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We summarize the current status of numerical relativity for higher-dimensional space-
times. In the first part, the ingredients necessary for successful simulations developed to
date are summarized, including formulations, methods of implementing spacetime symme-
tries, and gauge conditions. In the second part, we review the simulations performed so
far, such as time evolution of a black string that is unstable against the Gregory-Laflamme
instability, black hole collisions and scatterings, and time evolution of rapidly rotating Myers-
Perry (MP) black holes with one rotational parameter which are unstable against bar-mode
deformation. The remaining issues and expected future developments are briefly described.
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§1. Introduction

Numerical relativity is probably the unique approach for a solution of dynamical
problems in general relativity. In this approach, Einstein’s equation,

Gab = 8πGTab, (1.1)



270 H. Yoshino and M. Shibata

is numerically solved in the framework of an initial-value problem of general relativity.
Numerical relativity for 4-dimensional (4D) spacetime has a very long history, and
in particular in the past decade, its community achieved significant progress: Now,
it is feasible to perform a longterm and accurate simulation for the merger of binary
composed of black holes and neutron stars (e.g., Refs. 1)–6) for binary black holes
and Ref. 7) for others) and for high-velocity collision of two black holes. These are
among the strongest gravitational phenomena in nature.

High-dimensional numerical relativity is also being an important issue since the
TeV gravity scenarios8)–11) and the AdS/CFT correspondence12) were proposed. To
clarify nonlinear dynamics of higher-dimensional general relativity, numerical rel-
ativity for higher dimensions has to be developed. Higher-dimensional numerical
relativity began in 2003 by a pioneering simulation for a 5-dimensional (5D) black
string that is unstable against the Gregory-Laflamme instability.13),14) Although
history of higher-dimensional numerical relativity is not so long, several new formu-
lations have been developed and several remarkable simulations have been performed
in particular in the last three years. The purpose of this chapter is to review such
formulations and new facts discovered by the latest simulations.

There are three primary motivations for performing higher-dimensional numer-
ical relativity. The first one comes from the fact that mini black holes may be
produced in large accelerators such as Large Hadron Collider (LHC) if the TeV
gravity hypotheses are correct. If our 3-dimensional (3D) space is a D3-brane in
large8),9) or warped10) extra dimensions, the Planck energy could be of O(TeV) and
quantum gravity phenomena may emerge in high-energy particle colliders. If the
particle energy is larger than the Planck energy in this scenario, mini black holes
could be produced15)–17) (see also Ref. 18) for a recent review). If a black hole with
mass energy slightly larger than the Planck energy is formed in the LHC, it will
subsequently emit the Hawking radiation that may be detected. To accurately pre-
dict the rate of mini black-hole production and its detectability, it is necessary to
know the cross section for the black-hole production σBH, and the resulting mass
and angular momentum of the formed black hole. A lower bound for the black-hole
production was given in Refs. 19) and 20) by numerically solving the apparent hori-
zon at an instant of the collision of Aichelburg-Sexl particles21) in higher dimensions,
by extending the analytic study22) of that system in 4 dimensions.∗) However, the
precise value of σBH and the black-hole production rate are necessary for precisely
predicting the event rate in the particle collider.

The second motivation is to clarify the fundamental properties of black objects
in higher dimensions. A 4D black hole (Kerr black hole) has been shown to be
stable for vacuum spacetimes irrespective of the mass and spin. By contrast, higher-
dimensional black objects are not always stable. For example, the Gregory-Laflamme
instability24) is known for a black string. Also, higher-dimensional rapidly rotating
black holes (i.e., the Myers-Perry (MP) black holes25)) are unstable,26)–29) and a

∗) Because the apparent horizon formation implies the formation of the event horizon assuming

the cosmic censorship (e.g., Ref. 23)), the cross section of the apparent horizon formation σAH gives

the lower bound of σBH and thus lower bound for the production rate.
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black hole on a Randall-Sundrum (RS) brane is also inferred to be unstable30) (see
also Chapters 6, 7, and 8 of this supplement). To clarify the condition for the onset of
the instabilities and the final fate after their onset, numerical relativity plays a crucial
role. Indeed, numerical relativity has discovered several dynamical instabilities (see
§3).

The third motivation comes from the hypothesis of the AdS/CFT correspon-
dence, which conjectures that the classical gravity of anti-de Sitter (AdS) spacetime
is dual to the conformal field theory (CFT) on the boundary of the AdS spacetime.
If this hypothesis holds, we are able to obtain an indication for a phenomena in CFT,
for which explicit calculation is difficult due to strong coupling effect, by studying
the dual gravitational system. One of the interesting phenomena predicted by the
AdS/CFT correspondence is that a macroscopic black hole on a Randall-Sundrum
(RS) brane could be unstable.∗) To answer this conjecture, numerical relativity will
play an important role.

The purpose of this chapter is to overview the formulations and numerical meth-
ods developed so far, and numerical simulations performed by these implementations
in higher-dimensional numerical relativity. This chapter is divided into two parts:
The first part (§2) is devoted to reviewing formulations and techniques of higher-
dimensional numerical relativity. The second part (§3) is devoted to reviewing nu-
merical simulations performed so far.

This chapter is organized as follows. In §2, we review the three formulations
for higher-dimensional numerical relativity (§2.1), the “cartoon methods” for im-
plementing spacetime symmetries (§2.2), and the gauge conditions for fixing the
coordinate conditions (§2.3), which are among the key ingredients for the successful
simulations. Then, we briefly describe other necessary ingredients such as methods
for extracting gravitational waves (§2.4), methods for finding an apparent horizon
(§2.5), techniques for handling the black hole interior (§2.6), adaptive mesh refine-
ment techniques (§2.7), and methods for preparing initial data (§2.8). We also sum-
marize semi-analytic solutions that can be used for the benchmark tests to calibrate
the reliability of numerical codes (§2.9).

In §3, we overview the simulations performed to date. In particular, we focus
on reviewing numerical results for three types of simulations: Simulations of a black
string that is unstable against the Gregory-Laflamme instability (§3.1), simulations
of two black-hole collisions (§3.2), and simulations of rapidly rotating Myers-Perry
(MP) black holes that may be unstable against nonaxisymmetric deformation (§3.3).
In the second topic, we also review the simulations of high-velocity black-hole colli-
sions in 4 dimensions (§3.2.2) as well as slow-velocity black-hole collisions in higher
dimensions (§3.2.1) because these are related topics.

§4 is devoted to a summary. The issues for the future are briefly discussed.

Notations and Conventions

Thoroughout this chapter, the unit c = 1 is used, while the higher-dimensional
∗) If we assume that the AdS/CFT correspondence is held in a RS brane spacetime, a 5D classical

black hole on the RS brane is expected to be dual to a 4D black hole with quantum fields31), 32) (see

Chapter 8).
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gravitational constant G is explicitly shown. The dimensionality of a spacelike hy-
persurface in a D-dimensional spacetime is written as N , i.e. D = N + 1. The
line element and the area of an n-dimensional unit sphere are denoted as dΩ2

n

and Ωn, respectively, where Ωn = 2π(n+1)/2Γ ((n + 1)/2). The horizon radius of
a Schwarzschild-Tangherlini black hole is denoted as rS , where rD−3

S = 16πGM
(D−2)ΩD−2

.

§2. Formulations and techniques

In this section, we overview the formulations and numerical methods for simulat-
ing higher-dimensional spacetimes that have been developed to date. The ingredients
necessary for a simulation of vacuum spacetime in numerical relativity are listed up
as follows:

• Formulations, including methods for implementing spacetime symmetries for a
special class of spacetime;

• Appropriate gauge conditions;
• Methods for extracting gravitational waves;
• Techniques for handling the black hole interior;
• Apparent horizon finder;
• Adaptive mesh refinement (AMR);
• Methods for preparing initial data.

For the development of these ingredients, there is a long history in 4D numerical
relativity. Although some of them can be extended for higher-dimensional numerical
relativity in a straightforward manner, a nontrivial extension is required for many of
them. We describe the methods of extension one by one in the following subsections.
In addition, we summarize

• (Semi)analytic solutions available for benchmark tests
that can be used for calibrating the codes newly developed.

2.1. Formulation

In numerical relativity, Einstein’s equation is solved as the initial value problem
using the so-called N+1 formalism where N = D − 1 is the spatial dimensionality
and D the spacetime one. N+1 formalism in numerical relativity has to enable a
stable numerical computation; a small numerical error associated with numerical
truncation error should not grow in time. The well-known initial-value formalism of
Einstein’s equation is the Arnowitt-Deser-Misner (ADM) formalism.33) However, it
turns out that it is not suitable for numerical-relativity simulation and cannot be
used for longterm simulations (although it may be applied to short-term simulations).

In 4D numerical relativity, two robust formalisms have been developed and used
for simulating black hole spacetimes: The generalized harmonic (GH)34) and the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalisms.35),36) The GH formal-
ism can be straightforwardly extended for a use of higher-dimensional numerical
relativity. The BSSN formalism was also extended with slight modifications.37) In
addition, the method of 4D reduction (i.e. 4 + (D − 4) splitting) was proposed for
simulating spacetimes of O(D − 3) symmetry,38) which is an extension of 2+1+1
formalism in 4D numerical relativity.39) In the following, we review these three
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methods one by one.

2.1.1. Generalized harmonic formalism
The GH formalism was originally proposed by Garfinkle.34) Here, we briefly

summarize this method. Although this was originally developed for 4D numerical
relativity, the same formulation may be used for arbitrary dimensionality with minor
modification.

In the GH formalism, Einstein’s equation is written in a hyperbolic manner
as often done in the post-Newtonian study and the generalized harmonic gauge
condition is imposed introducing an auxiliary D-dimensional function HI as

HI = �xI =
1√−g∂J

(√−ggJI
)
, (2.1)

where I = 0,...,N and each coordinate xI is regarded as a scalar function. Then,
Einstein’s equation RIJ = 8πG[TIJ − gIJT/(D − 2)] is rewritten as

gKLgIJ,KL + gKL
,JgIL,K + gKL

,IgJL,K + 2H(I,J) − 2HLΓ
L
IJ + 2ΓK

IJΓ
L
KI

= −16πG[TIJ − TgIJ/(D − 2)], (2.2)

where HI = gIJH
J .

Appropriate choice of the gauge variable HI is the key for stable and accurate
numerical simulation. In Ref. 40), several candidates for the gauge conditions are
proposed. In the study of the Gregory-Laflamme instability by Lehner and Preto-
rius,41) the Cartesian-type coordinates are used and the simple condition

HI = 0 (2.3)

was imposed, which often enables a stable numerical simulation.
On the other hand, in the axisymmetric (2 + 1 dimensional) simulation42) of

complex scalar fields minimally coupled to gravity in D-dimensional Kaluza-Klein
spacetimes by Sorkin, the cylindrical-type coordinates are used and the variant of
the damped-wave gauge condition43) was adopted.

2.1.2. Higher-dimensional BSSN formalism
In 4D numerical relativity, the BSSN formalism35),36) is most popular. Exten-

sion to higher-dimensional numerical relativity is also straightforward.37) The BSSN
formalism is in a sense a modified version of the ADM formalism; the numerical sta-
bility is realized by a suitable modification of the ADM formalism. In the following,
we briefly review the ADM formalism and the BSSN formalism for D-dimensional
spacetime.

Suppose M be a D-dimensional spacetime with a metric gab. Consider a se-
quence of N -dimensional spacelike hypersurfaces Σt(hab,Kab) foliated by a time co-
ordinate t in M. Here, hab is the induced metric hab := gab + nanb of Σt, where
na is the future-directed unit normal Σt, and Kab is the extrinsic curvature defined
by Kab := −(1/2)£nhab, where £n is the Lie derivative with respect to na. The
coordinate basis ta of the time coordinate t is decomposed as ta = αna + βa, where
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α and βa are the lapse function and the shift vector, respectively. In terms of these
variables, Einstein’s equation is rewritten as

R+K2 −KabK
ab = 16πGρ, (2.4)

DbK
b
a −DaK = 8πGja, (2.5)

£thab = −2αKab +Daβb +Dbβa, (2.6)

£tKab = −DaDbα+ α
(
R

(Σ)
ab − 2KacK

c
b +KabK

)
+ βcDcKab +KcbDaβ

c +KcaDbβ
c − 8πGα

[
Sab +

ρ− S

D − 2
hab

]
, (2.7)

where Eq. (2.6) is equivalent to the definition of Kab, and Eqs. (2.4), (2.5), and (2.7)
are derived from Gabn

anb = 8πGρ, Gbcn
bhc

a = −8πGja, and Gcdh
c
ah

d
b = 8πSab

using Gauss, Codacci, and Ricci equations, respectively. Here, we defined

ρ := Tabn
anb; ja := −Tbcn

bhc
a; Sab := Tcdh

c
ah

d
b, (2.8)

and S := Sc
c. R

(Σ)
ab denotes the Ricci tensor with respect to hab.

Equations (2.4) and (2.5) are Hamiltonian and momentum constraint equations.
The initial spacelike hypersurface (i.e., initial data) has to be prepared so that these
two constraints are satisfied. Then, the time evolution of (hab,Kab) is determined by
Eqs. (2.6) and (2.7). The constraint equations are automatically satisfied after the
time evolution as long as the evolution equations are solved exactly. However, these
constraints are always violated slightly in actual simulations, although the violation
does not grow in an appropriate formulation.

The expressions shown above are given in terms of the abstract index notation.
Introducing the coordinates xi that span the hypersurface Σt, the line element is
written as

ds2 = −α2dt2 + hij(dxi + βidt)(dxj + βjdt), (2.9)

and the spatial components hij of hab are the inverse of hij. The equations expressed
in terms of xi are obtained by replacing the indices a, b to the spatial indices i, j
and the Lie derivative £t to the coordinate derivative ∂t. In the following, we assume
to use the Cartesian coordinates.

Next, the higher-dimensional version of the BSSN formalism is reviewed. The
basic idea of the BSSN formalism is to increase the number of variables as well as
that of constraints to suppress the growth of unphysical modes that may grow due
to truncation error associated with the finite difference. Specifically, new variables,
χ, h̃ij , Ãij , and Γ̃ i, are introduced:

h̃ij = χhij , Kij =
1
χ

(
Ãij +

K

N
h̃ij

)
, Γ̃ i := hjkΓ̃ i

jk = −h̃ik
,k. (2.10)

Here, the conformal factor χ is chosen so that the determinant h̃ of h̃ij satisfies the
condition

h̃ = 1, (2.11)
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which is equivalent to setting χ = h−1/N , and Γ̃ i
jk denotes the Christoffel symbol

with respect to h̃ij . The evolution equations are derived as

(∂t − βi∂i)χ =
2
N
χ
(
αK − ∂iβ

i
)
, (2.12)

(∂t − βi∂i)K = −DiD
iα+ α

(
ÃijÃij +

K2

N

)
+

8πα
D − 2

[(D − 3)ρ+ S] , (2.13)

(∂t − βj∂j)Γ̃ i = −2Ãij∂jα+ 2α
[
Γ̃ i

jkÃ
jk − D − 2

N
h̃ijK,j − 8πh̃ijjj − Nχ,j

2χ
Ãij

]
− Γ̃ j∂jβ

i +
2
N
Γ̃ i∂jβ

j +
D − 3
N

h̃ikβj
,jk + h̃jkβi

,jk. (2.14)

(∂t − βk∂k)h̃ij = −2αÃij + h̃ik∂jβ
k + h̃jk∂iβ

k − 2
N
∂kβ

kh̃ij , (2.15)

(∂t − βk∂k)Ãij = χ
[
−(DiDjα)TF + α

(
R

(Σ)TF
ij − 8πSTF

ij

)]
+ α

(
KÃij − 2ÃikÃ

k
j

)
+ Ãik∂jβ

k + Ãkj∂iβ
k − 2

N
∂kβ

kÃij , (2.16)

where the indices of Ãij are raised and lowered by h̃ij , and TF denotes the trace-free
part, e.g., R(Σ)TF

ij = R
(Σ)
ij − R(Σ)hij/N . The Ricci tensor is decomposed into two

parts as
R

(Σ)
ij = R̃ij +R

(χ)
ij , (2.17)

where R̃ij is the Ricci tensor with respect to h̃ij and R(χ)
ij is the contribution of the

conformal factor. They are written as

R̃ij = −1
2
h̃klh̃ij,kl +

1
2

(
h̃ki∂jΓ̃

k + h̃kj∂iΓ̃
k
)

−1
2

(
h̃il,kh̃

kl
,j + h̃jl,kh̃

kl
,i − Γ̃ lh̃ij,l

)
− Γ̃ l

ikΓ̃
k
jl, (2.18)

R
(χ)
ij =

(D − 3)
2χ

(
χ,ij − Γ̃ k

ijχ,k

)
− (D − 3)

4
χ,iχ,j

χ2

+ h̃ij h̃
kl

[
χ,kl

2χ
− Nχ,kχ,l

4χ2

]
− 1

2
h̃ij

χ,m

χ
Γ̃m. (2.19)

The second derivatives of h̃ij appear only in the first term of Eq. (2.18) (i.e., each
component of hij appears to obey a simple wave equation) and this is the key point
for the numerical stability.

In summary, the variables to be evolved are χ, K, h̃ij , Ãij and Γ̃ i, and they follow
Eqs. (2.12), (2.13), (2.15), (2.16), and (2.14), respectively. The conditions Ãi

i = 0,
third equation of Eq. (2.10), and Eq. (2.11) are regarded as the new constraints
which arise because the number of the dynamical variables are increased. As shown
above, the BSSN formalism for higher dimensions has essentially the same form as
that for the 4D case, except that some coefficients are changed.
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2.1.3. 4 + (D − 4) split
The third formulation is the 4 + (D − 4) splitting method developed by Zilhao

et al.38) The idea is essentially the same as that for the (2 + 1) + 1 formalism
for axisymmetric systems in the 4D numerical relativity.39) Both formalisms are
derived extending a dimensional-reduction formalism developed by Geroch.44) In
the following, we briefly summarize this dimensional reduction technique.

As assumed in Ref. 38), we here only consider the spacetimes of O(D − 3)
symmetry in which there is a 3D hyperplane (spanned by (t, x, y)) in D dimensions,
and the remaining (D − 3) directions (spanned by (z, w1, ..., wD−4)) orthogonal to
the 3D hyperplane have symmetries of rotations and reflection with respect to any
point (t, x, y) in this hyperplane. The O(D− 3) symmetry is the same as SO(D− 3)
symmetry (i.e., symmetry only of rotations) for D ≥ 6, but it is a symmetry larger
than the SO(D−3) for D = 5 because the reflection symmetry excludes any rotating
system along the symmetric direction. In this symmetry, it is proven that the metric
can be reduced to the form

ds2 = gμνdx
μdxν + λ(xμ)dΩ2

D−4, (2.20)

where dΩ2
D−4 is the metric of a (D − 4)-dimensional unit sphere and μ, ν = 0,...,3

(i.e., xμ = t, x, y, z). Then, Einstein’s equation for vacuum is written as

Rμν =
D − 4

2λ

(
∇μ∇νλ− 1

2λ
∇μλ∇νλ

)
, (2.21)

∇μ∇μλ = 2(D − 5) − D − 6
2λ

∇μλ∇μλ, (2.22)

where ∇μ is the covariant derivative with respect to gμν . These equations are effec-
tively 4D Einstein’s equation for gμν coupled to a scalar field λ(xμ), and therefore,
can be evolved using the standard BSSN formalism for 4 dimensions.

Note that the metric ansatz (2.20) can be applied also to spacetimes of symmetry
O(D− 2) that is a symmetry group larger than O(D− 3), although in this case not
all symmetries are manifest in the ansatz. An O(D − 2)-symmetric spacetime is
similar to an axisymmetric 4D spacetime in the sense that in both cases there is
a 1-dimensional (1D) symmetric axis of which orthogonal spatial directions have
the same structure. In Refs. 38), 45) and 46), O(D − 2)-symmetric systems were
simulated using this formulation.

2.2. Implementing spacetime symmetries

When some symmetries may be assumed to be present in a spacetime to simulate,
such symmetries should be imposed in numerical simulation to reduce computational
costs. Among three formulations summarized in the previous subsection, the BSSN
formalism was described assuming the use of the Cartesian coordinates without
assuming the presence of any symmetries a priori. In this subsection, we describe
the so-called cartoon method for imposing symmetries in such a formalism.

2.2.1. Cartoon method
The cartoon method was originally proposed by Alcubierre et al.47) as a robust

prescription for an efficient numerical simulation of axisymmetric 4D spacetimes.
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The essence in this method is to employ not curvilinear coordinates that possess
coordinate singularities, but the Cartesian coordinates. First of all, we briefly review
the original idea of the cartoon method.

In an axisymmetric 3D space, the Cartesian coordinates (x, y, z) are introduced
so that the z axis becomes the symmetry axis of axisymmetry (U(1) symmetry) (we
refer to this case as “x = y, z” which indicates that the spatial structures in the x
and y directions are equivalent). In the Cartesian coordinates, the U(1) symmetry
does not explicitly appear in equations, and we cannot evolve the geometric variables
straightforwardly only with the data on, e.g., the (x, z)-plane because y derivatives
of them are needed. In the originally cartoon method, a few grid points in the
neighborhood of the (x, z)-plane are prepared. Then, the data at a grid point (x, y �=
0, z) is generated using the data at a point (ρ, 0, z) (i.e. on the (x, z)-plane) where
ρ =

√
x2 + y2, using the U(1) symmetry. Here, an appropriate interpolation has to

be done because the point (ρ, 0, z) is not located on a grid in general. Once the data
at the grid points y �= 0 are known, y derivatives at y = 0 are calculated and the
data on the (x, z)-plane is evolved toward the next time step.

The symmetric relations are derived as

α(x, y, z) = α(ρ, 0, z), (2.23)

βx(x, y, z) = (x/ρ)βx(ρ, 0, z) − (y/ρ)βy(ρ, 0, z), (2.24)
βy(x, y, z) = (y/ρ)βx(ρ, 0, z) + (x/ρ)βy(ρ, 0, z), (2.25)

Sxx(x, y, z) = (x/ρ)2Sxx(ρ, 0, z) + (y/ρ)2Syy(ρ, 0, z) − (2xy/ρ2)Sxy(ρ, 0, z), (2.26)
Syy(x, y, z) = (y/ρ)2Sxx(ρ, 0, z) + (x/ρ)2Syy(ρ, 0, z) + (2xy/ρ2)Sxy(ρ, 0, z), (2.27)
Sxy(x, y, z) = (xy/ρ2) [Sxx(ρ, 0, z) − Syy(ρ, 0, z)] + [(x2 − y2)/ρ2]Sxy(ρ, 0, z), (2.28)

for a scalar, a vector, and a symmetric tensor, using the fact that the Lie derivative
of the functions with respect to the Killing vector becomes zero.

In Ref. 37), Yoshino and Shibata discussed the extensions of the cartoon method
to 5D spacetimes (4D spaces) in the cases of three types of symmetries, i.e., the U(1)
symmetry (“x, y, z = w”), the U(1) × U(1) symmetry (“x = y, z = w”), and the
O(3) symmetry (“x = y = z, w”) denoting the Cartesian coordinates by (x, y, z, w).
For the U(1) symmetry, the extension is straightforwardly done. The cartoon method
for the U(1)×U(1) symmetry is similar to that for the U(1) symmetric case except
that two cartoons are required in this case. In the case of the SO(3) symmetry, the
symmetric relations are different from that for the U(1) symmetric case, but they
can be derived in a similar manner (see Ref. 37) for details).

2.2.2. Modified cartoon method
In the above straightforward extension of the cartoon method for the higher

dimensional spacetimes, we have to prepare the extra grids in all the symmetric
directions. For this reason, as the dimensionality D is increased by 1, the required
grid number always increases by a factor of 5 (in the fourth-order finite differencing),
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and thus, a lot of memories are still required for a large value of D. However, this
can be avoided by a prescription shown below.29)

As an example, we here consider an N -dimensional space with the coordinates
(x, y, z, w1, ..., wn) where n = D−4, and suppose that this space has O(D−3) symme-
try with respect to (z, w1, ..., wn) (i.e., “z = w1 = · · · = wn”). The simulation is sup-

posed to be performed on the (x, y, z)-plane. Here, we introduce ρ =
√
z2 +

∑
iw

2
i ,

and in the following, indices a and b denote x or y. The symmetric relation of a
scalar function is

α(x, y, z, wi) = α(x, y, ρ, 0), (2.29)

and from this relation, the derivatives are evaluated as

α,wi = α,awi = α,zwi = 0, α,wiwj = (α,z/z)δij. (2.30)

As for a vector function βi, the x and y components of βa have the same symmet-
ric relations as the scalar function, and the symmetric relations of the z and wi

components are

βz(x, y, z, wi) = (z/ρ)βz(x, y, ρ, 0), (2.31)
βwi(x, y, z, wi) = (wi/ρ)βz(x, y, ρ, 0), (2.32)

and thus, we have

βz
,wi

= βwi
,a = βwi

,z = βz
,awi

= βz
,zwi

= βwi
,ab = βwi

,az = βwi
,wjwk

= 0, (2.33)

βwi
,wj

= (βz/z)δij, βwi
,awj

= (βz
,a/z)δij , βz

wiwj
= βwi

,zwj
= (1/z)

(
βz

,z − βz/z
)
δij .
(2.34)

As for a symmetric tensor function Sij = Sji, the components Sab have the same
symmetric relations as the scalar function, and (Saz, Sawi) have the same symmetric
relations as the (z, wi) components of the vector function. The symmetric relations
of the other components are

Szz(x, y, z, wi) =
(
z2/ρ2

)
Szz(x, y, ρ, 0) +

(
1 − z2/ρ2

)
Sww(x, y, ρ, 0), (2.35)

Swiwi(x, y, z, wi) =
(
w2

i /ρ
2
)
Szz(x, y, ρ, 0) +

(
1 − w2

i /ρ
2
)
Sww(x, y, ρ, 0), (2.36)

Szwi(x, y, z, wi) = (zwi/ρ
2) [Szz(x, y, ρ, 0) − Sww(x, y, ρ, 0)] , (2.37)

Swiwj (x, y, z, wi) = (wiwj/ρ
2) [Szz(x, y, ρ, 0) − Sww(x, y, ρ, 0)] , (i �= j). (2.38)

From these relations, we have

Szz,wi = Swiwi,wj = Szwi,a = Szwi,z = Szz,awi = Szz,zwi

= Swiwi,awj = Swiwi,zwj = Szwi,ab = Szwi,az = Szwi,zz = 0, (2.39)

Swiwj ,a = Swiwj ,z = Swiwj ,wk
= Swiwj ,ab = Swiwj ,az

= Swiwj ,zz = Swiwj ,awk
= Swiwj ,zwk

= 0, (i �= j), (2.40)
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Szwi,wj = (1/z) (Szz − Sww) δij, Szwi,awj = (1/z) (Szz,a − Sww,a) δij , (2.41)

Szz,wiwj = (1/z) [Szz,z + (2/z) (Sww − Szz)] δij , (2.42)

Swiwi,wjwk
= (2/z2)δikδij (Szz − Sww) + (Sww,z/z)δjk, (2.43)

Szwi,zwj = (1/z) [Szz,z − Sww,z − (1/z) (Szz − Sww)] δij , (2.44)

Swiwj ,wkwl
= (1/z2) (δilδjk + δikδjl) (Szz − Sww) , (i �= j). (2.45)

Using these formulas, all the derivatives necessary for solving the evolution equations
can be evaluated without preparing the extra grids and the simulation is effectively
performed in the 3+1 manner.

2.3. Gauge conditions

General relativity is a covariant theory and thus there is a degree of freedom
for choosing the coordinates. In numerical relativity, the choice of the coordinate
conditions (or the choice of the conditions for the lapse function α and the shift
vector βi) is crucial for a stable and longterm simulation. The gauge conditions in
the GH formalism were already reviewed in §2.1.1. Here, we describe popular gauge
conditions in the BSSN formalism.

In 1970’s, the maximal slicing condition K = 0 and the minimal distortion
gauge48) were proposed as one of the best sets of the gauge conditions. The reason
is that the maximal slicing condition makes the spacelike hypersurface avoid the
spacelike singularity of a spacetime in the presence of a black hole, and the minimal
distortion gauge suppresses the distortion of coordinates as much as possible. The
shortcoming in this approach is that elliptic equations have to be solved in each
time step, which is computationally expensive. As an alternative set for the gauge
condition which effectively realizes the above conditions, the dynamical time slicing
condition49) (or often called the 1 + log condition) and the Γ -driver condition50)

were recently proposed and employed.∗) In this condition, the following equations
are solved

∂tα− βi∂iα = −2αK, (2.46)

∂tβ
i = (3/4)Bi, ∂tB

i = ∂tΓ̃
i − ηBi. (2.47)

Numerical experiments in 4 dimensions have demonstrated that this set of the gauge
conditions together with the BSSN formalism have the required properties. Indeed,
this has been used for evolving black hole spacetime (e.g., Ref. 51) for a summary).

In the higher-dimensional spacetime, these conditions may be generalized as

∂tα− βi∂iα = −ηααK, (2.48)

∂tβ
i =

(D − 1)
2(D − 2)

v2
longB

i, ∂tB
i = ∂tΓ̃

i − ηβB
i, (2.49)

where ηα and ηβ are constants and vlong is the speed of propagation of a gauge
mode. In Refs. 37) and 52), the numerical stability was tested using modified

∗) This set is often referred to as the moving puncture gauge condition.
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dynamical lapse condition ∂tα = −ηααK and the Γ -driver condition (2.49) with√
3/2 ≤ vlong ≤ 1, 1.2 ≤ ηα ≤ 2.0, and 1/20rS ≤ ηβ ≤ 1/5rS simulating the

Schwarzschild-Tangherlini spacetime, and it turned out that this gauge condition
works well also for the higher-dimensional spacetime. However, if the black hole is
rapidly rotating, it turned out that the coefficients in this gauge have to be carefully
determined for the stable and longterm evolution.29) This point will be revisited in
§3.3.3.

2.4. Extraction of gravitational-wave flux

Gravitational waves carry important information for dynamical phenomena.
They should be extracted and used for the analysis of numerical results. In 4D
numerical relativity, the Newman-Penrose formalism is widely employed for extract-
ing gravitational waves. In higher dimensions, however, such formalism has not been
developed yet. To date, two methods have been proposed. One is the gauge-invariant
gravitational-wave extraction based on the Kodama-Ishibashi formulation for per-
turbations of a spherically-symmetric spacetime,53) and the other is the extraction
of energy and angular momentum fluxes employing the Landau-Lifshitz pseudo ten-
sor.54)

2.4.1. Matching to perturbations of Schwarzschild spacetimes
The method of matching the numerical data with the perturbed spherical space-

time was originally proposed by Abrahams and Evans.55)–57) The extension of this
method for higher-dimensional numerical relativity was proposed by Witek et al.45)

The basic idea of this approach is that at a distant place of an asymptotically flat
spacetime, the spacetime can be regarded as a perturbed Schwarzschild-Tangherlini
spacetime, and hence, outgoing gravitational waves can be treated as a perturbation
on it using a well-defined formulation for gauge-invariant metric perturbation devel-
oped by Kodama and Ishibashi.53) Here, we briefly summarize the method employed
in Ref. 45).

In their formulation of 4 + (D − 4) split, Witek et al. assume the O(D − 3)
symmetry, where the metric is reduced to the form (2.20), as reviewed in §2.1.3.
Suppose xμ(μ = 0–3) to be (t, x, y, z) and dΩ2

D−4 to be spanned by φ1, ..., φD−4.
The spherical-polar coordinates are introduced by

x = R sin θ cosϕ, y = R sin θ sinϕ, z = R cos θ. (2.50)

Here, the relation between the coordinate R and the areal coordinate r has to be
specified as a first step. Here, r is related to the area A of the constant radial
surface as r = (A/ΩD−2)1/(D−2), where ΩD−2 is the (D − 2)-dimensional area of
a unit sphere. To derive r from the numerical data, some combination of metric
components is integrated on the surface R = const., where the combination is cho-
sen so that the contribution from the first-order perturbation is canceled out after
integration. In this manner, one can determine r(R), and then, calculate the pertur-
bative quantities by subtracting the background quantities from the numerical data.
Here, the perturbative quantities are separated into three modes according to the
Kodama-Ishibashi formulation; the modes with quantum numbers l = 2, 3, ... of the
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scalar, vector, and tensor modes. Separation of each mode can be done by (roughly
speaking) multiplying each harmonic function to the metric components and inte-
grating on the r = const surface. Then, the master variable Φl is calculated for each
mode, and finally, the radiated energy for each mode is obtained by integrating the
formula for the radiated energy which is written in terms of Φ̇2

l .
In Refs. 45) and 46), Witek et al. simulated head-on collisions of equal-mass

and unequal-mass black holes in 5 dimensions, respectively, where each spacetime
has O(D − 2) symmetry. There, the gravitational-wave extraction was successfully
done using this method. Due to O(D − 2) symmetry, gravitational waves include
only scalar modes with the quantum numbers l = 2, 4, ... in the equal-mass case and
l = 2, 3, 4, ... in the unequal-mass case. This approach has several merits such that
one can interpret physical origins of gravitational waves clearly by observing how
the radiated energy is distributed to each mode. Also, the energy flux has a definite
physical meaning, since the gauge-invariant quantity was used in this study.

2.4.2. Landau-Lifshitz pseudo tensor
Yoshino and Shibata derived the Landau-Lifshitz pseudo tensor37) in arbitrary

dimensions by which energy and angular momentum fluxes of gravitational waves
can be extracted. Following Ref. 54), first, a pseudo-tensor is defined by

g̃MN =
√−ggMN , (2.51)

where g is the determinant of the metric. Then, a super potential is defined by

HMANB = g̃MN g̃AB − g̃AN g̃MB, (2.52)

and finally, the Landau-Lifshitz pseudo tensor is by

16πGtMN
LL = (−g)−1HMANB

,AB − (2RMN − gMNR
)
. (2.53)

From this definition, the conservation law is derived:[
(−g) (TMN + tMN

LL

)]
,N

= 0. (2.54)

Because the Landau-Lifshitz pseudo tensor is not a tensor, it does not have a covari-
ant meaning in general. However, for a perturbed flat spacetime, the leading-order
terms of tMN

LL with respect to the perturbative quantities can be used to evaluate the
total energy of the system and total radiated energy in a gauge-invariant manner
(see below).

In Ref. 54), two expressions for tMN
LL are given. The first one is the expression in

terms of the Christoffel symbols, which holds for arbitrary dimensionality D. The
second one is the expression by the metric functions, which is in D dimensions,

16πG(−g)tMN
LL = g̃MN

,Ag̃
AB

,B − g̃MA
,Ag̃

NB
,B +

1
2
gMNgAB g̃

AK
,Lg̃

LB
,K

− (gMAgBK g̃
NK

,Lg̃
BL

,A + gNAgBK g̃
MK

,Lg̃
BL

,A

)
+ gABg

KLg̃MA
,K g̃

NB
,L

+
1

4(D − 2)
(
2gMAgNB − gMNgAB

)
[(D − 2)gKLgIJ − gLIgKJ ] g̃KJ

,Ag̃
LI

,B . (2.55)
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In the following, we consider perturbations on a flat spacetime, for which the metric
is written as gMN = ηMN + hMN , and ηMN is the flat metric in the Minkowski
coordinates. Defining ĥMN := hMN−(1/2)hηMN , the Landau-Lifshitz pseudo tensor
is rewritten to give

16πGtMN
LL = ĥMN

,Aĥ
AB

,B − ĥMA
,Aĥ

NB
,B +

1
2
ηMN ĥAK

,Lĥ
L
A,K

−
(
ĥMK

,Lĥ
L,N

K + ĥNK
,Lĥ

L,M
K

)
+ ĥMA,K ĥN

A,K +
1
2
ĥKL,M ĥ ,N

KL

− 1
4
ηMN ĥKL,AĥKL,A − 1

4(D − 2)

(
2ĥ,M ĥ,N − ηMN ĥ,Aĥ,A

)
, (2.56)

where we kept only the second-order quantities of the perturbation.
For the expression (2.56), the conservation law (2.54) for a vacuum spacetime

becomes
∂M t

MN
LL = 0, (2.57)

where we assume to employ the Minkowski coordinates. This suggests that tMN
LL can

be interpreted as an effective stress-energy tensor of the gravitational field valid up to
second order in hMN . Here, we have to be careful because the Landau-Lifshitz pseudo
tensor is not the unique quantity satisfying the condition (2.57) and also because this
quantity is not gauge invariant (see Ref. 23)). However, the total radiated energy

Erad =
∫
t0in̂idSdt (2.58)

is gauge-invariant, where dS and n̂i are the area element and an outward unit normal
of a surface at the distant region. Therefore, the Landau-Lifshitz pseudo tensor tMN

LL

provides a reliable method for evaluating the total radiated energy.

2.5. Apparent horizon finder

The apparent horizon is defined as the outermost marginally trapped surface.23)

The trapped surface is defined as a closed (D − 2)-dimensional surface for which
outgoing null geodesic congruences have negative expansion θ+ < 0. The apparent
horizon is defined as the surface of zero expansion θ+ = 0. Here, the expansion of the
outgoing null geodesic congruence is defined by θ+ = ∇ak

a where ka is the tangent
vector of each null geodesic. The apparent horizon is indispensable in numerical-
relativity simulations for finding black hole.∗)

In terms of the geometric quantities on the spacelike hypersurface Σt, the equa-
tion for zero expansion is written as

θ+ = Dis
i −K +Kijs

isj = 0, (2.59)
∗) Black hole is characterized by the event horizon strictly speaking. However to determine the

presence of it, we have to determine the whole spacetime structure. By contrast, the presence or

absence of the apparent horizon is determined on each spatial hypersurface Σt, and the presence

usually implies the presence of the event horizon due to the following theorem: Because of the

singularity theorem, the null geodesic congruence of negative expansion eventually plunges into

the spacetime singularity, and this implies that the apparent horizon is formed inside of the event

horizon assuming the cosmic censorship (see e.g. Ref. 23)).
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where si denotes the unit normal to the (D− 2)-dimensional surface of an apparent
horizon. To determine the apparent horizon of, e.g., spherical topology, it is common
to parameterize the horizon by r = h(ϕi), where r is the radial coordinate and ϕi

are the appropriately chosen angular coordinates. Rewriting Eq. (2.59) in terms of
h(ϕi), the equation becomes an elliptic-type equation for h(ϕi) with nonlinear source
terms composed of h. The resulting equation can be numerically solved using relax-
ation methods (preparing an initial trial function for the apparent horizon surface
and iteratively solving the equation until a convergence is achieved). Although the
equation for higher-dimensional cases is slightly different from the equation on the
3D spatial hypersurface Σt, it is essentially of the same type, and hence, the numer-
ical scheme for the 4D case can be straightforwardly imported to higher-dimensional
cases.

2.6. Techniques for handling the black hole interior

In 4D numerical relativity, handling the black hole interior had been an unre-
solved issue before 2005. However, in 2005, two different prescriptions were developed
and this problem was resolved. The first one employs the so-called black hole ex-
cision, which was originally proposed by Unruh, together with the GH formalism.
The other employs the so-called moving puncture approach together with the BSSN
formalism and moving puncture gauge conditions. This enables to simulate black
hole spacetimes without excising the interior. These two methods can be extended
for higher-dimensional numerical relativity in a straightforward manner.

In the method of black hole excision, one first has to determine the apparent
horizon. If the apparent horizon is found, a region inside the apparent horizon is cut
out of the computational region, imposing an appropriate boundary condition at the
boundary. This method was first developed for a 4D spherical collapse58) and now
it is widely used for simulating not only 4D but also higher-dimensional spacetimes,
e.g., for the study of the Gregory-Laflamme instability.41)

The moving puncture approach can be applied if the BSSN formalism is em-
ployed with the moving puncture variables2) together with the moving puncture
gauge conditions. Recently, this has been applied to higher-dimensional problems;
head-on collision of equal-mass38),45) and unequal-mass46) black holes in 5 dimen-
sions, grazing collision of two equal mass black holes in 5 and 6 dimensions,59) and
evolution of rapidly rotating black holes in 5–8 dimensions.28),29)

2.7. Adaptive mesh refinement

The adaptive mesh refinement (AMR) algorithm (or the nested grid algorithm)
is a prescription that enables to simulate a system of a large dynamical range with
a relatively inexpensive computational cost. In this approach, several refinement
levels with different grid spacing and computational domain size are prepared. In
the neighborhood near the compact objects such as a black hole, the fine refinement
levels with small grid size are assigned, while far from the compact objects, coarser
levels are assigned. Gravitational waves have to be extracted in the wave zone. For
the extraction, we prepare a coarse refinement level with large domain size to cover
a local wave zone (however, its grid size has to be at least by one order of magnitude
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smaller than the wavelength of gravitational waves).
The AMR algorithm is widely employed in 4D numerical relativity, e.g., in the

simulations of high-velocity collisions of black holes.60)–62) In such simulations, finer
levels are assigned in the vicinity of moving black holes and relatively coarser levels
are assigned for the distant region. The AMR algorithm can be straightforwardly
imported to the higher-dimensional cases.

Here, we point out that the AMR algorithm has been playing an important
role in higher-dimensional numerical relativity. For example, for the study of the
Gregory-Laflamme instability,41) some part of the black string becomes more and
more narrow; Lehner and Pretorius show that it seems to continue until the radius
of the string reaches zero. To avoid losing the accuracy in such a simulation, one has
to continuously increase the resolution around the narrow string. For such purpose,
the AMR algorithm is indispensable. The AMR algorithm was also important in
the simulations of rapidly rotating Myers-Perry (MP) black holes,28),29) because the
throat of a rapidly rotating MP black hole is very long, and thus, the variables
steeply varies in the neighborhood of the horizon.

2.8. Initial data preparation

As mentioned in §2.1.2, the initial data has to satisfy the Hamiltonian and the
momentum constraints (see Eqs. (2.4) and (2.5)). Here, we review a formulation for
preparing the puncture-type initial data in higher dimensions.63),64) This may be
regarded as an extension of the well-known formulations by Brill and Lindquist,65)

Bowen and York,66) and Brandt and Brügmann.67) The initial condition in this for-
mulation is employed for a simulation of head-on collision of two black holes,38),45),46)

which will be reviewed in §3.2. Methods for preparing initial data for the study of the
Gregory-Laflamme instability and of the Myers-Perry black holes will be reviewed
separately in §§3.1 and 3.3.

In the Bowen-York approach, the initial spatial hypersurface is assumed to be
conformally flat

hij = Ψ4/(D−3)δij , (2.60)

and to be maximally sliced, K = 0. Here, the Cartesian coordinates xi are employed.
For convenience, a weighted extrinsic curvature is defined by K̂ij = Ψ2Kij . Here,
the index of K̂ij is raised and lowered by δij (i.e., K̂i

j = Ψ2(D−1)/(D−3)Ki
j and K̂ij =

Ψ2(D+1)/(D−3)Kij). Then the Hamiltonian and momentum constraints become

∇2
f Ψ = − D − 3

4(D − 2)
K̂ijK̂

ijΨ−(3D−5)/(D−3), (2.61)

∂iK̂ij = 0, (2.62)

where ∂i(= δij∂
j = ∂i) denotes the ordinary derivative with respect to the Cartesian

coordinates (xi) and ∇2
f := ∂i∂i. Following Bowen and York,66) we assume that K̂ij

takes the following form

K̂ij = ∂iWj + ∂jWi − 2
N
δij∂kW

k, (2.63)
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where N = D − 1. We further decompose Wi as

Wi =
3D − 5
D − 3

Bi −
(
∂iχ+ xj∂iBj

)
, (2.64)

with auxiliary functions Bi and χ. Then Eq. (2.62) becomes

0 =
3D − 5
D − 3

∇2
fBi − 2(D − 2)

D − 1
∂i∇2

f χ− xj∂i∇2
fBj − D − 3

D − 1
∂i

(
xj∇2

fBj

)
. (2.65)

Hence the momentum constraint is satisfied if

∇2
fBi = 0 and ∇2

f χ = 0 (2.66)

are satisfied. To give linear momenta to black holes, one can choose

Bi = − 2πGPi

(D − 2)ΩD−2RD−3
and χ = 0, (2.67)

where Pi is a constant vector, ΩD−2 the (D − 2)-dimensional area of a unit sphere,
and R = |xi|. Then,

K̂ij =
4π(D − 1)G

(D − 2)ΩD−2RD−2

{
Pinj + Pjni + Pkn

k [(D − 3)ninj − δij ]
}
, (2.68)

where ni = xi/R. This solution provides the extrinsic curvature for one boosted
black hole located at R = 0, and Pi agrees with the ADM momentum

Pi =
1

8πG

∫
R→∞

(
Kijn

j −Kni

)
dS. (2.69)

Since the momentum constraint (2.62) is a linear equation, we can superpose ar-
bitrary number of black holes. Denoting the locations of n black holes by xi

a(a =
1, ..., n), the solution of the extrinsic curvature is written as

K̂ij =
n∑

a=1

4π(D − 1)G
(D − 2)ΩD−2R

D−2
a

{
(Pa)i(na)j + (Pa)i(na)j

+(Pa)k(na)k [(D − 3)(na)i(na)j − δij ]
}
, (2.70)

where Ra = |xi − xi
a|, ni

a = (xi − xi
a)/Ra, and (Pa)i denotes the momentum of the

a-th black hole.
The conformal factor Ψ is determined by solving the Hamiltonian constraint

(2.61). Following Brandt and Brügmann,67) Ψ is assumed to have the following form

Ψ = ΨBL + ψ, (2.71)

where

ΨBL ≡ 1 +
4πG

(D − 2)ΩD−2

n∑
a=1

Ma

RD−3
a

, (2.72)
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and Ma denotes the mass parameter of a-th black hole. Then, the equation for ψ
becomes

∇2
f ψ = − (D − 3)

4(D − 2)
K̂ijK̂

ij(ΨBL + ψ)−(3D−5)/(D−3). (2.73)

The solution in this procedure provides the so-called “puncture” space with n Einstein-
Rosen bridges and n+1 asymptotically flat regions (say, one upper sheet and n lower
sheets). Since the right-hand side of Eq. (2.73) behaves like O(RD−3

a ) for Ra → 0, a
regular solution for ψ can be obtained numerically as in the 4D case.67) The ADM
mass MADM is given by

MADM = − (D − 2)
4π(D − 3)G

∫
R→∞

∂iΨn
idS

=
n∑

a=1

Ma +
1

16πG

∫
Σ
K̂ijK̂ijΨ

−(3D−5)/(D−3)dD−1x, (2.74)

where the Gauss law is used in the second line. The numerical solution of Ψ for
head-on collision of two equal-mass black holes is found in Ref. 64).

2.9. (Semi)analytic solutions for benchmark tests

To confirm the reliability of a code newly developed, benchmark tests are nec-
essary. One of the standard tests is to check the convergence of numerical results
with different grid resolutions: If the numerical solution shows a convergence prop-
erty that is expected in the adopted scheme, we can believe its reliability. Another
method is to simulate a spacetime for which analytic (or semi-analytic) solution
is known and to compare the numerical results with it. Here, we summarize the
analytic solutions that are useful for the benchmark tests.

2.9.1. Geodesic slice of Schwarzschild-Tangherlini spacetime
First, we show an analytic solution of the 5D spherical black hole in the geodesic

slicing. The well-known metric form of the higher-dimensional black hole (the so-
called Schwarzschild-Tangherlini metric) is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 , f(r) = 1 − r2S
r2
, (2.75)

where dΩ2
3 is the line element of a 3D unit sphere and rS is the Schwarzschild-

Tangherlini radius rS =
√

8GM/3π. Because the coordinates in this metric are not
well-behaved inside the event horizon, the metric of this spacetime is rewritten in
terms of the Gaussian normal coordinates starting from the t = 0 hypersurface as

ds2 = −dτ2 +

[
r20 + (rS/r0)2τ2

]2[
r20 − (rS/r0)2τ2

] dR2

R2
+
[
r20 − (rS/r0)

2 τ2
]
dΩ2

3 , (2.76)

where r0 is defined by

r0 = R

(
1 +

r2S
4R2

)
. (2.77)
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Fig. 1. Snapshots of h̃xx along the x-axis for τ/rS = 0.5, 0.6, 0.7, 0.8, and 0.9. The unit of x is

rS/2. The grid resolutions are Δx = 0.1 (×) and 0.05 (�). The solid curves denote the analytic

solutions. The figure is taken from Ref. 37).

The meaning of these coordinates is explained as follows. Consider a geodesic con-
gruence of test particles that are initially at rest. Then, each geodesic labels the
radial coordinate and its proper time is equal to the time coordinate. At τ = 0,
the spatial slice agrees with the Einstein-Rosen bridge written with the isotropic
radial coordinate R (compare r0 with the conformal factor for Pi = 0 and n = 1
of Eqs. (2.71) and (2.72)). This is analogous to the Novikov coordinates in the 4D
Schwarzschild spacetime.68),69) This line element shows that the RR component of
the metric diverges at τ = r20/rS , and this occurs when the slice hits the singularity.

In the line element (2.76), τ and R are always time and radial coordinate, and
thus, this coordinate system can be employed in numerical relativity for a bench-
mark test. In this test, a simulation is done with the gauge conditions α = 1 and
βi = 0, until the computation crashes approximately at the crash time τcrash = rS .
Figure 1 shows a comparison between the analytic solution (solid curves) and the
data obtained by Yoshino’s code37) with grid size Δx/rS = 0.1 (crosses, ×) and 0.05
(circles, 	). Here, the snapshots of xx component of the conformal 4D metric h̃xx

along the x-axis are drawn for τ/rS = 0.5, 0.6, 0.7, 0.8, and 0.9. This shows that the
values of h̃xx rapidly increase and blow up around x = 1, and agree approximately
with the analytic solutions (2.76) (solid curves). It is also checked that the deviation
of numerical solution from the analytic one shows the 4th-order convergence in a
code implementing a 4th-order finite differencing.37)

2.9.2. Limit surface of Schwarzschild-Tangherlini spacetime
As the second analytic solution, we describe the limit surface of maximally sliced

evolution (i.e. evolution keeping K = 0) of a Schwarzschild-Tangherlini spacetime.
In the 4D Schwarzschild black hole, it was shown that the sequence of the maxi-
mal slices never hits the curvature singularity but asymptotes to the so-called limit
surface,70) and the analytical expression of the limit surface was given in Ref. 71).
The limit surface provides a useful test for calibrating numerical-relativity codes.
Namely, if we adopt the limit surface as the initial data, the spacelike hypersurface
has to be unchanged during the time evolution under certain gauge conditions.

This study was extended to higher dimensions by Nakao et al.52) Figure 2 shows
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Fig. 2. The sequence of maximal slicing surfaces in the Kruskal diagram of Schwarzschild-

Tangherlini spacetime with D = 5. The dotted curves show the r = const. The limit surface is

given by r =
p

2/3rS . The figure is taken from Ref. 52).

the Kruskal diagram of the 5D Schwarzschild-Tangherlini spacetime. The sequence
of maximal-sliced hypersurfaces (starting from the time-symmetric slice) is shown
by the solid curves. The sequence asymptotes to r =

√
2/3rS , which is the limit

surface, and the formula for the limit surface can be given analytically also in the 5D
case. The limit surface turns out to be conformally flat, and thus, we can introduce
the spherical-polar coordinates (R, φi) in the flat space. The relation between R and
the Schwarzschild radial coordinate r is

R =
r

6

(
3 +
√

3 [(rS/r)2 + 3]
)( (5 + 2

√
6)
[
3 − 2(rS/r)2

]
2(rS/r)2 + 15 + 6

√
2 [(rS/r)2 + 3]

)1/
√

6

. (2.78)

In terms of the BSSN variables,

χ =
(
R

r

)2

, α =

√
1 −
(rS
R

)2
χ+

4
27

(rS
R

)6
χ3, (2.79)

βR =
2

3
√

3
χ2
(rS
R

)3
, ÃR

R = −3Ãφi

φi
= − 2√

3
χ2 r

3
S

R4
. (2.80)

Here, r has to be written as a function of R numerically, and then, the nontrivial
components can be calculated.

Figure 3 shows the values of α, βx, Ãyy, and χ along the x axis at a selected
time slice. Adopting the data shown by the solid curves as the initial condition,
Yoshino37) evolved this spacetime using the dynamical gauge condition and Γ -driver
condition. The data at t = 50rS (after the time evolution) are plotted by the circles.
It is confirmed that all the BSSN variables are approximately unchanged in time. In
this manner, we can check the accuracy of the code using the limit surface.

2.9.3. Linear gravitational waves
The third one is the semi-analytic solution of gravitational waves on a 5D flat

spacetime.37) Here, we denote the metric perturbation as δgab, which obeys linearized
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Fig. 3. The analytic solutions of α, βx, Ãyy, and χ along the x-axis for the limit surface of the 5D

spherical black hole (solid curves), and the numerical data after the time evolution at t = 50rS

(�). Here, the unit of the length is rS/2. The data remains approximately stationary in the

time evolution. The figure is taken from Ref. 37).

Einstein’s equation. Adopting the gauge conditions, α = 1 and βi = 0 (i.e. δg00 =
δg0i = 0), the spatial components of linearized Einstein’s equation become

δg̈ij = Δ(δgij), (2.81)

where Δ is the flat 4D Laplacian.
We then use the formulation for perturbations of higher-dimensional Schwarzschild

black holes of Ref. 53) with zero black-hole mass. Namely, the perturbation is de-
composed into the scalar, vector, and tensor modes (with respect to the 3D unit
sphere) using spherical harmonic functions, and the master equations are derived for
the gauge-invariant variables. Here, the method for the spherical harmonic expan-
sion should be adopted but the master equations are not because we are interested
in explicit special solutions under a fixed gauge in numerical relativity.

Here, we focus on the tensor mode as an example. Perturbation δgij of the
tensor type is expanded in terms of the harmonic tensors TIJ satisfying

[Δ̂3 + l(l + 2) − 2]TIJ = 0, (2.82)

T
I
I = 0, D̂JT

J
I = 0, (2.83)

and the perturbation is given in the form

δgij =
(

0 0
∗ rh(t, r)TIJ

)
. (2.84)

If we impose, e.g., the U(1)×U(1) symmetry to the space, the harmonic tensors for
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l = 2 are

TIJ =

⎛⎝ A 0 0
∗ A sin2 θ(1 − 3 sin2 θ) B sin2 θ cos2 θ
∗ ∗ A cos2 θ(3 sin2 θ − 2)

⎞⎠ , (2.85)

where A and B are arbitrary constants, and the (θ, ϕ, ψ) coordinates are introduced
as

x = r sin θ cosϕ, y = r sin θ sinϕ,
z = r cos θ cosψ, w = r cos θ sinψ. (2.86)

From Eq. (2.81), the equation for h becomes

ḧ = h,rr +
1
r
h,r − 9

r2
h, (2.87)

and a special solution can be written as

h = Re
[∫

dωf(ω)eiωtJ3(ωr)
]
, (2.88)

where f(ω) is an arbitrary function of ω, and J3 is the Bessel function of third order,

J3(z) =
1
2π

∫ 2π

0
dϑ cos(3ϑ− z sinϑ). (2.89)

To constitute a solution for the propagation of a gravitational-wave packet, we set
f(ω) = −i√2πA0e

−ω2/2ω2
0 . Then, Eq. (2.88) is integrated to give

h(t, r) = A0ω0

∫ 2π

0
dϑ sin(3ϑ)e−ω2

0(t−r sin ϑ)2/2. (2.90)

The numerical integration in this formula can be computed easily. In this solution,
h(0, r) = 0 (and thus δgij = 0), whereas ḣ(0, r) �= 0 (and thus δġij �= 0).

We note that in a similar manner, the semi-analytic solutions of gravitational-
wave packet can be obtained also for scalar and vector modes.37)

2.9.4. Close-slow collision of two black holes
Finally, semi-analytic solutions of gravitational waves emitted in the head-on

collision of two Bowen-York-type black holes in the close-slow limit is described.63),64)

The close-limit approximation was first studied by Price and Pullin72) in the 4D case,
and its solutions have been used for calibrating the results in numerical relativity.
The idea of this approximation comes from the fact that if the separation between
two black holes is small enough, a common event horizon should be formed to enclose
two black holes, and the geometry outside the event horizon may be approximated
by a perturbed Schwarzschild black hole. Then, the time evolution of the system
may be approximately determined by the linear perturbation equations for which
numerical integration is performed much more easily than in the numerical-relativity
simulation. Here, we review a higher-dimension version on this study.
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In §2.8, we explained a higher-dimensional generalization of the Brandt-Brügmann
formalism for preparing initial data. Using this method, we can construct initial data
of two moving black holes located at z = ±z0 along the z-axis. Here, the spatial co-
ordinates chosen are (x1, ..., xD−2, z), and we denote the momenta of two black holes
by P (±)i = (0, ..., 0,∓P ). In the close-slow approximation, we should assume that
z0 � rS(M0), P � M0, and z0/rS(M0) ∼ P/M0, and evaluate gravitational-wave
energy up to order of (z0/rS(M0))2. In the following, the gravitational radius of the
system rS(M0) is used as the unit of the length (i.e., rS(M0) = 1). In the spherical
polar coordinates, the extrinsic curvature Kij = K

(+)
ij +K

(−)
ij is calculated to give

K̂R
R = (z0P/M0)

D − 1
2

[
D − 4 −D(D − 3) cos2 θ

]
R−(D−1) +O(z2

0P/M0), (2.91)

K̂θ
θ = (z0P/M0)

D − 1
2

[
(D − 3) cos2 θ + 1

]
R−(D−1) +O(z2

0P/M0), (2.92)

K̂φ∗
φ∗ = (z0P/M0)

D − 1
2

[
(D − 1) cos2 θ − 1

]
R−(D−1) +O(z2

0P/M0), (2.93)

and K̂Rθ = O(z3
0P/M0) in the close limit z0 � 1. The leading-order term of K̂ab

is found to be of O(z0P/M0) and hence the right-hand side of the Hamiltonian
constraint (2.61) is of O(z2

0P
2/M2

0 ). In the close-slow approximation adopted here,
such terms are higher order and ignored. Thus, ψ = 0 and MADM = M0 in this
approximation. As a result, the conformal factor is given by the Brill-Lindquist one

Ψ � ΨBL = 1 +
1
8

(
1

RD−3
+

+
1

RD−3
−

)
, (2.94)

where R± :=
√∑

i(xi)2 + z2. By transforming from the isotropic coordinate to the
Schwarzschild-like coordinate

r = RΨ
2/(D−3)
0 , Ψ0 = 1 +

1
4RD−3

, (2.95)

we find that the system is regarded as a perturbed Schwarzschild black hole

ds2 �
(
ΨBL

Ψ0

)4/(D−3) [ dr2
f(r)

+ r2(dθ2 + sin2 θdΩ2
D−3)

]
, f(r) = 1 − 1

rD−3
, (2.96)

(
ΨBL

Ψ0

)4/(D−3)

= 1 +
1/(D − 3)RD−3

1 + 1/4RD−3

(z0
R

)2
C

[(D−3)/2]
2 (cos θ) +O(z4

0), (2.97)

where C [λ]
� denotes the Gegenbauer polynomials defined by the generating function

(1 − 2xt+ t2)−λ =
∞∑

�=0

C
[λ]
� (x)t�. (2.98)

This initial data is evolved using a perturbation method in the Schwarzschild space-
time. From Eqs. (2.91)–(2.93), (2.96), and (2.97), it is found that the leading order
of the perturbation contains only the � = 2 mode.
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The gauge-invariant method for the perturbation around the spherical black hole
was developed by Kodama and Ishibashi.53) They derived a master equation for a
variable Φ, which is related to the gauge-invariant quantities of the perturbation, as

∂2Φ

∂t2
− ∂2Φ

∂r2∗
+ VSΦ = 0, (2.99)

where
VS(r) =

f(r)Q(r)
16r2H2(r)

, (2.100)

and
H(r) = m+ (1/2)(D − 1)(D − 2)x, x = 1/rD−3, (2.101)

m = k2 −D + 2, k2 = �(�+D − 3), (2.102)

Q(r) = (D − 2)4(D − 1)2x3

+ (D − 2)(D − 1)
[
4(2D2 − 11D + 18)m+ (D − 1)(D − 2)(D − 4)(D − 6)

]
x2

− 12(D − 2) [(D − 6)m+ (D − 1)(D − 2)(D − 4)]mx

+ 16m3 + 4D(D − 2)m2. (2.103)

r∗ denotes the tortoise coordinate defined by r∗ =
∫
dr/f(r). Initial values of Φ and

Φ̇ (a dot denotes the time derivative hereafter) are related to the metric perturbation
and K̂ab, respectively, as

Φ(0, r) =
(
z2
0

) (D − 2)
√
r
[
D2 −D + 2 + (D − 2)(D + 1)

√
f
]

4(D − 1)(D − 3)K [D−2]
2 H(r)R(D+1)/2

, (2.104)

Φ̇(0, r) = −(z0P/M0)
2(D − 2)

√
f [2D + (D − 1)x]

(D − 3)K [D−2]
2 rD/2[2D + (D − 1)(D − 2)x]

, (2.105)

where the definition of K [D−2]
2 is given in Refs. 63) and 73). Since Eq. (2.99) is a

linear equation, Φ is naturally decomposed into two parts

Φ = (z2
0)Φ̂BL + (z0P/M0) Φ̂BY. (2.106)

The numerical solutions of Φ̂BL and Φ̂BY can be found in Refs. 63) and 64), respec-
tively. The total radiated energy of gravitational waves is calculated by the formula
(see Refs. 63) and 73) for a derivation)

Erad =
k2(D − 3)(k2 −D + 2)

32(D − 2)πG

∫
Φ̇2dt. (2.107)

Substituting Eq. (2.106) into the above formula, Erad is rewritten as

Erad

M0
= c1z

4
0 + c2z

3
0(P/M0) + c3z

2
0(P/M0)2, (2.108)

where c1, c2, and c3 are constants determined by numerical integration. These values
are listed in Table I. The formula (2.108) together with Table I may be used for
calibrating the results derived by the fully nonlinear simulation in higher-dimensional
numerical relativity.
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Table I. The values of c1, c2 and c3 of Eq. (2.108) for D = 4–11.

D 4 5 6 7 8 9 10 11

c1 0.0252 0.0245 0.0290 0.0288 0.0258 0.0223 0.0194 0.0172

c2 −0.165 −0.243 −0.294 −0.287 −0.251 −0.213 −0.182 −0.158

c3 0.343 0.671 0.808 0.765 0.647 0.539 0.456 0.396

§3. Simulations

In this section, several simulations of higher-dimensional numerical relativity
performed to date are reviewed. We in particular pick up three topics, numerical
study of the Gregory-Laflamme instability for a black string,41) black hole colli-
sions,38),45),46),60)–62) and numerical study of the bar-mode instability for rapidly ro-
tating Myers-Perry (MP) black holes with one rotational parameter.28),29) Although
we do not review in detail here, we also refer the readers to the study by Sorkin42) on
development of an axisymmetric (2 + 1-dimensional) code for D-dimensional space-
times using the GH formalism and its application to complex scalar fields minimally
coupled to gravity in Kaluza-Klein spacetimes for D = 5 and 6.

3.1. Gregory-Laflamme instability of black string

The 5D black string is one of the simplest solutions of the black objects in 5D
general relativity. The metric of this solution is written as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 + dz2, f(r) = 1 − 2GNM

r
, (3.1)

where GN is a 4D gravitational constant that is related to the 5D one as G = GNL
if the z direction is compactified with the scale L. The black string is shown to be
unstable against long wavelength deformation along the z direction (see also Chapter
6 of this supplement). There is a critical wavelength Lc for the instability; if the
wavelength of a perturbation is longer than Lc, the instability sets in. The value of
Lc are evaluated numerically, and Lc is of order 4πGNM . This implies that the black
string is unstable if the compactification scale is longer than L > Lc. The end state
of the Gregory-Laflamme instability has been inferred by many works. Among them,
Horowitz and Maeda74) gave a proof for the fact that the horizon cannot pinch off
in a finite affine-parameter time under very weak assumptions, and conjectured the
presence of a new stable state that is not translationally invariant in the z direction.

To find the final fate of the Gregory-Laflamme instability, numerical-relativity
simulation is probably the unique approach. A pioneer work was done by Choptuik
et al.13) Their simulation was performed assuming the spherical symmetry for the
3D space composed of (r, θ, ϕ), and adding a perturbation along the z axis. An
excision algorithm was employed to handle the interior of the black-string horizon.
The lapse function and shift vector were chosen to be α = αBS, βz = 0, and βr =
2αKθθ/hθθ,r, where αBS is the lapse of the static black string in the Eddington-
Finkelstein coordinates. The initial data was calculated by giving the distortion in
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Fig. 4. Snapshots of the apparent horizon of a black string for t/GNM = 0, 200 (above), 200, 220

(middle) and 220, 226 (below). The formation of first-, second-, and third-generation black-hole

satellites is seen. The figure is taken from Ref. 41).

the z direction as

gθθ(0, r, z) = 1 +A sin
(
z
2πq
L

)
e−(r−r0)2/δ2

r , (3.2)

and solving the Hamiltonian and momentum constraints to give the other metric
components and extrinsic curvatures. The simulation was performed for L = 1.4Lc.
Although the system was successfully evolved, a new stable state was not reached
until the end of the simulation at t = 164GNM . The authors showed the embedding
diagram of the apparent horizon (see Fig. 4 of Ref. 13)), and the resulting configura-
tion looks like large spherical black holes connected by thin black strings. However
the end state was still evolving in time. In Ref. 14), the behavior of null geodesic
congruence (which approximately denotes the event horizon) was studied in detail,
and it was found that the affine-parameter time becomes very large at the end of
the simulation. The authors discussed the possibility that the horizon may pinch off
in the infinite affine-parameter time.

In a recent paper, the most successful simulation to date was reported by Lehner
and Pretorius.41) In this simulation, the authors used a 4th-order accurate new
code for which GH formalism (§2.1.1) and modified version of the cartoon method
(§2.2.2) together with the AMR (§2.7) and black hole excision (§2.6) algorithms
were employed. The simulation was performed for L = 20GNM � 1.4Lc with the
outer boundary located at 320GNM . The initial data was prepared in the same
manner as in Ref. 13). Figure 4 shows the snapshots of an embedding diagram of
the apparent horizon reported in Ref. 41). Up to t = 200GNM , the results are similar
to those of the previous simulation.13) However, after t = 220GNM , some part of the
thin string segment continuously generates a small black-hole-like object while other
parts continue to shrink to be a thinner string. The authors call the black-hole-like
objects “satellites”. As the time goes further (t = 226GNM), new smaller satellites
are formed while other parts continue to shrink. The satellite black holes are formed
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in a self-similar cascade way, and this suggests the scenario of horizon pinch off in
an infinite affine-parameter time.

The important question here is whether the singularity is visible from observers
located outside, and this question is closely related to whether the infinite affine-
parameter time corresponds to an infinite or a finite asymptotic time. Here, the
asymptotic time implies the time coordinate that penetrates the horizon and is re-
duced to the Minkowski time at spacelike infinity. The harmonic time coordinate
employed in the simulation is an example of such coordinate. In the case of an infi-
nite asymptotic time, the horizon shrinks more and more slowly in the asymptotic
time as well as in the affine parameter, and the observers located outside the horizon
cannot see the horizon pinch off. In the case of a finite asymptotic time, the sin-
gularity formed in the horizon pinch-off would be able to affect the distant region,
and thus, the naked singularity is formed and the cosmic censorship is violated. The
authors discussed the latter possibility. The reason is that the time scale for the for-
mation of the next-generation satellite/string-segments is proportional to the local
string radius, and becomes shorter and shorter as the generation is increased. This
suggests that the string radius reaches zero in the finite asymptotic time as a result
of self-similar cascade. This indicates that the cosmic censorship may be generically
violated in 5D general relativity.

3.2. Black hole collisions and scatterings

Now we turn our attention to the simulations of black hole collisions performed
to date. First, we review the simulations of head-on collisions of black holes in higher
dimensions, and then, those of high-velocity collisions of black holes in 4 dimensions
are summarized.

3.2.1. Black hole head-on collision in D = 5
The simulations for head-on collisions of two black holes in 5 dimensions were

first reported by Zilhao et al.,38) and subsequently detailed analyses were reported
by Witek et al.45) They adopted the so-called Brill-Lindquist initial data for two
equal-mass black holes as the initial condition (see §2.9.4). The simulation was done
in a (x, y, z)-plane, where z-axis is the axis of the O(3) symmetry, and the initial
positions of two punctures are z = ±z0 on the z axis. The spacetime was evolved
using the code for which the 4 + (D − 4) splitting method is implemented.

The left panel of Fig. 5 shows the snapshots of the conformal factor χ on the
z axis for t/rS(M) = 0, 5, 20, 40, and 256 reported in Ref. 38). As in the 4D
simulations, the positions of the punctures, at which χ = 0, approach each other
and eventually merge. In Ref. 45), the coordinate time tCAH, at which the com-
mon apparent horizon is formed, was evaluated as a function of initial separation L
(which is defined by the proper distance along the z axis between the two apparent
horizons), and it was found that tCAH agrees remarkably well with the free-fall time
in Newtonian gravity, tfree-fall = (L/rS)2rS . The right panel of Fig. 5 shows the
gravitational waveforms for the l = 2 scalar mode extracted by the method reported
in Ref. 45) (reviewed in §2.4.1). This shows it possible to follow the evolution from
the initial burst to the ringdown phase. The total radiated energy is estimated as
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Fig. 5. Left panel: Snapshots of the conformal factor χ for t/rS(M) = 0, 5, 20, 40 and 256 in the

head-on collision of two equal-mass black holes initially at rest. Right panel: The gravitational

waveform for the l = 2 scalar mode extracted by matching with perturbation of a Schwarzschild-

Tangherlini black hole. The results with three extract positions Rex/rS = 20, 40, and 60 are

shown. The figure is taken from Ref. 45).

Erad/M � (8.9± 0.6)× 10−4, which agrees well with the estimate from the variation
of the total area of the apparent horizons.

In a recent paper,46) the authors performed a head-on collision of unequal-mass
black holes. The simulation was performed preparing, again, the Brill-Lindquist-type
of black holes as the initial data. The mass ratio was chosen as q := M1/M2 = 1,
1/2, 1/3, and 1/4 and initial coordinate separation as 2z0 = 6.37rS . Gravitational
waves of scalar mode with quantum numbers l = 2, 3, and 4 were extracted, and
the radiated energy and momentum (and thus, the recoil velocity) are successfully
calculated. The results are in a remarkable agreement with those of point parti-
cle approximation.75) As q is decreased from unity, the recoil velocity reaches the
maximum around q � 0.38 to give vrecoil � 12.8km/s.

3.2.2. High-velocity collision of two black holes in D = 4
In this subsection, we briefly summarize the current status for the simulation

of high-velocity collision of two black holes. The results in this type of simulations
have been reported only for 4 dimensions. Although these are not the subjects
of higher-dimensional numerical relativity, the 4D works could give an insight for
higher-dimensional phenomena and deserve reviewing.

The first simulation for this issue was performed by Sperhake et al.60) They
simulated the head-on collision of two equal-mass black holes. The initial velocity
was increased up to v � 0.94c. They prepared the initial data of boosted black holes
using the Brandt-Brügmann formalism (see §2.8). The energy E of each black hole
was estimated as E2 = M2

irr +P 2, where Mirr is the mass estimated by the apparent
horizon area, and the gamma factor γ as E/Mirr. Because the Bowen-York initial
data contains spurious radiation and its amount increases as γ is increased, the initial
separation has to be sufficiently large to make the system relaxed in the early phase
of the simulation (during which unphysical gravitational waves are emitted away).
They found that as the Lorentz factor is increased, the amplitude of gravitational
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Fig. 6. Left panel: The trajectory of relative position of punctures for the impact parameter

b/Gm0 = 6.0, 6.2, and 6.4. Right panel: Summary of the outcome after the merger shown

in the (v, b/Gm0γ) plane. The dots and crosses show the cases that two black holes merge or

not. The figures are taken from Ref. 61).

waves emitted at the collision increases, and also, the contribution of higher-multipole
modes becomes significant. The total radiated energy Erad increases with γ, and by
extrapolation, the value Erad/2E was estimated to be 14 ± 3% in the limit v → c.

The first simulation of high-velocity grazing collision of two black holes (i.e.,
collision with a nonzero impact parameter b) was performed by Shibata, Okawa and
Yamamoto61) using the SACRA code.76) In this work, they prepared the initial data
in a different manner from the Brandt-Brügmann formalism. Their idea is to first
prepare the initial data of one boosted black hole by boosting a Schwarzschild black
hole of mass m0, and then, superpose those of two boosted black holes. Since there
is an interaction between two holes, just superposing the two solutions causes the
violation of Hamiltonian and momentum constraints. However, if the initial distance
between the two holes is sufficiently large, violation of the constraints is small and
hence may be ignored. Using such initial data, they simulated the off-axis collision
focusing primarily on the threshold values of the impact parameter b for the black
hole merger. The left panel of Fig. 6 shows the trajectory of relative position of
two black holes for v = 0.9 and b/Gm0 = 6.0, 6.2, and 6.4. Here, the positions of
first and second black holes are given as (x, y, z) = (x1, y1, 0) and (x2, y2, 0), and the
initial position of two black holes are (x1,2, y1,2, z1,2) = (∓x0,∓b/2, 0). The black
holes are scattered for b/Gm0 = 6.4, while they merge for b/Gm0 = 6.2. The right
panel presents the summary for the outcome after the collision shown in the (v,
b/Gm0γ) plane. The dots and crosses show the cases that two black holes merge or
not. In 4 dimensions, we expect that the condition for the black-hole merger might
be approximated by

J

GM2
ADM

=
bv

4Gm0γ
� 1. (3.3)

Namely, if non-dimensional spin parameter of the system is smaller than unity, we
may expect that two black holes merge. However, this is nothing but a weak sufficient
condition. The right panel of Fig. 6 indicates that the condition for the black hole
merger is approximately bv/4Gm0γ � 1.25 for v → 1. This value is by 50% larger
than the condition for the apparent horizon formation in the collision of Aichelburg-
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Fig. 7. Left panel: The trajectory of the puncture of one black hole for the impact parameter

b/GM = 3.34 (prompt merger), 3.39 (non-prompt merger), and 3.40 (scatter). Center and

right panels: The radiated energy Erad/M and the rotational parameter j = JBH/GM2
BH,

respectively, as functions of the impact parameter b/M for initial velocity v = 0.753. The figure

is taken from Ref. 62).

Sexl particles at the instant of the collision,20),22) which gave b/4GE � 0.84 where
E is the energy of each incoming particle.

The radiated energy ΔE and angular momentum ΔJ were calculated from the
Newman-Penrose quantity, and it was evaluated as ΔE/MADM ≈ 25 ± 5% and
ΔJ/JADM ≈ 65± 5%, which are quite large values. As a result of the large angular-
momentum radiation, non-dimensional spin parameter of the system is significantly
decreased, and hence, black hole merger occurs even for J/GM2

ADM ∼ 1.25. The
resulting black hole near the threshold value of b is a rapidly spinning Kerr black
hole with the Kerr parameter a/MBH � 0.8 ± 0.1, where MBH is the mass of the
resulting black hole.

The second simulation of high-velocity grazing collision of two black holes was
reported in Ref. 62) by the same authors of Ref. 60). They took close attention to
the “zoom-whirl” behavior which was not reported in detail in Ref. 61). Specifically,
they divide the impact parameter b into three regions: (i) b < b∗; (ii) b∗ < b < bscat;
and (iii) bscat < b. The impact parameter in the region (i) leads to the immediate
merger, and that in the region (iii) leads to the scattering where two black holes
do not merge. In the region (ii), the merger does not occur in one encounter, but
the black holes rotate around each other several times (“whirls”) where the radius
of the orbit sometimes becomes fairly large and eventually merge as a result of
gravitational-wave emission. The left panel of Fig. 7 shows the puncture trajectory
of one of two black holes for b/GM = 3.34, 3.39, and 3.40 in the case of initial gamma
factor γ = 1.520 (v = 0.753) and initial coordinate separation d/GM = 174.1. The
behaviors of the three cases (i), (ii), and (iii) are seen. The middle and right panels
show the radiated energy Erad/M and the rotational parameter j := JBH/GM

2
BH,

respectively, as functions of b/GM for the same initial gamma factor but for the
initial coordinate separation d/GM = 62.4. Here, j is estimated from quasinomal
mode frequency (QNM) and geometry of the formed apparent horizon. The resulting
value of JBH was also compared with J −JGW (where J and JGW are initial angular
momentum of the system and total radiated angular momentum by gravitational
radiation), and two values were checked to agree well. The radiated energy is � 23%
at b � b∗ and the largest rotational parameter j is � 0.96 for b slightly smaller
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than b∗. They also performed simulations for the initial gamma factor γ = 2.933
(v = 0.940) and initial separation d/GM = 23.1. In that case, the radiated energy
for b � b∗ is Erad/M = 35 ± 5%, and the value of bscat is 2.3 < bscat/GM < 2.4.
These values are slightly different from the results in Ref. 61): The radiated energy
is larger and bscat is smaller. This might be due to lack of the resolution of the former
simulations or the different methods of initial data preparation.

In a recent paper, this work was extended by including spins of incoming black
holes,77) and the “superkicks” were studied in detail. They found that the kick
velocity could be as large as 15,000 km/s, which is the largest value to date, and
they conjectured the largest possible kicks in the two black-hole systems.

It is also worthy to point out a related paper by Choptuik and Pretorius78) in
which head-on collisions of two boson stars were studied. The motivation for this
study comes from the fact that although the Aichelburg-Sexl particles or black holes
are widely used in modeling the high energy particles in trans-Planckian collisions,
how the elementary particles couple to gravity is quite uncertain and they might have
to be treated as wave packets. As a classical model of colliding wave packets, they
used the soliton-like configuration of minimally coupled scalar field φ, and simulated
its head-on collision by changing initial gamma factor γ. The output of the collision
depends strongly on γ, but the black hole formation was observed for γ = 4. This
indicates that modeling the elementary particles in trans-Planckian collisions by
point particles/black holes, as studied in Refs. 19), 20), 22), 60)–62), is valid at least
at classical level.

3.3. Bar-mode instability of Myers-Perry black holes

The last topic in this chapter is the instability of rapidly rotating Myers-Perry
(MP) black holes with one spin parameter.25) The numerical-relativity simulations
for this issue were performed in Refs. 28) and 29). The MP black holes have been
inferred to be unstable against certain perturbations.26),27) Shibata and Yoshino for
the first time clarified by fully nonlinear simulations that the MP black holes are
indeed unstable if they are rotating sufficiently rapidly, and that the most unstable
mode is the bar-mode.28),29) They also clarified the condition for the onset of the
bar-mode instability quantitatively. In the following, we review their work.

3.3.1. The Myers-Perry black holes
In D-dimensional spacetimes, the spacetime can have �(D − 1)/2� independent

rotational parameters (i.e., the independent components of angular momentum ten-
sor) where �x� indicates the largest integer not greater than x. The black hole
solutions of spherical horizon topology with arbitrary number of rotational parame-
ters in higher-dimensions were found by Myers and Perry.25) Hereafter, we consider
only MP black holes with one spin parameter. The metric is given by

ds2 = −dt2+ μ

Σ
(dt−a sin2 θdϕ)2+

Σ

Δ
dr̂2+Σdθ2+(r̂2+a2) sin2 θdϕ2+r̂2 cos2 θdΩ2

D−4,

(3.4)
where

Σ = r̂2 + a2 cos2 θ, (3.5)
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Δ = r̂2 + a2 − μ/r̂D−5. (3.6)

In this case, the spacetime has a U(1) symmetry with respect to the rotational plane
and an O(D−4) symmetry with respect to the directions orthogonal to the rotational
plane. μ and a are related to the mass M and angular momentum J by

M =
(D − 2)ΩD−2μ

16πG
, J =

2
(D − 2)

Ma. (3.7)

The location r̂ = rK(M,J) of the event horizon is given by the equation Δ(rK) = 0.
In 5 dimensions, the event horizon exists only for a < μ, whereas it exists for any
value of a for D ≥ 6.

3.3.2. Previous studies
Here, the history for the stability analysis of the MP black hole is summarized. A

standard method for this is a linear perturbation study. If the variables of the linear
perturbation equations are separable, the resulting equation reduces to an ordinary
differential equation and its analysis may be done analytically or semi-analytically.
Although linear perturbation equations in the MP spacetime have been extensively
studied for a metric perturbation, the separation of the variables was succeeded only
for a tensor-mode perturbation.79),80) For other modes, the stability has not been
found yet by this analysis.

The next best method may be to numerically solve partial differential equations
for the linear perturbation equations without carrying out the separation of the
variables. The first numerical analysis was done by Dias et al.27) In this study,
an axisymmetric perturbation (i.e. the perturbation that keeps the U(1) × O(D −
4) symmetry) was studied and 2D simultaneous partial differential equations were
solved. They clarified that the MP black hole with ultra high spin (a � μ1/(D−3))
can be unstable against axisymmetric deformation for the first time. However, no
numerical study has not been done for nonaxisymmetric perturbation that breaks
the U(1) symmetry.

Alternatively, Emparan and Myers analyzed the stability of MP black holes
using two different analysis methods.26) In one analysis, they take the so-called black
membrane limit of the ultra spinning MP black holes. The ultra spinning MP black
holes for D ≥ 6 with a� μ1/(D−3) becomes extremely oblate. For such an extremely
oblate black object, instabilities analogous to the Gregory-Laflamme instability is
expected to set in. This discussion was applied to axisymmetric instabilities, and
indeed, the numerical analysis of Dias et al. confirms this prediction.27)

The other analysis was based on black-hole thermodynamics : They compared
the horizon area of a rotating MP black hole with that of two boosted Schwarzschild-
Tangherlini black holes, which recede from each other, fixing the total gravitational
energy and angular momentum. The horizon area of a MP black hole is

AMP = ΩD−2r
D−4
K

(
r2K + a2

)
, (3.8)

whereas sum of the area of two boosted black holes is

2AS = 2ΩD−2rS(m)D−2, (3.9)
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where rS(m) is the horizon radius of a Schwarzschild-Tangherlini black hole. Here,
the ADM mass M and the mass m of each black hole are related as M = 2

√
m2 + p2

where p is the magnitude of the momentum of each black hole. The angular momen-
tum of the system J is given by J = bp, where b is an “impact parameter”, i.e., the
distance between two black holes in the direction orthogonal to the momenta and
b is chosen to be b ∼ rS(M) as a typical value. If AMP < 2AS , the configuration
of two boosted black holes may be preferred to the MP black hole thermodynam-
ically. If this is the case, it is expected that the MP black hole becomes unstable
against nonaxisymmetric perturbation, the horizon may pinch off, and the system
may change to a state of two boosted black holes. By this discussion, the MP black
holes are predicted to be unstable for

q := a/μ1/(D−3) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.85 , (D = 5)
0.96 , (D = 6)
0.99 , (D = 7)
1.00 . (D = 8)

(3.10)

Here, we introduced a non-dimensional rotational parameter q which is used later.
In contrast to the former discussion, this discussion can be applied to D = 5 as well
as D ≥ 6, and the predicted critical parameter for the onset of the instability is much
smaller than that for the Gregory-Laflamme-like axisymmetric instability (i.e., the
instability can set in for a smaller black hole spin). Therefore, the nonaxisymmetric
perturbation was predicted to be the primary instability.

3.3.3. Setup of the problem
The prediction by Emparan and Myers seems to be qualitatively correct. How-

ever, for strictly verifying that the instability sets in and for quantitatively clarifying
the criterion for the onset of the instability, we have to solve Einstein’s equation,
which can be done only by numerical-relativity simulation. To solve this problem,
Shibata and Yoshino performed numerical simulations. In the following, we review
their work.

The simulation was done in the following procedures. First, the MP black hole
was written in the quasi-isotropic coordinates in which the radial coordinate is de-
fined by

r = rh exp

[
±
∫ r̂

rK

dr̂′√
r̂′2 + a2 − μ/r̂′(D−5)

]
. (3.11)

This is analogous to the isotropic coordinates of the Schwarzschild-Tangherlini space-
time (i.e. the radial coordinate for which the spatial part of the metric becomes con-
formally flat), and the initial spacelike hypersurface possesses two asymptotically
flat regions and one throat (i.e., the structure similar to the Einstein-Rosen bridge).
In this quasi-isotropic coordinates, the horizon is located at r = rh. This spacelike
hypersurface does not cross the physical curvature singularity of the MP spacetime.
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Fig. 8. Left panel: h+ and its absolute value as functions of retarded time for a/μ1/2 = 0.85, 0.87,

and 0.89 (dashed, long-dashed, and solid curves) in 5 dimensions. Right panel: Evolution of

distortion parameter η of the apparent horizon for q = 0.80–0.89 in 5 dimension. The figures

are taken from Ref. 28).

Then, the initial data is written in the (x, y, z, wi) coordinates

x = r cos θ cosφ, y = r cos θ sinφ,
√
z2 +

∑
i

w2
i = r sin θ, (3.12)

where the (x, y)-plane corresponds to the plane of the rotation.
Next, a small nonaxisymmetric perturbation is added to the conformal factor of

the BSSN variables, χ, as

χ = χ0

[
1 +Aμ−1(x2 − y2) exp(−r2/2r̂2K)

]
, (3.13)

where χ0 is the value of unperturbed initial data, and A is a small number � 1.
This perturbation breaks the U(1) symmetry with respect to (x, y)-plane and keeps
the O(D − 4) symmetry with respect to z and wi directions.

Adopting this initial data, Shibata and Yoshino evolved the system by SACRA-
ND code, which is the generalized version of SACRA code.76) This code employs the
4th-order finite differencing in space and the 4th-order Runge-Kutta method in time
with an AMR algorithm. The modified version of the cartoon method explained in
§2.2.2 is employed to impose the O(D − 4) symmetry. For stable simulations, the
parameters of gauge conditions (see Eqs. (2.48) and (2.49)) were carefully chosen
(see Refs. 28) and 29) for details). One important finding on the dynamical gauge
was that for unstable (rapidly rotating) black holes, a large value of ηβ is favored in
performing a longterm simulation until the growth of the instability saturates and
subsequently the deformation damps.

3.3.4. Numerical results
The left panel of Fig. 8 shows gravitational waveforms of m = 2 mode extracted

in a local wave zone as a function of time for D = 5. For q � 0.85, the amplitude
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Fig. 9. Left panel: Time evolution of distortion parameter η for D = 6 and for the initial spin

qi = a/μ1/3 ≈ 1.039, 0.986, 0.933, 0.878, 0.821, 0.801, 0.781, 0.761, 0.750, 0.740, 0.718, and

0.674 (from the upper to lower curves) with A = 0.005. Right panel: The same as the left panel

but for D = 7 and for qi = a/μ1/4 = 0.960, 0.903, 0.844, 0.813, 0.783, 0.767, 0.751, 0.735, and

0.719 (from the upper to lower curves). The figures are taken from Ref. 29).

exponentially damps with t. This shows that the black hole is stable. By contrast,
the amplitude for q � 0.87 remains approximately constant, and that for q � 0.89
grows in time. This implies that for q > 0.87 the black hole is unstable against
nonaxisymmetric deformation. The right panel shows the distortion parameter η.
Here, η is defined by η := [(l0 − lπ/2)2 + (lπ/4 − l3π/4)2]1/2/l0, where lϕ denotes the
proper circumferential length between θ = 0 and π/2 for a fixed value of ϕ evaluated
on the apparent horizon. This parameter indicates the degree of deviation from the
axisymmetry, and η = 0 for an axisymmetric surface. As can be seen, the value of η
grows exponentially for q � 0.87, while η damps for q � 0.86. This also shows that
the rapidly rotating black hole with q � 0.87 is unstable against nonaxisymmetric
deformation. The critical parameter for the onset of the instability is qcrit � 0.87.

Figure 9 shows the time evolution of the distortion parameter η for D = 6
(left panel) and 7 (right panel). Here, the definition of η is slightly modified as
η := 2[(l0 − lπ/2)2 + (lπ/4 − l3π/4)2]1/2/(l0 + lπ/2). As in the 5D case, the value of η
exponentially damps in time if q is small, but it grows exponentially for q larger than
a certain critical parameter qcrit. The value of qcrit is � 0.74 and 0.73 for D = 6 and
7, respectively. The critical parameter qcrit for the onset of the instability is much
smaller than that for the onset of the axisymmetric instability reported in Ref. 27)
irrespective of dimensionality D. The results are summarized in Table II.

The solid curves of Fig. 10 plot gravitational waveforms in the longterm sim-
ulations where the initial value q is qi = 0.801 (left panel) and 0.986 (right panel)
for D = 6. The amplitude of gravitational waves grows in time and then saturates
when the distortion parameter becomes of order 0.1 at t = tpeak. After the satu-
ration, the amplitude exponentially damps. The reason is as follows. Associated
with the growth of the nonaxisymmetric deformation, emissivity of gravitational
waves is enhanced, and energy and angular momentum are significantly extracted
from the black hole (although the area increases). As a result, the value of the non-
dimensional spin parameter q is decreased, and eventually, it becomes q � qcrit when
the growth of the amplitude saturates at t = tpeak. Gravitational waves continue
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Table II. The values of critical rotational parameter qcrit of the onset of the bar-mode instability

for D = 5–8.

D 5 6 7 8

qcrit 0.87 0.74 0.73 0.77

Fig. 10. Left panel: + modes of gravitational waveform (solid curve) emitted from an unstable

black hole for D = 6 and for qi = 0.801 as a function of a retarded time defined by t− r where r

is the coordinate distance from the center. η/2 is also plotted as a function of t (dashed curve).

Right panel: The same as the left panel but for qi = 0.986. The figures are taken from Ref. 29).

to extract energy and angular momentum even after the saturation and the final
state is a stable state with the value of q = qf which is smaller than qcrit. The time,
t = tpeak, for qi = 0.986 is smaller than that for qi = 0.801. This is because the
growth rate of the instability for qi = 0.986 is larger than that for qi = 0.801, and
therefore, energy and angular momentum are extracted more efficiently. The dashed
curves of Fig. 10 plot half of the distortion parameter η of the apparent horizon.
It agrees approximately with the amplitude of gravitational waves, indicating that
the distortion of the apparent horizon is not due to a gauge mode and gravitational
waves are generated by the distortion of the system.

Figure 11 shows the real part of the gravitational-wave frequency as a function
of q for D = 5, 6, and 7. The line for the superradiance condition81) ω ≤ mΩH is also
shown for each value ofD, wherem = 2 andΩH is the angular velocity of the horizon.
It is well known that the superradiance condition is the condition such that waves
can extract energy and angular momentum from a black hole without violating the
area theorem by Hawking (e.g., Ref. 23)). The superradiance condition is a necessary
condition for subtracting energy from the black hole by waves. However, it is only a
necessary condition and not the sufficient condition for the onset of the dynamical
instability found in Refs. 28) and 29). In the superradiance often discussed, one
considers to inject rather an artificial ingoing wave for which the frequency satisfies
this condition. For such an artificial wave, the reflected waves are amplified. For
the dynamical instability to occur, gravitational waves have to be spontaneously
excited by unstable quasinormal modes. Namely, such a mode has to satisfy not
only the superradiance condition but also the condition that the imaginary part of
the quasinormal mode is negative. Figure 12 shows the inverse τ−1 of the growth time
scale of the instability for D = 6 (left panel) and 7 (right panel), which corresponds
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Fig. 11. Real part of gravitational-wave frequencies ω/m (where m = 2) for selected values of the

spin parameter for D = 5 – 7 (points) together with ΩH as a function of q = a/μ1/(D−3) for

D = 5 – 7 (from the upper to lower solid curves). The units of the vertical axis are μ−1/(D−3).

The values q = qcrit for the onset of the bar-mode instability are also shown for D = 5 – 7 (from

the right to left dotted lines). The figure is taken from Ref. 29) with modification.

Fig. 12. Left panel: The growth rate 1/τ of η in units of μ−1/(D−3) as a function of q (solid curve)

for D = 6. The dashed curve denotes ΩH/2π. Right panel: The same as left panel but for

D = 7. The figures are taken from Ref. 29).

to the imaginary part of the quasinormal modes. It indeed becomes negative for
q > qcrit.

The final state eventually reached after the onset of the bar-mode instability
was also clarified in Ref. 29). For this purpose, the time evolution of the value of
q was approximately followed by evaluating the degree of oblateness of the horizon,
Cp/Ce, where Cp = (l0 + lπ/2)/2 and Ce is the proper circumferential length between
ϕ = 0 and π/2 along the equatorial plane θ = π/2 on the horizon. For a spherically
symmetric surface, the value of Cp/Ce is unity, and it monotonically decreases as
the spin of the MP black hole increases (as the oblateness of the horizon surface
increases). In Ref. 29), the value of Cp/Ce was followed, and using the relation of
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Fig. 13. Left panel: Time evolution of Cp/Ce for D = 6 and for non-dimensional spin parameters

not much greater than qcrit, qi = a/μ1/3 = 0.821, 0.801, and 0.781. The corresponding initial

values of Cp/Ce are ≈ 0.587, 0.602, and 0.618, respectively. The results with A = 0.02 and

0.005 are plotted for qi = 0.801, and the results with A = 0.02 are plotted for qi = 0.821 and

0.781. The solid and dashed curves denote the results for N = 50 and 40, respectively, where

N is grid numbers. The thin dotted line denote Cp/Ce = 0.647 which is the value of Cp/Ce for

q = qcrit. For qi = 0.821, the simulation was stopped at t/μ1/3 ≈ 370 because the black hole

reaches approximately stationary state. Right panel: The same as the left panel but for the

large initial spins qi = 0.878, 0.933, 0.986, and 1.039 with A = 0.005. Cp/Ce ≈ 0.542, 0.499,

0.460, and 0.422 at t = 0, respectively. The figures are taken from Ref. 29).

Cp/Ce(q), the spin, q, is approximately determined.
Figure 13 shows the value of Cp/Ce as a function of time. The value of Cp/Ce

increases with time, indicating that the black hole spin decreases. Here, we focus
on the curve starting from Cp/Ce � 0.62, shown in the left panel. The initial value
of q is qi = 0.781, and the value Cp/Ce, which corresponds to q = qcrit = 0.74, is
shown by the dotted line. The curve crosses the dotted line at t/μ1/3 � 200, which
agrees approximately with the time at which the growth of the gravitational-wave
amplitude saturates. The final value of Cp/Ce is � 0.68, and the corresponding value
of q is qf � 0.705. Thus, a stable and moderately rapidly spinning black hole is the
final outcome. Next, we focus on the curve starting from Cp/Ce � 0.42 shown in
the right panel. For Cp/Ce = 0.42, the initial value is qi = 1.04. The value of Cp/Ce

increases in time also in this case, and crosses the line for q = qcrit. Then, it relaxes
to a stable state with the value Cp/Ce � 0.75, which corresponds to qf = 0.61.
Again, a stable black hole is the final outcome. It is interesting to note that for a
high initial spin, the final spin is smaller.

To summarize, the MP black holes are unstable against nonaxisymmetric bar-
mode deformation if they are spinning sufficiently rapidly. As a result of the onset
of this instability, energy and angular momentum are extracted from the black hole
by gravitational waves which are spontaneously excited by an unstable quasinormal
mode.

It should be noted that Shibata and Yoshino could not follow the evolution of
the black hole for qi � 1. The reason is perhaps that the space structure for large
value of q has a very long throat while the coordinate region to span this throat is
limited, and hence, the resolution in space is not sufficient. Also, the growth of the
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instability is very rapid, and this seems also to require a higher resolution. In this
case, the horizon pinch-off might happen as discussed by Emparan and Myers,26)

and it is an interesting remaining issue to clarify the evolution of the instability for
this parameter regime.

§4. Summary

In this chapter, we review the current status of higher-dimensional numerical
relativity. As described in §2, the ingredients necessary for higher-dimensional nu-
merical relativity have been prepared and many of interesting simulations are now
feasible as in 4D one. In §3, we reviewed several simulations performed to date,
which indeed showed that simulating interesting phenomena in higher-dimensional
spacetimes is now feasible. A wide variety of extensions will be possible in the near
future. For example, the simulation of unstable black objects such as black rings82)

is an interesting subject. The Gregory-Laflamme instability of a Kerr string and the
dependence of the fate of the instability on the dimensionality D are also interesting.
Among others, the high-velocity black hole collision seems to be the most important
remaining issue to clarify the possible production rate of mini black hole in LHC.

In §1, we introduced AdS/CFT correspondence as one of the subjects for higher-
dimensional numerical relativity. To study the issues of AdS/CFT correspondence
applying numerical relativity, the formulations to handle the spacetimes with a neg-
ative cosmological constant Λ < 0 has to be developed. Although these have not
been developed yet, the first step toward this direction was studied by Witek et al.83)

They simulated a spacetime of binary black holes by putting a timelike boundary at
a finite distance, where the cosmological constant was set to be zero, Λ = 0. The
motivation of this study comes from the fact that one of the specific features of AdS
spacetimes is that spacelike infinity is timelike, and therefore, the artificial boundary
at a finite distance is a good toy model that takes account of some features of AdS
spacetimes. The formulations for handling Λ < 0 are also necessary for simulating
black hole dynamics in the Randall-Sundrum braneworld scenarios. The formulation
for such systems has been studied by Tanahashi and Tanaka (see Chapter 8).

Another interesting direction in the future is to develop formulations and codes
for simulating spacetimes in Gauss-Bonnet gravity84) (or, more generally, Lovelock
gravity85)). The Gauss-Bonnet gravity is a theory derived from a Lagrangian density
with higher-order curvature terms, L = R+αGBLGB and LGB = R2−4RMNR

MN +
RKLMNR

KLMN , but is a well-behaved theory in the sense that the third and fourth-
order derivative terms of the metric do not appear in equations. Furthermore, the
Gauss-Bonnet term is also predicted by low-energy limit of heterotic string theory.
The (N + 1)-formalism for Gauss-Bonnet gravity, which corresponds to the ADM
formalism in general relativity, was developed by Torii and Shinkai.86) However
a numerically stable formulation has not been developed yet. Because the higher-
curvature terms may become important in mini black hole production at accelerators
and it causes a lot of interesting phenomena such as instabilities of spherically sym-
metric black holes,87) exploring the dynamics of the higher-curvature theory will be
an interesting and necessary subject.
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