

]
. (2.40)

Thus, Eqs. (2.38) and (2.40) constitute simultaneous equations for hw and w for
given values of ρ∗, Si, S0, Bi, and Ye at each grid point.

In our previous works12)–15) in which the Γ -law or hybrid EOSs are used, a
single algebraic equation for hw can be constituted from Eqs. (2.38) and (2.40).
Then, a Newton-Raphson-type method can be used to obtain hw. In this work, we
use tabulated EOSs for obtaining P , ε, and h (these are functions of ρ, Ye, and T ;
see §2.4 for details). In such a case, it is not easy to apply the same method, because
of the complexity of the EOS. For this reason, we adopt a different iteration method.

At each time step, ρ∗ and Ye are determined from their evolution equations.
Then, ρ should be computed from ρ∗/(

√
γ̂w), but w is the variable determined by
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solving Eqs. (2.38) and (2.40). Thus, we guess a solution for w as a first step and
calculate a trial solution for ρ. For the trial value of w, we chose the value of the
previous time step. For the resulting values of ρ with Ye, Eq. (2.40) can be regarded
as an algebraic equation for T , regarding h and P as functions of T . Then, searching
for the solution from the table, we determine the value of T and, subsequently, P ,
ε, and h.

In the iteration, we have to determine a new trial value of w. For this purpose,
we derive an algebraic equation for w−2 from Eqs. (2.38) and (2.40):

s2 =
(
1 − 1

w2

)(S0

ρ∗
+

P
√

γ̂

ρ∗
+

B2 + D2h−2

w2

)2

− D2

h2w2

(
− B2 +

S0

ρ∗
+

P
√

γ̂

ρ∗
+

B2 + D2h−2

w2

)
. (2.41)

If P and h are regarded as given values, this equation is a 3rd-order algebraic equation
for w−2. Thus, to obtain a new trial value of w, we solve this equation using the
Cardano formula.

We repeat these two procedures until a convergent solution is obtained. In most
cases, the solution is obtained within ∼ 10 iterations. However, in some cases, the
solution is not obtained. The problem that often arises is that the solution for T is
not found in the EOS table. This happens when ε accidentally decreases to a small
value for which the corresponding value of T is absent in the EOS table.∗) In such a
case, we set T to a minimum value that we choose arbitrarily. In the present work,
we choose the minimum value to be 109+2/3 K (see §2.4).

2.4. Equation of state

Dense, hot accretion tori of mass ∼ 0.1–1M� around a black hole of mass 3–
4M� are likely outcomes formed after the gravitational collapse of a massive stellar
core28)–30) and after the merger of a low-mass black hole and neutron star,31)–33) as
indicated by numerical simulations. According to the numerical results, the maxi-
mum density and temperature of the tori are likely to be ∼ 1012 g/cm3 and T ∼ 1011

K. This temperature is high enough to photo-dissociate heavy nuclei, and hence, the
main components of the baryon should be free protons, free neutrons, and α-particles.
Because of this high temperature, electrons are relativistic and electron-positron pair
production is possible in a low-density region. Furthermore, the degeneracy of elec-
trons is high, due to the high density; the chemical potential of the electrons µe is
comparable to or larger than kT . Photons are strongly coupled to the charged par-
ticles, and hence, are trapped and advect with the matter flow. Neutrinos are also
trapped in the high-density region with ρ � 1011 g/cm3, whereas, for the low-density
region, they escape freely from the tori and this contributes to the cooling process.

∗) In the realistic EOSs for high-density matter with ρ ≥ 107 g/cm3, ε is determined primarily

by the radiation pressure for the high-temperature case, whereas it is determined by the electron-

degenerate pressure for the low-temperature case. This implies that ε is proportional to T 1/3 at

high temperature, whereas it approaches a constant for T � µe/k, where µe denotes the chemical

potential of electrons. Therefore, if ε drops below this limiting constant, no solution for T is found.
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We determine the EOS, considering the physical conditions mentioned above.
Our approach is similar to that of Ref. 9). We assume that the torus is composed of
free protons, free neutrons, α-particles, electrons, positrons, neutrinos, and radiation.
Then, the pressure is written

P = Pe + Pg + Pr + Pν , (2.42)

where Pe, Pg, Pr, and Pν are the pressures of electrons and positrons, of baryons, of
the radiation, and of neutrinos.

In the following, we assume that the temperature is high enough (T � 1010

K) that the electrons and positrons are relativistic (i.e., kT � mec
2, where me is

the electron mass). Then, the total pressure of the electrons and positrons can be
determined analytically:34)

Pe =
(kT )4

12π2(–h c)3

[
η4

e + 2π2η2
e +

7π4

15

]
, (2.43)

where ηe ≡ µe/kT .∗) The number densities of electrons and positrons, n− and n+,
are related so as to give an electron fraction Ye of

ρYe

mu
= n− − n+ =

(kT )3

3π2(–h c)3
[
η3

e + ηeπ
2
]
. (2.44)

We note that the assumption kT � mec
2 is not always valid, but for the dense region

of the torus in which we are interested, it holds approximately.9) Equations (2.43)
and (2.44) hold for arbitrary degeneracy as long as the temperature is high enough.

The gas and radiation pressure are written

Pg =
ρkT

mu

1 + 3Xnuc

4
, (2.45)

Pr =
arT

4

3
, (2.46)

where Xnuc is the mass fraction of free nucleons and ar the radiation density constant
(π2k4/15(–h c)3). If the neutrinos of all species are in thermal equilibrium with the
matter, the neutrino pressure is given by

Pν =
7
8
arT

4, (2.47)

whereas the pressure is negligible if they are transparent. In this paper, we follow
the treatment of Ref. 9) and set

Pν =
7
8
arT

4(1 − e−τν ), (2.48)

where τν is the averaged optical depth of the neutrinos.

∗) We reintroduce G and c in §§2.4 and 2.5 to clarify the dimensional units.
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In the present context, the ratio of the radiation pressure to the gas pressure is

Pr

Pg
= 3.0 × 10−2T 3

11ρ
−1
12 , (2.49)

where T11 = T/1011 K, ρ12 = ρ/1012 g/cm3, and we assume that Xnuc = 1. For the
case that the electron is degenerate with ηe ∼ 10, the ratio of the electron pressure
to the gas pressure is

Pe

Pg
≈ 1.2 × 101T 3

11ρ
−1
12

( ηe

10

)4
. (2.50)

Thus, in the main body of the torus with T11 = O(1) and ρ12 = O(1), the gas
pressure is the dominant pressure source if the electrons are mildly degenerate with
ηe <∼ 5, whereas for the case that the electrons are strongly degenerate, the degenerate
pressure is dominant.

The specific internal energy is written

ε = εe + εg + εr + εν , (2.51)

where each term is related to the pressure by

εe =
3Pe

ρ
, εg =

3Pg

2ρ
, εr =

3Pr

ρ
, εν =

3Pν

ρ
. (2.52)

The pressure and specific internal energy should be provided for given values of
ρ, T , and Ye.∗) For this purpose, the chemical potential of electrons, µe, and the free
nucleon fraction, Xnuc, have to be written as functions of (ρ, T, Ye). Equation (2.44)
is used to obtain the functional form of the chemical potential. Then, for simplicity,
we use a fitting formula35) for the mass fraction of the free nucleon,

Xnuc = Min
(
22.4T

9/8
10 ρ

−3/4
10 exp(−8.2/T10), 1

)
, (2.53)

where T10 = T/1010 K and ρ10 = ρ/1010 g/cm3.
We tabulated an EOS table for the ranges ρmin ≤ ρ ≤ 1013 g/cm3 and Tmin ≤

T ≤ 5 × 1011 K. The values ρmin and Tmin are the minimum values that we arbi-
trarily chose to maintain the stability of the numerical computation. Because the
temperature should not be much smaller than mec

2/k, because of our assumption
that the electrons are relativistic, we set the value of Tmin to 109+2/3 K. The value
of ρmin is specified in §3.4.

2.5. Neutrino emission

Several processes contribute to the emission of neutrinos. The most important
ones in the present context are the electron and positron captures onto free nucleons:

p + e− → n + νe, (2.54)
n + e+ → p + ν̄e. (2.55)

∗) In Ref. 9), the authors made the additional assumption that Ye is a function of ρ and T .

However, we do not make this assumption, as it does not always hold in the optically thin region

for dynamical systems.
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These processes change the electron fraction. Assuming that the electrons and
positrons are relativistic, the electron capture rate in the optically thin region for
neutrinos is approximately given by (see Appendix B)

γe0 = Kc

(
kT

mec2

)5

[F4−(ηe)Xp − F4+(ηe)Xn], (2.56)

where Xp and Xn are the mass fractions of free protons and free neutrons, Kc =
ln 2/103.035 s−1, and

F4−(x) = 45.59x +
2π2

3
x3 +

1
5
x5 + 24

(
e−x − 1

32
e−2x +

1
243

e−3x

)
, (2.57)

F4+(x) = 24
(

e−x − 1
32

e−2x +
1

243
e−3x

)
. (2.58)

In the optically thick region for neutrinos, β-equilibrium is assumed to be satisfied
and the electron fraction does not change. In this paper, we simply multiply by
e−τν in order to take into account the opacity effect (diffusion effect) and define the
electron capture rate by

γe = γe0e
−τν . (2.59)

We note that the actual optical depth depends on the neutrino species and neutrino
energy. In this paper, we ignore such a dependence.

As a result of the electron and positron captures, neutrinos are emitted and they
carry away thermal energy of the rate

Q̇cap = Kc
me

mu
ρc2

(
kT

mec2

)6

[F5−(ηe)Xp + F5+(ηe)Xn], (2.60)

where

F5−(x) = 236.65 +
7π

6
x2 +

5π2

6
x4 +

1
6
x6

− 120
(

e−x − 1
64

e−2x +
1

729
e−3x

)
, (2.61)

F5+(x) = 120
(

e−x − 1
64

e−2x +
1

729
e−3x

)
. (2.62)

In addition to electron and positron captures, we consider the annihilation of
electron-positron pairs into thermal neutrinos, nucleon-nucleon bremsstrahlung, and
plasmon decay. For the neutrino emissivity due to electron-positron pair annihila-
tion, we use the fitting formula derived by Itoh et al.36) For the other two, we write
the emissivity as [e.g., Refs. 5), 36), and 37)]

Q̇ff = 1.5 × 1031T 5.5
11 ρ2

12 ergs/cm3/s, (2.63)
Q̇pla = 1.5 × 1032T 9

11γpe
−γp(2 + 2γp + γ2

p) ergs/cm3/s, (2.64)

where γp = 5.565 × 10−2
√

(π2 + 3η2
e)/3.37) Then, we define the total emissivity as

Q̇ = (Q̇cap + Q̇pair + Q̇ff + Q̇pla)e−τν . (2.65)



Magnetohydrodynamics of Neutrino-Cooled Accretion Tori 269

Because Q̇ is the emissivity (cooling rate) measured in the fluid rest-frame, we define
Qµ as38),39)

Qµ = Q̇uµ. (2.66)

With this treatment, the effect of anisotropic emission associated with the matter
motion is taken into account.∗) On the other hand, the effects of radiation transfer
and the heating due to the emitted neutrinos are ignored.

The main source of opacity for neutrinos is scattering by free nucleons and α-
particles. For these processes, the order of the cross section is ∼ 10−42T 2

11 cm2.27)

Because the number density of free nucleons is ∼ 1035ρ11 cm−3, the mean free path
of the neutrinos is roughly

∼ 107 T−2
11 ρ−1

11 cm, (2.67)

which is ∼ 20GM/c2 for black holes of mass 4M�. In this work, we consider accretion
tori of width and thickness ∼ 20–30GM/c2 and maximum temperature ∼ 1011 K.
Hence, we simply set the optical depth to

τν = ζρ11, (2.68)

where ζ is a constant that we set to 1 or 1/3 [i.e., τν = ρ/(1011 g/cm3) or ρ/(3 ×
1011 g/cm3)]. Previous works investigating dense accretion tori (e.g., Ref. 9)) shows
that the neutrinos are optically thick when the density satisfies the condition ρ11 �
1. Thus, the present treatment can capture the neutrino-trapping effect, at least
qualitatively.

2.6. Diagnostics

We monitor the total baryon rest-mass M∗, angular momentum J , internal en-
ergy Eint, rotational kinetic energy Trot, and electromagnetic energy EEM, which are
defined by

M∗ =
∫

ρ∗
√

ηd3x, (2.69)

J =
∫

ρ∗huϕ
√

ηd3x, (2.70)

Eint =
∫

ρ∗ε
√

ηd3x, (2.71)

Trot =
∫

1
2
ρ∗hΩutuϕ

√
ηd3x, (2.72)

EEM =
∫

T tt
EMα

√
ηd3x, (2.73)

where Tµν
EM is the electromagnetic part of the energy-momentum tensor, Ω is the

angular velocity defined by uϕ/ut, and all the integrations are performed outside the
event horizon. For the definitions of Eint, Trot, and EEM, we follow Ref. 14).

∗) As a result of the anisotropic emission, angular momentum is dissipated, but the magnitude

of this effect is much smaller than the loss associated with the infall into the black hole.
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In stationary axisymmetric spacetime, the following relations are derived from
the conservation law of the energy-momentum tensor in the absence of neutrino
cooling:

∂µ
√−gTµ

t = 0, (2.74)
∂µ

√−gTµ
ϕ = 0. (2.75)

From these relations, it is natural to define the energy and angular momentum
accretion rates by the surface integral at the event horizon as

Ė =
∮

r=rH

T r
t

√−gdS, (2.76)

J̇ = −
∮

r=rH

T r
ϕ

√−gdS, (2.77)

where dS = dθdϕ. From the continuity equation, the rest-mass accretion rate is
defined in the same manner as

Ṁ∗ = −
∮

r=rH

ρ∗vrr2
HdS. (2.78)

Because we adopt cylindrical coordinates in the Kerr-Schild coordinates, grid points
are not located at r = rH. To obtain the values there, we use linear interpolations
for all the necessary quantities.

In the presence of neutrino cooling, Eq. (2.74) is written

∂µ
√−gTµ

t = −√−gQ̇ut. (2.79)

Thus, the rate of energy loss by the neutrinos is given by

Lν = −
∫

r>rH

√−gutQ̇d3x. (2.80)

We refer to Lν simply as the neutrino luminosity. Strictly speaking, Lν is the sum
of the energy emission rates of neutrinos toward infinity and toward the black hole
horizon. Thus, the luminosity observed at infinity is smaller than this value, because
a finite fraction of neutrinos emitted at each radius is always swallowed by the black
hole. To roughly infer how much neutrino energy is likely to be swallowed by black
holes, we also compute the quantity

Lν(rph) = −
∫

r>rph

√−gutQ̇d3x. (2.81)

where rph denotes the radius of the limiting circular photon-orbit:27)

rph = 2M
[
1 + cos

{2
3

cos−1(−a/M)
}]

. (2.82)

This radius is characterized by the fact that 50% of massless particles from a sta-
tionary isotropic emitter at r = rph is captured by the black hole.27) To compute
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the luminosity more accurately, it is necessary to multiply by an escape probability
that depends on the position and velocity of the emitter. In the present paper, we
do not take into account such probability but simply calculate the luminosity using
Eq. (2.80) or (2.81).

From Ṁ∗ and Lν , the total rest-mass swallowed by a black hole and the emitted
neutrino energy are defined by

∆M∗(t) =
∫ t

0
Ṁ∗dt′, (2.83)

∆Eν(t) =
∫ t

0
Lνdt′. (2.84)

In the following, we refer to ∆Eν/∆M∗ as the average energy conversion efficiency
to neutrinos.

§3. Initial conditions and setting for computation

3.1. Initial condition for torus

As the initial conditions, we first prepare equilibrium states of a torus rotating
around a black hole with no magnetic field and with no neutrino cooling. Such
equilibria are determined from the first integral of the Euler equation, which has
already been derived for axisymmetric stationary spacetime.40),41) We adopt the
prescription of Ref. 41) because of its simplicity. In Kerr-Schild coordinates, the
derivation of the basic equations is slightly more complicated than in Boyer-Lindquist
coordinates. For example, in Boyer-Lindquist coordinates, we have u� = uz = 0,
whereas they are nonzero in Kerr-Schild coordinates. We have to be careful regarding
this point in setting the initial conditions. For completeness, here, we describe the
basic equations for obtaining equilibria.

First, we assume that the four-velocity has the following components:

uµ = (ut, 0, 0, uϕ). (3.1)

Note that this does not imply that u� and uz are zero, because of the presence of
nonzero off-diagonal components of gµν . Defining the angular velocity Ω ≡ uϕ/ut,
the Euler equation in the stationary axisymmetric system is written in the well-
known form

∂ku
t

ut
− utuϕ∂kΩ − ∂kP

ρh
= 0. (3.2)

In the method of Ref. 41), one assumes

� = −uϕ

ut
= const. (3.3)

Then, Eq. (3.2) can be rewritten as

(∂kut)ut(1 − �Ω) − ∂kP

ρh
= 0. (3.4)
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Now, utut + uϕuϕ = −1 gives ut(1 − �Ω) = −1/ut. Thus, we obtain

∂k ln(−ut) +
∂kP

ρh
= 0. (3.5)

If we assume that the fluid is isentropic, the first law of thermodynamics is used to
rewrite the second term as ∂k ln(h). Thus, we obtain the first integral of the Euler
equation in the same form as that in Ref. 41),

hut = C, (3.6)

where C is an integration constant. Then, using the relation

Ω = − gtt� + gtϕ

gtϕ� + gϕϕ
, (3.7)

we obtain

ut = −
(

g2
tϕ − gttgϕϕ

gϕϕ + 2gtϕ� + gtt�2

)1/2

. (3.8)

Hence, h at each point is determined from Eq. (3.6) for given values of � and C.
Specifically, the configuration of tori is determined by fixing the inner and outer

edges on the equatorial plane. We denote the cylindrical coordinate radii of these
edges by �1 and �2 (> �1). The condition h = 1 at � = �1 and �2 determines
the values of C and � using Eqs. (3.6) and (3.8). Subsequently, the profile for h is
determined from Eq. (3.6).

To derive ρ and P from h, the EOS table is used. In doing so, we have to
further assume relations among ρ, Ye, and T , because h is a function of these three
arguments in the table. In the present paper, we assume that T = 1010 K uniformly
in all regions. Because the tori and its atmosphere formed after stellar core collapse
and the merger of compact objects are likely to be moderately hot at their formation,
this assumption is reasonable. To determine Ye, we use the prescription of Ref. 9):
For optically thick regions, we assume that β-equilibrium holds, i.e.,

p + e− ↔ n + νe, (3.9)

and hence, the ratio of the proton fraction to the neutron fraction is assumed to be
Xp

Xn
= e(Q−µe)/kT , (3.10)

where Q = 1.293 MeV is the difference between the neutron and proton masses.
Here, we assume that the chemical potential of neutrinos is zero for simplicity.

For optically thin regions, we assume that the reaction rates of the processes
given in Eqs. (2.54) and (2.55) are identical and that the number densities of protons
and neutrons are unchanged.42) Under these assumptions, the electron fraction is
approximately given by [see Eq. (12) of Ref. 9)]

Ye =
1 − Xnuc

2
+ Xnuc

[(
1
2

+ 0.487
Q/2 − µe

kT

)
e−τν

+
1

1 + e(µe−Q)/kT
(1 − e−τν )

]
, (3.11)
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where for Xnuc, Eq. (2.53) is used. In this rule with T10 = 1, Ye is smaller than 0.5
for high-density regions with ρ � 1011 g/cm3, whereas for low-density regions, it is
larger than 0.5.

The initial conditions obtained with the present method are not isentropic al-
though we assume isentropic conditions in deriving Eq. (3.6). Thus, the torus is not
exactly in equilibrium. However, in the test simulations with no magnetic field and
no neutrino cooling, we found that the torus approximately remains in the initial
state even after the density maximum orbits the black hole for 10 rotational periods.
With this test, we confirmed that the initial conditions adopted in this method are
approximately in equilibrium.

There are several free parameters for determining the initial conditions: The
black hole mass, M , the black hole spin, a, the mass of the torus, M∗, and the
density profile of the torus. We fix the black hole mass to 4M�. Such a black hole
is a plausible outcome, forming soon after the stellar core collapse of massive star
and after the merger of black hole-neutron star binaries. Because we do not know a
plausible value of the black hole spin, numerical computations were systematically
performed for a wide range of a. A plausible mass of a torus formed in the vicinity of
a black hole is a few tenths of M�. In the present work, we choose M∗ ≈ 0.1–0.4M�.
Because we consider compact tori rotating around a black hole, the inner edge of the
torus is chosen to be slightly outside of the radius of the innermost stable circular
orbit (ISCO) as �1 = 5–7M . Then, for a fixed value of M∗, the location of the
outer edge is automatically determined to be ≈ 30–40M for an � = constant angular
momentum profile.

In Table I, we list parameter values for selected models adopted in the nu-
merical simulation. For models A–E, the torus mass is approximately given by
M∗ ≈ 0.25M�, whereas the black hole spins are all different. For models F–J, the
black hole spin is fixed to a/M = 0.75, whereas the mass and inner edges of the
torus are different. In Table II, we list the parameters for a test particle orbiting
a black hole at the ISCO for several values of a/M . These are key quantities for
determining the neutrino luminosity and the conversion efficiency of the rest-mass
energy to neutrinos (see §4 for discussion).

An important feature found from Table I is that for (approximately) fixed values
of M , M∗, and the radius of the torus, the maximum density is higher for larger values
of a (compare models A–E). It is also found that for fixed values of M , M∗, and a,
the maximum density is higher for smaller values of the rotation radius of the torus.
For larger values of a, the radius of the ISCO on the equatorial plane is smaller
(see Table II), and hence, the torus can be more compact, thereby increasing the
maximum density. All these features imply that for larger values of a, the density can
be higher. Because the optical depth of neutrinos depends strongly on the density
for ρ � 1011 g/cm3, this dependence of the maximum density on the black hole spin
plays an important role in determining the neutrino luminosity.

In Fig. 1(a), we plot density contour curves for model D (cf. Table I). It is seen
that the torus has a geometrically thick structure in which the width �2 − �1 is
comparable to the maximum thickness, ∼ 30M . This is a universal property that
holds for all the models.
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Table I. Parameter set for the adopted models. The spin parameter of the black hole, the rest-mass

of tori, the coordinate radius of the inner and outer edges, �1 and �2, of tori, the maximum

density of tori, Eint/M∗, Trot/M∗, J/M∗, and the rotation period at the density maximum, Pc,

of tori. For every model, the black hole mass is fixed to be M = 4M�, and the ratio of the

electromagnetic energy to Eint is 1/200. �1 and �2 are given in units of M , and Eint and Trot

are in units of M∗/100.

Model a/M M∗ (M�) �1, �2 ρmax(g/cm3) Eint Trot J/M∗ Pc/M ζ

A 0 0.244 6.4, 41 3.5 × 1011 0.85 3.3 4.03 248 1

A2 0 0.248 6.4, 41 3.6 × 1011 0.85 3.3 4.03 248 1/3

B 0.25 0.240 6 , 36 4.7 × 1011 0.94 3.7 3.82 219 1

B2 0.25 0.243 6 , 36 4.7 × 1011 0.93 3.7 3.82 219 1/3

C 0.5 0.249 6 , 34 5.4 × 1011 0.99 3.7 3.70 207 1

C2 0.5 0.253 6 , 34 5.5 × 1011 0.99 3.7 3.69 207 1/3

D 0.75 0.247 6 , 32 6.1 × 1011 1.0 3.8 3.58 203 1

D2 0.75 0.251 6 , 32 6.1 × 1011 1.0 3.8 3.58 203 1/3

E 0.9 0.247 6 , 31 6.4 × 1011 1.1 3.8 3.51 197 1

E2 0.9 0.251 6 , 31 6.5 × 1011 1.1 3.8 3.51 197 1/3

F 0.75 0.237 4.8 , 24.6 1.2 × 1012 1.3 4.9 3.27 146 1

G 0.75 0.132 6.9 , 33 2.8 × 1011 0.82 3.5 3.74 241 1

H 0.75 0.146 6.6, 31.8 3.4 × 1011 0.87 3.6 3.68 227 1

I 0.75 0.366 5.4, 31.2 1.0 × 1012 1.2 4.1 3.45 173 1

J 0.75 0.397 6.0, 36 7.8 × 1012 1.1 3.5 3.61 209 1

Table II. Quantities for a test particle orbiting a black hole at the ISCO for various values of

the black hole spin. The value of the r coordinate of the ISCO, rISCO, the specific energy at

the ISCO, EISCO, and the specific angular momentum at ISCO, JISCO. The fifth and sixth

columns list rH and rph. Note that the � coordinate on the equatorial plane is related to r by

� =
√

r2 + a2. In this paper, we refer to 1−EISCO as the specific gravitational binding energy

at the ISCO.

a/M rISCO/M EISCO JISCO/M rH/M rph/M

0 6.000 0.9428 3.464 2.000 3.000

0.25 5.156 0.9331 3.221 1.968 2.695

0.50 4.233 0.9179 2.917 1.866 2.347

0.75 3.158 0.8882 2.489 1.661 1.916

0.90 2.321 0.8442 2.100 1.436 1.558

Figure 2 plots the angular velocity Ω as a function of the cylindrical radius on
the equatorial plane. It is found that the torus has a differentially rotating velocity
field with the steepness of the differential rotation |d lnΩ/d ln�| ≈ 2, steeper than
the Keplerian law. This is also a feature of the � = constant velocity profile.

3.2. Magnetic field

To induce angular momentum transport during the evolution, a weak poloidal
magnetic field is initially added to the equilibrium torus. In the present work, the
profile of the magnetic field is chosen following Refs. 16)–18) as

Aϕ =
{ A0(ρ − ρ0) for ρ ≥ ρ0,

0 for ρ < ρ0,
(3.12)
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(a) (b)

Fig. 1. (a) Density contour curves of initial conditions for model D. The contour curves are drawn

for ρ = 1012−0.5i g/cm3 with i = 1–10. The atmosphere is included in these initial conditions.

(b) The same as (a) but for magnetic field lines.

Fig. 2. Angular velocity as a function of the cylindrical radius on the equatorial plane for model

D.

where A0 is a constant that specifies the magnetic field strength and ρ0 is a cutoff
density; the magnetic field is initially non-zero only in the region with ρ > ρ0. Here,
A0 is chosen such that the ratio of the magnetic energy to the thermal energy is
1/200, and ρ0 is chosen as 0.2ρmax, where ρmax is the maximum density of the torus.
Because the magnetic field is weak, the equilibrium configuration is not essentially
modified by the magnetic force.

In Fig. 1(b), we show the magnetic field lines for model D (cf. Table I). Com-
paring Fig. 1(a), it is seen that the magnetic field is initially present in a localized
region near the density maximum because the density of the torus decreases rapidly
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in the direction of the surface.
Tori both with the poloidal magnetic field and with differential rotation are

subject to winding of the field lines and subsequent magnetic braking.23) In addition,
they are subject to the magnetorotational instability (MRI).24) Due to the winding
of the magnetic field lines, the toroidal magnetic field BT grows linearly with time
in the early phase of the numerical simulation as [e.g., Ref. 14)]

BT ≈ tB� ∂Ω

∂ ln�
∼ −2ΩtB�. (3.13)

This amplification continues until the magnetic energy of the toroidal field becomes
a few tenths of the rotational energy (cf. §4.1.1). After the amplification stops,
the magnetic braking transports the angular momentum outwards. For the present
initial conditions with which EEM/Trot ∼ 0.001, the field growth saturates when BT

becomes ∼ 30B�. This implies that the field growth stops at t ∼ 15Ω−1 ∼ 2Po,
where Po denotes the local rotational period. Because the magnetic field is confined
near the density maximum, the expected saturation time is ∼ 2–3Pc, where Pc is the
rotation period at the density maximum.

The growth time (e-folding time) and wavelength of the fastest-growing mode
of the MRI in the Newtonian theory are approximately given by [e.g., Refs. 24) and
15)]

tMRI = 2
∣∣∣∣ ∂Ω

∂ ln�

∣∣∣∣
−1

, (3.14)

λmax =
2πvz

A

Ω

[
1−
(

κ

2Ω

)4]−1/2

, (3.15)

where κ is the epicyclic frequency of Newtonian theory,

κ2 ≡ 1
�3

∂(�4Ω2)
∂�

, (3.16)

and vz
A ≡ √BzBz/ργ̂ is the approximate Alfvén velocity of the z component. In

general relativity, the growth rate is modified, but it agrees with Eq. (3.14) within
∼ 30%.25) As in the case of the field winding, the growth time scale of the MRI is of
order Pc. With the present initial conditions, we have |vz

A| ≈ 10−2 and Pc ∼ 200M at
the density maximum (see Table I), resulting in λmax ∼ 2M . Because this is smaller
than the width of tori, the MRI should play an important role in transporting the
angular momentum and driving the turbulent motion in the accretion torus. We
also note that the grid spacing is chosen to be typically 0.15M , so that the MRI
can be resolved in numerical simulations. We note that with the present models as
described above, we have EEM/Eint = 1/200. If the magnetic field strength is smaller
than its present initial strength by a factor of more than 5–10, then the wavelength
λmax is too small to be resolved. If the magnetic field strength is chosen to be too
large, λmax is so large that the MRI does not play an important role. The present
choice of the field strength is appropriate for taking into account both the effects of
the magnetic braking and the MRI.
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It is known that non-magnetized tori with � = constant is often unstable with
respect to the runaway instability (see, e.g., Ref. 43) and references cited therein).
However, in the present model, the angular momentum of tori is redistributed by
the magnetic braking and the MRI on a short time scale of ∼ 2–3Pc, and then a
quasistationary accretion state, which has a less steep velocity profile, and hence, is
stable with respect to the runaway instability, is established. The resulting quasista-
tionary state is expected to depend only weakly on the initial profile of the angular
momentum distribution, and thus, the numerical results should not depend strongly
on the given velocity profile.

3.3. Preparation of grid and boundary conditions

A numerical simulation is performed in a nested grid zone; we divide the compu-
tational domain into three zones and follow each zone with a different grid spacing.
The computation in the innermost zone is carried out with the finest grid spacing
∆. This zone covers the square domain satisfying 0 ≤ X ≤ 48M , except for the
inner square patch with 0 ≤ X ≤ 0.8rH, which is excised. Here, X denotes � and
z. The second and third zones cover 0 ≤ X ≤ 96M and 0 ≤ X ≤ 192M , with
the grid spacings 2∆ and 4∆, respectively. At the outer boundaries of the first and
second zones, values linear-interpolated from the 1-level larger zone are assigned as
the boundary values. Specifically, the interpolation is performed for ρ∗, ûi ≡ hui,
T , Ye, and Bi. Then, P and h are determined using the EOS table, and finally, Si

and S0 are determined. At the outer boundaries of the third zone, we use an outflow
boundary condition. The inner boundary condition at X = 0.8rH, which is located
well inside the event horizon, is arbitrary because it is inside the black hole, and
backflow are automatically prohibited.

The numerical simulation for the innermost zone is performed with ∆ = 0.15M
and 0.2M . For models D and E (see Table I), short-term simulations are performed
with smaller grid spacings of ∆ = 0.1M or 0.12M to check the convergence. We
find that even for ∆ = 0.2M , the torus is well resolved with the present model and
parameter values. Thus, quantities such as the total rest-mass, the rotational kinetic
energy, and the electromagnetic energy depend weakly on the grid resolution. The
accretion rates at each time step, Ṁ∗, Ė, and J̇ , which are evaluated at the event
horizon of radius ≤ 2M , depend more strongly on the grid resolution. However,
an approximately convergent solution is obtained with ∆ = 0.15M (see §4.1). The
neutrino luminosity and the total emitted energy also depend strongly on the grid
resolution, because the luminosity depends on a high power of the temperature,
and hence a slight change in the temperature results in a significant change in the
luminosity. However, we found that the total emitted energy converges within 20–
30% for ∆ = 0.15M . The convergence tends to be slower for larger values of a. The
reason for this is that a larger value of a results in smaller radii of the event horizon
and the ISCO, and thus a better grid resolution is required.

3.4. Atmosphere

Because any conservation scheme of hydrodynamics is unable to evolve a vacuum,
we have to introduce an artificial atmosphere outside the tori. In particular, in the
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MHD simulation, an artificial atmosphere of moderately large density is necessary
because the computation often crashes when the ratio of the magnetic energy density
to the rest-mass energy density exceeds a critical value. (In our present code, the
critical value is ∼ 104–105.) As the rule for introducing the atmosphere, we adopt
the floor method proposed in Refs. 17) and 18). Specifically, when the density drops
below a critical value, it is reset immediately. We choose a position-dependent critical
density ρcrit as

ρcrit = Max
[
ρmin, Min

(
ρmin(r/50M)−2, 300ρmin)

]
. (3.17)

Our fiducial value for ρmin is 1019/3 g/cm3. The floor-density prescription sacrifices
the exact conservation of energy, rest-mass, and angular momentum. To elucidate
the dependence of the numerical results on the value of the floor, we performed test
simulations for model D using

ρcrit = Max
[
ρmin, Min

(
ρmin(r/50M)−2, 150ρmin)

]
, (3.18)

with ρmin = 1020/3 g/cm3, and

ρcrit = Max
[
ρmin, Min

(
ρmin(r/50M)−2, 100ρmin)

]
, (3.19)

with ρmin = 1019/3 g/cm3. We found that because the floor density is much smaller
than that of the main body of the tori, the energy, rest-mass, and angular momen-
tum are conserved to within ∼ 10%. We also found that the total energy emitted by
neutrinos and the total accreted rest-mass vary by no mor than ∼ 10% as the floor
values are varied. However, the density of the atmosphere is still high enough to
prevent formation of an outflow of a high Lorentz factor: During its outward prop-
agation, the outflow carries a sufficiently large rest-mass and is thus decelerated.
In other words, the velocity of the outflow depends strongly on the density of the
atmosphere. In the present paper, we do not focus on the properties of the outflow.

§4. Numerical results

Numerical simulations were performed for a wide variety of models, listed in
Table I, and for two or three grid resolutions in each case. The computations were
continued to t ≈ 60 ms (3000M). The total emitted neutrino energy and the total
rest-mass swallowed by the black hole for 0 ≤ t ≤ 50 ms are presented in Table III.
As mentioned in §3.4, these results depend on the density of the atmosphere weakly,
varying by ∼ 10%.

Magnetized accretion torus evolves qualitatively similarly for a choice of the pa-
rameter values. In §4.1.1, we summarize the general features and present the results
for model D. In the subsequent subsections, we clarify the quantitative dependence
of several quantities, such as the neutrino luminosity, maximum density, and maxi-
mum temperature, on the mass and the initial rotation radius of the torus, the spin
of the black hole, and the optical depth.
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Table III. The total energy emitted by neutrinos in units of 1051 ergs, the total accreted rest-mass,

and the conversion efficiency. The time integration was performed for 0 ≤ t ≤ 50 ms. The results

with ∆/M = 0.2 and 0.15 are shown. For models with “—”, simulations were not performed.

∆/M = 0.2 ∆/M = 0.15

Model ∆Eν ∆M∗(M�) ∆Eν/∆M∗(%) ∆Eν ∆M∗(M�) ∆Eν/∆M∗(%)

A 2.2 0.11 1.1 2.0 0.12 0.9

A2 2.8 0.11 1.4 — — —

B 2.4 0.12 1.1 2.5 0.12 1.2

B2 3.3 0.12 1.5 — — —

C 2.7 0.13 1.2 2.5 0.11 1.3

C2 4.0 0.13 1.7 — — —

D 3.4 0.13 1.5 3.7 0.10 2.0

D2 6.2 0.13 2.7 5.3 0.12 2.4

E 5.7 0.11 3.0 4.2 0.10 2.3

E2 — — — 12 0.12 5.8

F 4.1 0.16 1.4 3.7 0.12 1.7

G 1.6 0.054 1.6 1.5 0.050 1.7

H 2.0 0.061 1.9 1.6 0.062 1.4

I 6.2 0.22 1.6 5.0 0.17 1.6

J 6.5 0.23 1.6 5.7 0.18 1.8

4.1. General features: Results for model D

4.1.1. Evolution of torus
In Fig. 3(a), we plot the evolution of the rotational kinetic energy and elec-

tromagnetic energy for model D. For the first ∼ 10 ms, magnetic field strength
is amplified by the winding of the field lines and the MRI due to the presence of
the poloidal magnetic fields and differential rotation. Here, the winding primarily
contributes to the increase of the electromagnetic energy. This is found from the
fact that the electromagnetic energy increases approximately in proportion to t2 for
t <∼ 5 ms [see Eq. (3.13)]. The amplification continues until the electromagnetic
energy reaches ∼ 10% of the rotational kinetic energy. After the field growth sat-
urates, transport of angular momentum and the resulting mass accretion onto the
black hole are enhanced. The strong magnetic field subsequently induces turbulent
matter motion driven by the MRI. As a result, shocks are generated and heat the
matter, in particular for the inner part of the torus, up to ∼ 1011 K. This contributes
to quick rise of the neutrino luminosity in the first ∼ 10 ms (see Fig. 5). At the same
time, rotational kinetic energy is converted to thermal energy through the magnetic
effects. Due to this effect, together with accretion, the rotational kinetic energy (as
well as the internal energy) quickly decreases for t <∼ 30 ms. For comparison, we
show the evolution of the rotational kinetic energy obtained in the simulation of a
non-magnetized torus. This reveals that the torus does not change much only in the
presence of neutrino cooling.

For t � 30 ms, no sharp decrease of the rotational kinetic energy nor sharp
increase of the electromagnetic energy is observed. This indicates that the torus
relaxes to a quasistationary accretion state. In this phase, the rotational kinetic
energy gradually decreases as a result of the mass accretion.
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Fig. 3. (a) Evolution of the rotational kinetic energy and electromagnetic energy in units of the

initial value of the rest-mass, M∗0, for model D with ∆/M = 0.1, 0.15, and 0.2. For comparison,

the results with no magnetic field and with ∆/M = 0.2 are also shown. (b) The same as (a),

but for the maximum density. (c) The same as (a), but for the maximum temperature. (d) The

same as (a), but for the maximum value of Bz in units of the initial maximum value of Bz. (e)

The same as (d), but for the maximum value of By. (f) The same as (a), but for the internal

energy. For comparison, the electromagnetic energy for ∆ = 0.1M is also shown.

Figure 3(b) plots the evolution of the maximum density. For 10 ms <∼ t <∼ 30
ms, we see that it varies violently in the range between ∼ 3 × 1011 g/cm3 and
∼ 2 × 1012 g/cm3. This indicates that in such an early phase, the turbulent motion
is strongly excited. For comparison, the result for the non-magnetized case is also
shown. It is seen that the maximum density increases only gradually with time due
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to neutrino cooling, showing that the torus is approximately in a quasistationary
state. This indicates that the violent time variation of the maximum density in the
early phase is induced by the magnetic effects. By contrast, the maximum density
gradually increases for t � 30 ms. This is due to the fact that the rotation radius
of the torus gradually decreases in the quasistationary mass accretion phase making
the torus compact. [The density maximum is initially located at � ≈ 10M , whereas
it is at � ≈ 5M at t = 40 ms; cf. Fig. 6(a)].

Because the region with ρ � 1011 g/cm3 is optically thick with respect to neutri-
nos, a fraction of the neutrinos are trapped by the matter flow,4),9) and this reduces
the fraction of neutrinos that escape to infinity. This fact is clarified in §4.4, which
displays the dependence of the neutrino luminosity on ζ. The neutrino-trapping
effect always plays a role for tori of mass � 0.1M� in the model studied presently
because ρmax of such tori is ≥ 1011 g/cm3 (cf. §4.2).

Figure 3(c) plots the evolution of the maximum temperature. Because of shock
heating, the temperature quickly rises in the first ∼ 10 ms. Then, the maximum
temperature reaches ∼ 1011 K and relaxes approximately to a constant value. This
is a qualitatively universal feature for the tori considered in this paper. The value
of the maximum temperature depends on the spin of the black hole and the mass of
the torus. (cf. §§4.2 and 4.3).

Figures 3(d) and (e) plot the evolution of the maximum values of |Bz| and |By|
in units of the initial maximum value of |Bz|. In the early phase, the poloidal
component of the magnetic field grows in an exponential manner, indicating that
the MRI occurs. By contrast, the toroidal component |By| increases linearly with
time due to the winding of the magnetic field lines. This property is also seen in
Fig. 3(a), where the electromagnetic energy increases in proportion to t2 for t <∼ 5
ms. After the amplification of the magnetic field, the electromagnetic energy density
becomes comparable to the internal energy density [see Fig. 3(f)]. Then the growth
of the field saturates. This is also one of the universal features for the evolution of
magnetized tori, irrespective of the mass of the tori and the black hole spin.

Figures 3(b)–(e) show that numerical results for the maximum density, maximum
temperature, and maximum magnetic field strength do not depend strongly on the
grid resolutions. This indicates that the simulation with ∆ = 0.15M , which is a
typical choice for the grid resolution, provides a result of good convergence. We note
that this is also the case for any value of a ≤ 0.9M , although higher grid resolution
is required for larger values of a, because the coordinate radius of the event horizon
is smaller in this case.

4.1.2. Evolution of accretion rates
In Fig. 4, we plot the evolution of the rest-mass accretion rate, Ṁ∗, accretion

time scale, M∗(t)/Ṁ∗, and energy and angular momentum accretion rates, Ė and J̇ ,
in units of Ṁ∗. It is seen that as the electromagnetic energy increases [see Fig. 3(a)],
the mass accretion rate quickly increases, and when the growth of the magnetic field
saturates, it reaches ∼ 10M�/s. Then, it gradually decreases and eventually relaxes
to ∼ 1–2M�/s in a quasistationary state. We note that the accretion rate depends
on the mass of torus and on the black hole spin (see §§4.2 and 4.3).



282 M. Shibata, Y. Sekiguchi and R. Takahashi

Fig. 4. Evolution of (a) the rest-mass accretion rate, Ṁ∗, (b) the accretion time scale, M∗/Ṁ∗, (c)

the energy accretion rate in units of the rest-mass accretion rate, Ė/Ṁ∗, and (d) the angular

momentum accretion rate in units of the rest-mass accretion rate, J̇/Ṁ∗, for model D with

∆/M = 0.1, 0.15, and 0.2.

The associated accretion time scale for t <∼ 30 ms is violently time-varying with
the average value of ∼ 50 ms, but it relaxes to ∼ 0.1–0.2 s in the quasistationary
state. In a previous work9) in which the α-viscosity is used for the evolution of a
neutrino-cooled torus of mass ≈ 0.3M�, the accretion time scale is ∼ 50 ms for the
α-viscous parameter value αv = 0.1 and ∼ 0.5 s for αv = 0.01. The present numerical
results approximately correspond to the case that αv ≈ 0.1 for the early phase and
αv ≈ 0.04 for the quasistationary phase. This is a universal feature for any values of
the mass of the torus and the black hole spin.

The ratio of the energy accretion rate to the mass accretion rate, Ė/Ṁ∗, is
∼ 0.85–0.9 for the high-resolution runs. One may think that this is a reasonable
result, because the ratio of the specific energy to the rest-mass energy of a test
particle rotating around a Kerr black hole of a/M = 0.75 at the ISCO is ≈ 0.89 (see
Table II). However, this is an accidental coincidence, as can be understood from the
following two points. (i) The torus is not composed of test particles but fluid with
a significant internal energy obtained by shock heating. Due to the contribution of
the specific internal energy, the value of Ė should increase beyond that of the test
particles. (ii) The accreting matter loses kinetic energy as it falls into the black hole



Magnetohydrodynamics of Neutrino-Cooled Accretion Tori 283

Fig. 5. Evolution of (a) the neutrino luminosity, Lν , and (b) the efficiency of the conversion to

neutrinos, Lν/Ṁ∗, for model D with ∆/M = 0.1, 0.15, and 0.2. Here, “ph” denotes the result

for the case that the luminosity is given by Eq. (2.81), which approximately overlaps with Lν ,

as the difference is less than 10%.

from the ISCO due to the magnetic stress. This effect should reduce the value of Ė.
In the present case, these two effects approximately cancel each other.

The ratio J̇/Ṁ∗ is found to be ∼ 1.5–2.3, which is smaller than the value of
the specific angular momentum for a test particle orbiting at the ISCO, ≈ 2.5 (see
Table II). This indicates that during the infall of matter into the black hole from
the ISCO, the magnetic stress extracts angular momentum, which is transported
outwards along the field lines, as in the case of Ė. This effect was pointed out in
Ref. 17).

4.1.3. Neutrino luminosity
Figure 5 plots neutrino luminosity Lν and the efficiency of the conversion to

neutrinos (defined by the ratio of the neutrino luminosity to the rest-mass energy
accretion rate, Lν/Ṁ∗c2). Soon after the magnetic field growth saturates at t ∼ 10
ms, the neutrino luminosity reaches a maximum of ∼ 2 × 1053 ergs/s as a result of
shock heating by violent matter motion induced by magnetic stress. Then, for 10 ms
<∼ t <∼ 30 ms, during which there is significant turbulent matter motion (cf. §4.1.1),
it remains � 1053 ergs/s. For t � 30 ms, the accretion rate gradually decreases,
and so does the neutrino luminosity. In the quasistationary phase for t � 30 ms, we
have Lν ∼ 1–5 × 1052 ergs/s. As shown in subsequent sections, these values for the
neutrino luminosity depends on the mass of the torus and the black hole spin.

We derive the neutrino luminosity by simply integrating the emissivity outside
the event horizon. In an actual system of this kind, a fraction of the neutrinos
emitted in the vicinity of a black hole should be swallowed by it, because of the
strong gravity. To estimate the dependence of the luminosity on the chosen domain
for the integration, we also compute the luminosity, choosing the inner boundary of
integration for the luminosity at r = rph (see the dotted curve in Fig. 5). Note that
only half of the neutrinos emitted by a stationary emitter at r = rph can escape. In
this case, the luminosity is smaller by ∼ 10% than Lν . Thus, the real luminosity
may be ∼ 90% of the value of Lν obtained from the integration for r > rH.
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From the time integration, the total emitted neutrino energy, ∆Eν , and the
total accreted rest-mass for t ≤ 50 ms are calculated, giving 3–4 × 1051 ergs and
∼ 0.1–0.13M� for model D. (Note that these values depend on the grid resolution.)
Thus, ∼ 1.4–2.0% of the total accreted rest-mass energy, ∆M∗c2, is converted into
neutrinos. (For ∆/M = 0.1, 0.15, and 0.2, it is 1.6%, 2.0%, and 1.4%, respectively).
The order of magnitude of this value agrees with the results presented in Refs. 8)
and 9). Our efficiency is smaller by a factor of ∼ 2–3 than those obtained in the
previous works. This is probably because of the differences in the treatments of
the gravitational fields, neutrino opacity, and angular momentum transport process.
Figure 5(b) also shows that the conversion efficiency is in a narrow range (between
∼ 1% and ∼ 3%), close to the average value of Lν/Ṁ∗c2 ∼ 1–2%, for the entire time.

For a/M = 0.75, the maximum hypothetical conversion efficiency is about 11%
(cf. Table II). The results here imply that the conversion efficiency is not as large
as the maximum. Note that the accretion time scale, M∗/Ṁ∗ ∼ 100 ms, is approx-
imately as long as the neutrino emission time scale, Eint/Lν . This implies that a
part of the thermal energy is trapped by the matter flowing into the black hole and
fails to be converted into neutrinos. Indeed, we find that the conversion efficiency
depends strongly on the value of ζ (see §4.4). This is one reason for the relatively
small conversion efficiency. Another reason is that the initial radius of the torus
is ≈ 10M at the density maximum and at most 30M in the present model. The
difference between the specific binding energy at r = 10M and at the ISCO is ≈ 6%,
and hence much smaller than 11%. We note that the radii of the ISCO are larger
for smaller values of the black hole spin. Thus, the conversion efficiency is even
suppressed for smaller values of the black hole spin, as shown in §4.3. On the other
hand, the suppression factor for larger spin with a/M = 0.9 is smaller.

Numerical simulations indicate that the formation of a black hole-torus system
from stellar core collapse and the merger of a black hole and neutron star is divided
into two stages [e.g., Refs. 28)–33)]. In the first stage, the black hole and accretion
torus are formed dynamically. According to our present numerical results, in such
a stage, the amplification of magnetic fields and the subsequent redistribution of
angular momentum proceed violently in the presence of magnetic fields of appreciable
magnitude. As a result, shocks are generated, increasing the temperature of the
torus, and the neutrino luminosity thereby reaches � 1053 ergs/s. In the second
stage, the system relaxes to a quasistationary state. In such a stage, the mass and
spin of the black hole become approximately constant and the accretion proceeds
with a time scale longer than that of the first stage. The present numerical results
indicate that for this stage, the neutrino luminosity is of order 1052 ergs/s.

A characteristic feature found in the MHD simulation is that the luminosity
curve is not smooth, in contrast to that reported in Refs. 8) and 9). This is due to
the fact that in the present simulation, shock heating is associated with turbulent
(i.e. irregular) matter motion driven by highly variable magnetic stress, whereas
in the previous simulations, the heating is induced by α-viscosity, which leads to a
nearly stationary accretion.

The light curve of GRBs is often not smooth.1) If the GRBs are driven by pair
annihilation of neutrino-antineutrino pairs emitted from the torus,1) the luminosity
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curve of neutrinos should also be highly variable. The scenario in which the original
thermal source of neutrinos is attributed to shock heating driven by the chaotic
magnetic activity is thus favorable.

The luminosity and total emitted neutrino energy, ∆Eν , do not depend strongly
on the grid resolution for a/M ≤ 0.75. (The values of ∆Eν for ∆/M = 0.15 and 0.2
agree within ∼ 10–20%; cf. Table III.) This indicates that for computing the lumi-
nosity, a grid resolution with ∆ = 0.2M is acceptable for a ≤ 0.75M .∗) By contrast,
for a = 0.9M , the luminosity and total energy for ∆/M = 0.15 and 0.2 do not agree
well. (The relative error is by 20–30%; cf. Table III.) The reason for this difference is
that the radius of the ISCO is much smaller than in the other models. (The ISCO is
located at � ≈ 2.5M ; cf. Table II.) Because a large fraction of neutrinos are emitted
near the ISCO, the luminosity depends strongly on the resolution near there. For
a ≥ 0.9M , a grid resolution with ∆ = 0.2M is not acceptable for obtaining a result
with good convergence. For a = 0.9M , we performed a simulation with ∆ = 0.12M
and found that the results with ∆ = 0.15M are in good agreement with those with
∆ = 0.12M . This indicates that a grid resolution of ∆ = 0.15M is acceptable even
for a = 0.9M .

4.1.4. Structure of the torus in the quasistationary phase
In Fig. 6, we display color plots and contour curves for the density, temperature,

electron fraction, neutrino emissivity, and ratio of the magnetic pressure to the gas
pressure at t ≈ 40 ms for model D. At t = 40 ms, the accretion torus relaxes to
an approximately quasistationary state. The density maximum of the torus with
ρmax ∼ 1012 g/cm3 is located at � ≈ 5M on the equatorial plane. Only a small
part of the inner region with � <∼ 10M and with |z| <∼ 2M has a density larger
than 1011 g/cm3 and is optically thick. The temperature is also highest, ∼ 1011 K,
for this high-density region, because the cooling is not efficient for such a region,
due to its high opacity. The temperature of the optically thin region with ρ <
1011 g/cm3 is ∼ 3× 1010 K near the equatorial plane. An interesting feature is that
the temperature is not uniformly low in the region above the torus. The reason
for this is that the magnetic stress in the torus induces an outflow which ejects
gas with high temperature. This dilute gas subsequently emits neutrinos, and the
temperature thereby quickly decreases.

As reported in Ref. 9), the electron fraction inside the torus is low, <∼ 0.1.
This reflects the fact that the density is so high that the electrons are highly de-
generate. A typical value of the degeneracy parameter is ηe ∼ 2–4 in the region
with ρ � 1011 g/cm3. Around the envelope of the torus in the low density region
(ρ <∼ 109 g/cm3), by contrast, the degeneracy is low, with ηe < 1 for a large fraction
of the fluid.

Neutrinos are efficiently emitted in the region satisfying � <∼ 10M and |z| <∼ 5M .
The neutrino emissivity is highest near the surface of the torus (not at the density

∗) The mass accretion and neutrino emission rates are induced by magnetic stress, which causes

turbulent motion. As a result, the numerical results for different grid resolutions do not agree at

each moment of time. However, the average values over a duration ∼ 10 ms do not depend strongly

on the grid resolution.
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Fig. 6. Color plots for (a) the density, (b) the temperature, (c) the electron fraction, (d) the neutrino

emissivity, and (e) the ratio of the magnetic pressure to the gas pressure at t ≈ 40 ms for model

D with ∆/M = 0.15. For (d), the region with Q̇ < 1027 ergs/s/cm3 is shaded black. The

contour curves are plotted for (a) ρ = 108+i g/cm3 (i = 0–3), (b) log(T10) = 0, 0.4, and 0.8, (c)

Ye = 0.1×i (i = 1–5, (d) Q̇ = 1028+i ergs/s/cm3 (i = 0, 3), and (e) Pmag/P = 10−2+2i (i = 0–2).

(f) The angular velocity as a function of the cylindrical radius on the equatorial plane (solid

curve). The dotted line denotes MΩ = (M/�)3/2. Note that M ≈ 5.9 km in the geometrical

units.
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maximum), because the region in the vicinity of the density maximum is so dense
that the neutrinos cannot escape. In particular, the region near the inner edge of
the torus has high emissivity. A large fraction of the neutrinos emitted from there
will propagate toward the symmetry axis, where the neutrinos can escape freely, and
hence, the pair annihilation rate of neutrinos and antineutorinos is expected to be
highest in the vicinity and around the symmetry axis of a rotating black hole.

The distribution of Pmag/P exhibits a clear contrast. In the torus, the value of
Pmag/P is much smaller than unity, implying that the gas pressure is dominant. By
contrast, the value near the symmetry axis is much larger than unity, and hence, the
gas pressure is negligible there. This structure has already been found in previous
GRMHD simulations with a simple Γ -law EOS.17),18) The present results show that
the formation of such a distribution of Pmag/P does not depend on the EOS and the
neutrino cooling.

Figure 6(f) plots the angular velocity along the cylindrical radius in the equato-
rial plane. This illustrates that the velocity of the torus is approximately Keplerian
in the quasistationary phase. At the beginning of the simulation, the profile of the
angular velocity is steeper than this, as shown in Fig. 2. Due to the magnetic braking
and the MRI, the angular momentum is redistributed, and the profile of the angular
velocity is modified and becomes Keplerian. The resulting torus is likely to be stable
with respect to nonaxisymmetric instabilities and the runaway instability because of
the Keplerian velocity profile.

4.2. Dependence on the mass and the initial radius of the torus

In Fig. 7(a), we plot the neutrino luminosity as a function of time for models D,
G, and J. The mass of torus varies among these models, while the spin parameter of
the black hole is the same and the initial rotation radii of the torus are approximately
equal at t = 0. Figure 7(a) shows that the luminosity systematically increases
as the mass of the torus increases. This is simply due to the fact that there are
more emitters for the larger-mass models. Because the maximum density is slightly
higher (see Table I), there should be more trapped neutrinos for the larger-mass
models, suppressing the neutrino luminosity. However, this does not decrease the
neutrino luminosity significantly. The temperature is slightly higher for the larger-
mass models [see Fig. 7(b)]. This is one reason that the neutrino luminosity increases
with the torus mass.

The mass accretion rate is larger for the larger-mass models in the early phase,
i.e., for t <∼ 40 ms [see Fig. 7(c)]. As a result, at late times (t � 40 ms), the differences
among the mass accretion rates of the three models are relatively small, resulting in
relatively small differences among the neutrino luminosities. The authors of Ref. 8)
report that the neutrino luminosity is approximately proportional to M∗ for the case
of nonzero α-viscosity. In the present result, the maximum luminosity and total
energy carried by neutrinos are approximately proportional to M∗.

Figure 7(d) plots the conversion efficiency, Lν/Ṁ∗, as a function of time for
models D, G, and J. Although the neutrino luminosity differs significantly among
three models, the conversion efficiency, varying between ∼ 1% and ∼ 5%, does not
depend on the mass of the torus as strongly as the luminosity. The average conversion
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Fig. 7. Evolution of (a) the neutrino luminosity, (b) the maximum temperature, (c) the mass

accretion rate, and (d) the efficiency of the conversion to neutrinos Lν/Ṁ∗, for models D, G,

and J with ∆/M = 0.15. Because the initial rotation radii are slightly larger, the luminosity

and temperature for model G rise at slightly later time than for other models.

Fig. 8. Evolution of (a) the mass accretion rate, Ṁ∗, and (b) the neutrino luminosity, Lν , for

models D and F with ∆/M = 0.15.

efficiency, ∆Eν/∆M∗, is also in a narrow range between 1.4% and 1.8% for models
G–J (see Table III).

To see the dependence of the rest-mass accretion rate and neutrino luminosity
on the initial radius of the torus, we performed a simulation for model F. This model
has the same black hole spin and approximately the same torus rest-mass as model
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D, but it has a smaller initial rotation radius. In Fig. 8, we plot the mass accretion
rate and the neutrino luminosity for models D and F. Because model F has a smaller
radius initially, the mass accretion rate and the neutrino luminosity quickly increase
at earlier times. Also, the peak value of the luminosity for model F is larger by a
factor of ∼ 2 than that for model D, whereas the luminosity at late times is smaller
for model F. However, the total emitted neutrino energy and the efficiency of the
conversion to neutrinos are similar (see Table III).

4.3. Dependence on the black hole spin

Figure 9 plots the mass accretion rate and the neutrino luminosity as functions
of time for models B–E. The black hole spin is different for each of these models,
but the mass and rotation radii of the torus are approximately equal at t = 0. We
find the following. (i) The luminosity for model E is largest among the four models,
whereas the mass accretion rate is smallest for model E, probably because its event
horizon has the smallest area. (ii) The luminosity increases with a by a significant
amount only for a ≥ 0.5M (see also Table III). The magnitude of the luminosity
varies only slightly for a/M = 0–0.5, while the luminosities for models B and C are
approximately the same. (iii) The decay time of the luminosity increases with a for
a/M ≥ 0.5. The facts (i)–(iii) indicate that for a sufficiently large value of the spin,
a � 0.75M , the effect of the black hole spin enhances the neutrino luminosity, but
for smaller values, the luminosity is not significantly enhanced by the spin effect. In
the following, we describe the reasons for these types of behavior.

There are two factors which determine the dependence of the luminosity on
the black hole spin. One is the fact that with larger spin, the radius of the ISCO
decreases as the spin increases (cf. Table II). Then, the gravitational binding energy
at the ISCO (1 − EISCO), which could be converted to thermal energy, increases
as a function of a (cf. Table II). Indeed, the maximum temperature also increases
as a increases [see Fig. 10(a)]. This results in an enhancement of the efficiency for
converting gravitational binding energy into neutrinos. Note that the gravitational
binding energy at the ISCO changes slowly as a function of a for small values of a.
This implies that this effect is not very important for a � M .

The small radii of the ISCO for larger values of the spin also result in the
decrease of the mass accretion rate and in the increase of the accretion time. To
achieve a high neutrino luminosity, a longer accretion time is favorable, because a
fraction of the thermal energy trapped with the matter flowing into a black hole is
reduced. Thus, the case of a large spin has an advantage with regard to enhancing
the neutrino luminosity due to (i) the large binding energy at the ISCO and (ii) the
long accretion time.

The other factor is that for a larger value of a, the rotation radius of the torus
can be smaller. This results in a more compact torus which has a higher temperature
and larger density. As a result of the larger density, (i) the trapped fraction of neu-
trinos is increased, whereas (ii) the neutrino luminosity could be increased because
of the higher temperature and larger density. Figure 10 plots the evolution of the
maximum temperature and density for models B–E. For model B, the maximum
density gradually decreases below 1011 g/cm3, which implies that no trapped neu-
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Fig. 9. Evolution of (a) the mass accretion rate for models B, C, and E with ∆/M = 0.15, and (b)

the neutrino luminosity, Lν , for models B, C, D, and E with ∆/M = 0.15.

Fig. 10. Evolution of the maximum temperature, Tmax, and density, ρmax, for models B–E with

∆/M = 0.15.

trinos exist in the late phase. For model C, ρmax is slightly larger than 1011 g/cm3,
and hence, a small fraction of neutrinos are trapped. For models D and E, in which
ρmax ∼ 1012 /cm3, a large fraction of neutrinos are trapped, whereas the emissivity
is enhanced by the large density.∗)

For models B and C, the above two factors seem to play an accidently identical
role, resulting in similar luminosities.∗∗) For models D and E, on the other hand,
the enhancement of the luminosity at the high temperature and high density plays
a stronger role than the effect of the opacity. Because the luminosity for models
D and E is much larger than for models A–C, the longer accretion time and high
temperature resulting from the large spin play the most significant role in enhancing
the luminosity.

In the present numerical work, there is the additional reason that the conversion

∗) The increase of the maximum density as a function of the spin is partly due to the fact that

the mass accretion rate decreases as a function of the spin.
∗∗) In the discussion of this section, we use numerical results obtained with ζ = 1. If we instead

used ζ = 1/3, the situation would be different. In this case, the fraction of trapped neutrinos is

small for model C2, and hence, the luminosity for this model is larger than that for model B2.
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efficiency increases rapidly with the spin for a/M � 0.75. As mentioned above, the
radius of the ISCO for black holes of larger spins is smaller, and a larger fraction
of the rest-mass energy can be converted into thermal energy (cf. Table II). In the
present model, the density maximum for the torus is initially located at ∼ 10M .
For smaller values of the spin, then, the possible conversion rate for matter near the
density maximum is much smaller than the maximum allowed value given in Table
II, because the difference between the specific binding energy at the ISCO and at
the density maximum is much smaller than the specific binding energy at the ISCO.
For large values of the spin with a → M , by contrast, the difference is close to the
specific binding energy at the ISCO. This is one reason that the conversion efficiency
for models D and E is much larger than those for other models.

4.4. Dependence on ζ

In this subsection, we compare the results for pair models for which the black
hole spin and properties of the torus are identical but the rule for identifying the
optically thick region for neutrinos is different. We determine that the region with
ρ11 ≥ 1 is optically thick for models A–E, whereas the region with ρ11 ≥ 3 is for
models A2–E2.

Figure 11(a) plots the evolution of the neutrino luminosity, Lν , and the con-
version efficiency, Lν/Ṁ∗, for models D and D2. Because the optically thin region
is wider, the neutrino luminosity for model D2 is higher than that for model D, in
particular in the early phase, with t <∼ 30 ms. The relative difference is ∼ 30–40%.

The conversion efficiency, Lν/Ṁ∗, for model D2 is larger than that for model D,
reflecting the higher luminosity for model D2. It often reaches 10% and is ∼ 2.5%(∼
∆Eν/∆M∗c2) on average. Nevertheless, it is smaller than the maximum value, ∼
11%. Recalling that the accretion time scale, M∗/Ṁ∗ ∼ 100 ms, is approximately as
long as the neutrino emission time scale, Eint/Lν , this implies that a large fraction
of the neutrinos are still trapped by the matter and advected into the black hole,
thus failing to escape from the torus. Indeed, the maximum density for model D2 is
larger than 3 × 1011 g/cm3 for most of the time [see Fig. 11(d)].

Figure 11(c) plots the evolution of the neutrino luminosity for models A and A2.
As in models D and D2, the luminosity for model A2 is larger than that for model A.
However, the difference is not as large as that between models D and D2. The reason
for this smaller difference is that the density of the torus for models A and A2 is not
as large as that for models D and D2 [see Figs. 10(b) and 11(d)]. In particular, for
t � 20 ms, the density is smaller than 1011 g/cm3, and hence, no region is optically
thick for models A and A2. We conclude that for a torus with small values of a and
with mass ≈ 0.25M�, the neutrino luminosity depends only weakly on the value of
ζ (� 1/3).

The same conclusion is reached for tori of small mass which would have densities
smaller than 1011 g/cm3. (Compare the maximum densities for models D, F–J in
Table I.) Actually, only a small fraction of a torus with M∗ <∼ 0.1M� is optically
thick for a ≤ 0.75M . For a ∼ 0, the neutrino-trapping effect plays an important role
only for massive tori with M∗ � 0.3M�. For large values of a, i.e., for a � 0.75M ,
by contrast, neutrino trapping plays a role even for M∗ ∼ 0.1M�.
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Fig. 11. Evolution of (a) the neutrino luminosity, Lν , and (b) the efficiency of the conversion to

neutrinos, Lν/Ṁ∗, for models D and D2 with ∆/M = 0.15. (c) The same as (a), but for models

A and A2 with ∆/M = 0.2. (d) Evolution of the maximum density for models A2, D2, and E2.

(e) The same as (a), but for models E and E2 with ∆/M = 0.15. (f) The same as (b) but for

models E and E2 with ∆/M = 0.15.

In Fig. 11(e), we plot the evolution of the neutrino luminosity for models E and
E2. In contrast to the results for a ≤ 0.75M , the luminosities for ζ = 1 and 1/3
differ significantly. The reasons are that (i) for a = 0.9M , the rotation radii of the
torus can be small enough (� ∼ 2.5M ; see Table II) to constitute a compact torus
and that (ii) the accretion time scale is long enough to halt quick accretion for large-
spin black holes. Consequently, the density can increase to � 1012 g/cm3 even with
M ≈ 0.25M� [see Fig. 10(b)]. Because the optically thick region is large for such
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accretion flow, the decrease of ζ significantly increases the size of the optically thin
region and the luminosity.

In Fig. 11(f), the evolution of the conversion efficiency, Lν/Ṁ∗, is plotted for
models E and E2. It is seen that the conversion efficiency for model E2 is about
2.5 times as large as that for E. For a = 0.9M , the hypothetical maximum conver-
sion efficiency is about 15.5% (cf. Table II). For model E2, the average conversion
efficiency (∆Eν/∆M∗) is ∼ 6%, which is thus ∼ 40% of the maximum value. For
a ∼ M , approximately 40% of the rest-mass energy may be converted into thermal
energy.27) Our results for model E2 suggest that a conversion efficiency of ∼ 20%
may be possible for a ∼ M .

We determine the neutrino optical depth in a simple qualitative way, using
the local density. In an actual system, the optical depth depends on the density
distribution, temperature profile, neutrino energy, geometry of the black hole, and
path of neutrinos in the curved geometry. Although the assumption τν = ζρ11 is not
bad qualitatively, the error is not small quantitatively: Comparing the results for
ζ = 1 and 1/3, we infer that the error in the luminosity is approximately a factor of
2–3 for large values of the black hole spin. To obtain the neutrino luminosity more
accurately, it is necessary to adopt a more sophisticated method for determining the
optical depth, in particular for large values of a. This is beyond scope of this paper
and left for future study.

§5. Summary and discussion

5.1. Summary

We have reported our first numerical results of a GRMHD simulation for neutrino-
cooled accretion tori. We solved the GRMHD equations in the fixed gravitational
field of Kerr black holes of mass 4M� with a realistic EOS and with neutrino cool-
ing. The simulation was carried out systematically for a wide range of values of the
black hole spin and the torus mass. Below we summarize the results of the numerical
simulation.

• In the presence of both poloidal magnetic fields and differential rotation, the
magnetic field strength is amplified by the winding of the field lines and by the
MRI until the electromagnetic energy reaches ∼ 10% of the rotational kinetic
energy. Then, the magnetic stress induces angular momentum transport via
magnetic braking and the MRI, resulting in a quasistationary accretion onto
the black hole. It also drives turbulent motion of matter, which subsequently
generates shocks that convert kinetic energy into thermal energy. Through these
processes, the temperature of the torus increases typically to ∼ 1011 K. The
ratio of the electromagnetic energy to the rotational kinetic energy is maintained
at ∼ 10% in the quasistationary accretion phase. This electromagnetic energy
is comparable to the internal energy in the quasistationary phase.

• The maximum density of the torus takes values in a wide range, between ∼
1010 g/cm3 and ∼ 1012 g/cm3, depending on black hole spin a and mass of the
torus M∗. For larger values of a, the maximum density tends to be higher for a
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given value of M∗, because (i) the location of the ISCO is closer to the horizon,
leading to a more compact torus, and (ii) the accretion rate is suppressed by
the small ISCO radius, halting the infall of the matter and resulting in the
formation of a higher-density region near the ISCO. For a larger torus mass,
the maximum density becomes larger.

• In the case that the density is sufficiently high, some of the neutrinos are trapped
in the accretion flow, which suppresses the neutrino emission rate. This tends
to happen for large values of a and for large values of the torus mass.

• Before the torus relaxes to a quasistationary state, the accretion rate reaches
∼ 10M� /s, but after it relaxes, a typical accretion rate is ∼ M� /s. The
corresponding accretion time scale is ∼ 50 ms in the early phase, but it relaxes
to 100–200 ms in the quasistationary state. This accretion rate is in agreement
with that in the case that an α-viscosity in the range αv = 0.01–0.1 is included.

• The maximum neutrino luminosity is a few ×1053 ergs/s for the torus mass
M∗ ≈ 0.25M�, irrespective of the value of the black hole spin for 0 ≤ a/M ≤ 0.9.
(For a = 0.9M and ζ = 1/3, the maximum reaches exceptionally 1054 ergs/s.)
In the quasistationary phase, it is between 1052 ergs/s and 1053 ergs/s, which
depends strongly on the black hole spin. The efficiency of the conversion to
neutrinos, Lν/Ṁ∗, is between 1 and 10 %. This value depends on the black hole
spin and the effect of neutrino trapping. The total emitted neutrino energy is
2 × 1051–2 × 1052 ergs for M∗ ≈ 0.25M�. This also depends strongly on the
black hole spin and the effect of neutrino trapping.

• The neutrino luminosity, Lν , and the total emitted neutrino energy depend
strongly on the mass of the torus, M∗. The maximum value of the luminosity
and the total emitted energy are approximately proportional to M∗ for M∗ <∼
0.4M�.

• Neutrinos are emitted efficiently in the region with � <∼ 10M and |z| <∼ 5M .
In particular, the neutrino emissivity is highest near the inner surface of the
accreting torus.

• The neutrino luminosity and the conversion efficiency for a � 0.75M are larger
by a factor of � 2 than those for a = 0. However, moderate values of the spin
(a <∼ 0.5M) do not help to significantly increase the luminosity for a torus of
mass M∗ = 0.1–0.4M�.

• If the accretion flow is optically thin with respect to neutrino transport, the
efficiency of the conversion to neutrinos may be larger than ∼ 10% for a � 0.9M .

5.2. Implications for GRBs

Because neutrinos are emitted most efficiently near the inner surface of accreting
torus, neutrino-antineutrino pair annihilation is expected to occur in the vicinity of
the rotation axis of a black hole. As a result, a pair plasma of electrons and positrons
may be generated, forming a fireball near the rotation axis. If the energy density of
this fireball is sufficiently high, it can drive GRBs.1) Setiawan et al.8) estimated the
luminosity of gamma rays, and found that it could be Eνν̄ ∼ 1050–1051 ergs/s for
Lν ∼ 1053 ergs/s. Such a large value would be sufficiently high to generate GRBs if
the total baryon mass in the vicinity of the rotation axis is sufficiently small.44) We
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find that the neutrino luminosity is ∼ 1053 ergs/s for a torus mass of � 0.2M� and
black hole mass of 4M�, irrespective of the black hole spin. It is believed that such a
system may act as the central engine of GRBs (specifically, GRBs of short duration).
In particular, for large values of a close to unity, the efficiency of the conversion to
neutrinos could be high, and a strong GRB would then be driven.

In our present treatment, the heating of matter by neutrinos emitted from the
torus and neutrino-antineutrino pair annihilation are not taken into account. In an
actual system, neutrino heating will help the formation of matter outflow, which will
contribute to sweeping baryons around the rotation axis.

The neutrino luminosity decreases as a function of the torus mass. For a torus
of mass ∼ 10−2M�, the luminosity is likely to be at most ∼ 1052 ergs/s. Because
the pair annihilation rate of a neutrino-antineutrino process is proportional to the
square of the neutrino luminosity, Eνν̄ is likely to be <∼ 1049 ergs/s, and hence, tori
of small mass are unlikely to drive the observed GRBs. Numerical simulations have
shown that the merger of binary neutron stars of sufficiently large mass can produce
a system consisting of a rotating black hole and a torus of spin a/M = 0.7–0.8 (e.g.,
Refs. 45) and 46)). However, the torus mass is in general small, � 0.1M�, unless
the mass ratio of the two neutron stars is sufficiently small, <∼ 0.7–0.8. Even for a
small mass ratio of ∼ 2/3, the torus mass is at most ∼ 0.1M�. This indicates that
the merger of binary neutron stars with sufficiently large total mass could result
only in weak GRBs in most cases. If the total mass of binary neutron stars is not
large enough for the direct formation of a black hole, a hypermassive neutron star is
formed.45) (See Ref. 47) for the definition of the hypermassive neutron star.) If it is
strongly magnetized, such a hypermassive neutron star will collapse and become a
rotating black hole with a massive torus, due to the transport of angular momentum
induced by magnetic effects.13) It is believed that the resulting system of a black
hole and a torus may be the central engine of GRBs, in contrast to the case that
the total mass of the binary neutron stars is large enough for the direct formation
of a black hole. Another possibility as the source of GRBs is the merger of black
holes and neutron stars. If the mass of the black hole is not large (<∼ 4M�), the
resulting mass of the torus around the black hole can be � 0.1M�.31)–33) Therefore,
it is regarded as a strong possibility as the source of GRBs.

A characteristic feature found in the MHD simulation is that the luminosity
varies on a short time scale of a few ms, in contrast to the results reported in Refs. 8)
and 9). This is due to the fact that shock heating in the magnetized accretion torus is
associated with turbulent matter motion driven by a highly variable magnetic stress.
The light curve of GRBs is often highly variable.1) If the GRBs are driven by pair
annihilation of neutrino-antineutrino pairs emitted from the magnetized torus,1) the
luminosity curve of neutrinos should also be highly variable. Thus, the light curve
of GRBs may be naturally explained if the central engine is composed of a rotating
black hole and a magnetized accretion torus of mass � 0.1M�.

5.3. Future tasks

This work is the first step toward obtaining a detailed understanding of the evo-
lution of dense, hot magnetized tori surrounding a stellar-mass black hole. There
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are several tasks left for the future. One is to take into account more realistic mi-
crophysics, incorporating more sophisticated EOSs. To this time, two tabulated
finite-temperature EOSs have been published for public use. These incorporate the
effects of heavy nuclei as well as free nucleons and α-particles.10),48) In these EOSs,
the pressure, internal energy, and other various quantities are written as functions
of the density, electron fraction, and temperature, like the EOS used in this paper.
Thus, it would be straightforward to change the numerical code to use more realistic
tabulated EOSs. Numerical results, such as the rest-mass accretion rate, temper-
ature, and neutrino luminosity, may depend on the chosen EOSs. To clarify this
dependence, we plan to perform simulations with such EOSs.

Another task is to improve the scheme for treating neutrino transfer. As pointed
out in Refs. 2)–4), 8) and 9) and reconfirmed in this paper, the luminosity is sig-
nificantly affected by neutrino-trapping effects. In this paper, we determined the
neutrino optical depth by simply using the local density. However, the actual optical
depth depends on the density distribution, temperature profile, neutrino energy, and
geometry of the black hole. As shown in §4.4, the luminosity depends strongly on the
chosen optical depth for large values of a and M∗, because such tori are composed
both of optically thick and thin regions. To provide a better estimate of the neutrino
luminosity, we have to treat the optical depth more carefully.

Elucidating the exact neutrino trajectories in the curved spacetime is also an
important problem. Neutrinos are most efficiently emitted in the vicinity of the
black hole. This implies that a non-negligible fraction is swallowed by the black
hole due to large curvature effects. We plan to study this effect in the future. An
associated problem is to estimate the annihilation rate of neutrino and antineutrino
pairs. As mentioned above, this process generates a pair plasma for GRBs. Although
Setiawan et al. already calculated this rate in their simulation,8) they did not take
into account the curvature effect. We consider that estimating the energy generation
rate in curved spacetime is an important problem.

The final problem that warrants further study concerns nonaxisymmetric ef-
fects. The development of the MRI in an axisymmetric system could be different
from that in the nonaxisymmetric, 3D case.49) Turbulence tends to persist more in
the 3D case due to the lack of symmetry. Specifically, according to the axisymmetric
anti-dynamo theorem,50) the sustained growth of magnetic field energy is not possi-
ble through axisymmetric turbulence, as demonstrated by numerical simulations.51)

In our present simulation, we found that the neutrino luminosity decreases with a
time scale of ∼ 100 ms, implying that the efficiency of shock heating in the torus
decreases with time. This may be partly due the anti-dynamo effect. McKinney
and Gammie17) have performed axisymmetric simulations of magnetized tori accret-
ing onto Kerr black holes and have found good quantitative agreement with the 3D
results of De Villiers and Hawley52) for the global quantities Ė/Ṁ∗ and J̇/Ṁ∗ for
t ≤ 2000M . Thus, the results presented here likely provide (at least) a good qualita-
tive picture at least for the short-term evolution. However, to clarify the longer-term
evolution, 3D simulations will eventually be necessary.
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Appendix A
Derivation of the Equation for Tµν

The total energy-momentum tensor, TT
µν , is defined by the sum of energy mo-

menta of all the matter fields, and obeys the conservation equation

∇µTT
µν = 0. (A.1)

In the context of the present paper, TT
µν is composed of the energy momenta of

baryons, electrons, positrons, radiation, and neutrinos. Then, we split the total
energy-momentum tensor as

TT
µν = Tµν + TN

µν , (A.2)

where Tµν is written by Eq. (2.9) which is composed of baryons, electrons, positrons,
radiation, and thermal neutrinos. In this paper, the energy-momentum tensor of
thermal neutrinos are simply written by

ρενuµuν + Pνgµν . (A.3)

On the other hand, TN
µν is the contribution from free-streaming neutrinos for which

the evolution equation is assumed to be

∇µTNµ
ν = Qν . (A.4)

Then, the equation for Tµν is

∇µTµ
ν = −Qν . (A.5)

In the present simulation, in which the MHD equations are solve in the fixed
background of a black hole, we do not have to determine TN

µν , because such a term
never appears in the basic equations, and thus, we do not solve Eq. (A.4) in this
paper. In fully general relativistic simulation in which the Einstein equation is solved,
however, it is necessary to solve this equation, because it appears as the source terms
in the equations of the geometric variables.

Appendix B
Derivation of Equation for Electron Capture Rate

In this appendix, we derive the equations for the electron capture rate (2.56)
and the associated energy emissivity (2.60).
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The electron capture rate by nuclei, λe− , is in general given by [e.g., Ref. 53)]

λe− =
ln 2
K

∑
i

(2Ji + 1)e−Ei/(kT )

G(Z, A, T )

∑
j

Mijfij , (B.1)

where the sums over i and j run over states in the parent and daughter nuclei,
respectively. The constant K (= 6146 ± 6[s]) is defined as

K =
2π3(ln 2) –h7

GFV 2
udg2

Vm5
ec

4
, (B.2)

where GF is the Fermi coupling constant, Vud is the up-down element in the Cabibbo-
Kobayashi-Masukawa quark-mixing matrix, and gV = 1 is the weak vector coupling
constant. Further, the quantity G(Z, A, T ) =

∑
k exp(−Ei/kT ) is the partition

function of the parent nucleus, Mij is the reduced transition probability, and fij is
the phase space integral, given by

fij =
(

kT

mec2

)5 ∫ ∞

ηl

x2(x + ζij)2F (Z, x)Se−(x)[1 − Sν(x + ζij)]dx. (B.3)

Here x is total energy of electrons divided by kT , and ζij is the difference between
the nuclear mass-energies of the ground states of the parent and daughter nuclei in
units of kT :

ζij =
1

kT
(Mparc

2 − Mdauc2 + Ei − Ej). (B.4)

In this expression, Mpar and Mdau are the nuclear masses of the parent and daughter
nuclei, respectively, and Ei and Ej are the excitation energies of the initial and
final states. The lower limit of the integral, ηl, is the capture-threshold total energy
in units of kT , which is given by ηl = mec

2/kT if ζij + mec
2 > 0 and ηl = |ζij|

otherwise. Also, in (B.3), Se and Sν are the electron and positron distribution
functions, which are assumed to be described by the Fermi-Dirac distributions with
(matter) temperature T and chemical potential ηF = µ/kT ,

Se±(x) =
1

ex−ηF
e± + 1

, Sν(x) =
1

ex−ηF
ν + 1

, (B.5)

where ηF
e± and ηF

ν are the electron (positron) and neutrino chemical potentials in
units of kT . The quantity F (Z, x) is the Fermi function, which corrects the phase
space integral for the Coulomb distortion of the electron wave function near the
nuclei.

For actual calculations of the capture rate, we follow a prescription introduced by
Fuller, Fowler, and Newman.54),55) In this prescription, the capture rate is rewritten
in terms of the effective f-t value 〈ft〉 as

λe− = ln 2
Iij

〈ft〉 , (B.6)
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where we have factored out the contribution of the Fermi function from the phase
space integral [i.e., Iij = fij/〈F (Z, x)〉] and have put this contribution into the
effective f -t value. The reduced phase space factor is then

Iij =
(

kT

mec2

)5 ∫ ∞

ηl

x2(x + ζij)2
1

ex−ηF
e− + 1

[
1 − 1

ex+ζij−ηF
ν + 1

]
dx. (B.7)

In terms of the relativistic Fermi integrals Fk(η), the phase space factor can be
written

Iij =
(

kT

mec2

)5 1

1 − eηF
ν −ζij−ηF

e−
Ie, (B.8)

where

Ie ≡
∫ ∞

ηL

x2(x + ζij)2
[

1

1 + ex+ηF
e−

− 1
1 + ex+ζij−ηF

ν

]
dx

= F4(ηF
e− − ηL) − F4(ηF

ν − ζij − ηL)
+ (2ζij + 4ηL)

[
F3(ηF

e− − ηL) − F3(ηF
ν − ζij − ηL)

]
+[6(ηL)2 + 6ηLζij + ζ2

ij ]
[
F2(ηF

e− − ηL) − F2(ηF
ν − ζij − ηL)

]
+[4(ηL)3 + 6(ηL)2ζij + 2ηL(ζ2

ij)
2]
[
F1(ηF

e− − ηL) − F1(ηF
ν − ζij − ηL)

]
+[(ηL)4 + 2(ηL)3ζij + (ηL)2(ζ2

ij)
2]
[
F0(ηF

e− − ηL) − F0(ηF
ν − ζij − ηL)

]
. (B.9)

For electron capture by free nucleons (p + e− → n + νe, n + e+ → p + ν̄e), the
effective f -t value is 〈ft〉 = 103.035 s,55) and the difference between nuclear mass-
energies is

ζij =
1

kT
(mpc

2 − mnc2 + Ep − En). (B.10)

In this paper we have assumed that the nuclear mass-energy difference as well as elec-
tron mass is much smaller than the total energy of relativistic electrons. Accordingly,
the phase space factor is simplified to

Iij =
(

kT

mec2

)5 1

1 − eηF
ν −ζij−ηF

e−

[
F4(ηF

e− − ηL) − F4(ηF
ν − ζij − ηL)

]
. (B.11)

In the region where neutrinos freely stream out, the phase space factor is further
simplified to

Iij =
(

kT

mec2

)5

F4(ηF
e−). (B.12)

The electron capture rate by free protons is given by

λe− = Kc

(
kT

mec2

)5

F4(ηF
e−). (B.13)

Similarly, the positron capture rate is

λe+ = Kc

(
kT

mec2

)5

F4(ηF
e+). (B.14)
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The energy emission rates of neutrinos in units of mec
2 associated with the

electron capture by free nucleons are given by

πe± = ln 2
Jij

〈ft〉 , (B.15)

where

Jij =
(

kT

mec2

)6 ∫ ∞

ηl

x2(x + ζij)3
1

ex−ηF
e± + 1

[
1 − 1

ex+ζij−ηF
ν + 1

]
dx. (B.16)

Similar calculations to derive Eqs. (B.13) and (B.14) give

πe± = Kc

(
kT

mec2

)6

F5(ηF
e±), (B.17)

To avoid the direct numerical integration of the relativistic Fermi integrals Fj(η),
we adopt approximate expressions for them following Refs. 56) and 55). For j = 0,
the relativistic Fermi integrals can be integrated exactly, and we obtain F0(η) =
ln(1 + eη) = η + ln(1 + e−η), which immediately gives

F0(η) − F0(−η) = η. (B.18)

Then, using the well-known recursion relations

Fj(η) = Fj(0) + j

∫ η

0
Fj−1(x)dx,

F−j(η) = Fj(0) − j

∫ η

0
Fj−1(−x)dx, (B.19)

and noting that Fj(0) = (j!)(1 − 2−j)ζ(j + 1), where ζ(x) is the zeta function, we
find

F4(η) − F4(−η) =
7π4

15
η +

2π2

3
η3 +

η5

5
,

F5(η) + F5(−η) =
31π6

126
+

7π2

6
η2 +

5π2

6
η4 +

η6

6
. (B.20)

The standard expansion of the relativistic Fermi integrals for η ≤ 0 is given by (e.g.,
Ref. 57))

Fj(η) = (j!)eη
∞∑
l=0

(−1)lelη

(l + 1)j+1
. (B.21)

We adopt the first three terms for our approximation of the relativistic Fermi inte-
grals for η ≤ 0:

F4(η) ≈ 24
[
eη − e2η

25
+

e3η

35

]
, (B.22)

F5(η) ≈ 120
[
eη − e2η

26
+

e3η

36

]
. (B.23)
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Our approximation of the relativistic Fermi integrals for η > 0 is obtained as follows
by using relations (B.20) and imposing continuity conditions on the values and their
first derivatives:

F4(η) ≈ 45.59η +
2π2

3
η3 +

η5

5
+ F4(−η)

F5(η) ≈ 236.65 +
7π2

6
η2 +

5π2

6
η4 +

η6

6
− F5(−η). (B.24)
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